首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of mesangial cells with interleukin 1 beta (IL-1 beta) or tumour necrosis factor alpha (TNF alpha) has been shown to increase cGMP formation, most probably due to induction of nitric oxide synthase. Here we report that maximum stimulation of cGMP formation over a 24-h period required the presence of IL-1 beta or TNF alpha during the first 18 h of induction. N4-monomethyl-L-arginine (L-NMMA) was a potent inhibitor of cytokine-induced cGMP formation while N4-nitro-L-arginine (L-NNA) was less active. Formation of nitric oxide was detected in the cytosol of cytokine-treated mesangial cells by activation of purified soluble guanylate cyclase and was stimulated by tetrahydrobiopterin, but not by calcium calmodulin. Treatment of cells with IL-1 beta or TNF alpha markedly attenuated the contractile response to a subsequent challenge with angiotensin II. Furthermore, conditioned medium from IL-1 beta-treated cells increased cGMP in untreated control cells.  相似文献   

2.
Lung cells have been isolated by enzymatic digestion of guinea pig lungs and mechanical dispersion to obtain a suspension of viable cells (approximately 500 X 10(6) cells). Type II pneumocytes have been purified to approximately 92% by centrifugal elutriation (2000 rpm, 15 ml/min) followed by a plating in plastic dishes coated with guinea pig IgG (500 micrograms/ml). We have investigated the arachidonic acid metabolism through the cyclooxygenase pathway in this freshly isolated type II cells (2 x 10(6) cells/ml). Purified type II pneumocytes produced thromboxane B2 (TxB2) predominantly and to a smaller extent the 6-keto prostaglandin PGF1 alpha (6-keto-PGF1 alpha) and prostaglandin E2 (PGE2) after incubation with 10 microM arachidonic acid. The stimulation of pneumocytes with 2 microM calcium ionophore A23187 released less eicosanoids than were produced when cells were incubated with 10 microM arachidonic acid. There was no additive effect when the cells were treated with both arachidonic acid and the ionophore A23187. Guinea pig type II pneumocytes failed to release significant amounts of TxB2, 6-keto-PGF1 alpha and PGE2 after stimulation with 10 nM leukotriene B4, 10 nM leukotriene D4, 10 nM platelet-activating factor, 5 microM formyl-methionyl-leucyl-phenylalanine, 0.2 microM bradykinin and 10 nM phorbol myristate acetate. Our findings indicate that guinea pig type II pneunomocytes possess the enzymatic machinery necessary to convert arachidonic acid to specific cyclooxygenase products, which may suggest a role for these cells in lung inflammatory processes.  相似文献   

3.
Among the major cytokines present in inflammatory lesions interleukin-1 (IL-1), tumor necrosis factor alpha (TNF alpha) and interleukin-6 (IL-6) share many biological activities. Since IL-1 alpha, IL-1 beta and TNF alpha have been previously demonstrated to play an important role in connective tissue destruction by stimulating the production of prostaglandin E2 (PGE2) and collagenase, these functions were investigated in the presence or absence of natural human IL-6 (nhIL-6) or recombinant human IL-6 (rhIL-6). IL-6 was found 1 degree to stimulate immunoglobulin A production by the CESS B cell line up to 19 fold without being affected by the presence of IL-1 beta and 2 degrees to stimulate murine thymocytes proliferation up to 2-4 fold, with an increase up to 60-fold in costimulation with either IL-1 alpha or beta. IL-6 alone, even at very high concentrations (up to 200 U/ml and 50 ng/ml), did not induce PGE2 production by fibroblasts and synovial cells. However, IL-1 alpha or beta induced PGE2 production by human dermal fibroblasts and by human synovial cells was inhibited (in 5/8 experiments) up to 62% by addition of IL-6. On the contrary in 2/4 experiments TNF alpha-induced PGE2 production was increased (approximately 2 fold) by the addition of IL-6. IL-1 and TNF alpha-induced collagenase production in synovial cells remained unchanged in the presence of IL-6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Sjursen W  Brekke OL  Johansen B 《Cytokine》2000,12(8):1189-1194
The involvement of cytosolic phospholipase A(2)(cPLA(2)) and secretory non-pancreatic PLA(2)(npPLA(2)) in release of arachidonic acid (AA) preceding eicosanoid formation in the human keratinocyte cell line HaCaT was examined. Interleukin 1beta (IL-1beta) and tumour necrosis factor-alpha (TNF), phorbol myristate acetate (PMA) and calcium ionophore A(23187)increased the extracellular AA release, and stimulated eicosanoid synthesis as determined by HPLC analysis. The main metabolites after stimulation with IL-1beta, PMA or A(23187)were PGE(2), an unidentified PG and LTB(4), while TNF stimulated HETE-production. Both cPLA(2)and npPLA(2)message and enzyme activity were detected in unstimulated HaCaT cells. IL-1beta, PMA and TNF increased both cPLA(2)enzyme activity and expression, but did not lead to any increase in npPLA(2)expression or activity. The selective npPLA(2)inhibitors LY311727 and 12-epi-scalaradial, or the cPLA(2)inhibitor arachidonyl trifluoro methyl ketone (AACOCF(3)) reduced IL-1beta-induced eicosanoid production in a concentration dependent manner. The results presented strongly suggest that both cPLA(2)and npPLA(2)contribute to the long-term generation of AA preceding eicosanoid production in differentiated, human keratinocytes. Inhibitors against npPLA2 or cPLA2 enzymes should be useful in treating inflammatory skin diseases, such as psoriasis.  相似文献   

6.
Stimulation of rat mesangial cells for 24 h with interleukin-1beta (IL- 1beta) plus forskolin (Fk) leads to a marked increase in prostaglandin E2 (PGE2) synthesis. This effect is further enhanced by the small G-protein Rho inhibitor toxin A. A similar increase in PGE2 formation is obtained with Y27632, a Rho-dependent kinase inhibitor, and with lovastatin, a hydroxymethylglutaryl-coenzyme A inhibitor which depletes cells from geranylgeranyl moieties and thus blocks Rho activation. In parallel to the increased PGE2 synthesis, a potentiation of IL-1beta-induced secretory group IIA phospholipases A2 (sPLA2-IIA) protein expression also occurs by Rho inhibition. However, only toxin A triggers an increased sPLA2-IIA activity consistent with the elevated levels of protein expression, whereas Y27632 and lovastatin rather reduced IL-1beta-induced sPLA2-IIA activity. In vitro activity studies reveal that Y27632 and lovastatin can directly block sPLA2-IIA enzyme activity in a concentration-dependent manner. Interestingly, in the absence of IL-1beta/Fk stimulation and the lack of sPLA2-IIA protein expression, all Rho inhibitors exert a small but significant increase in PGE2 formation suggesting that additional PLA2s or downstream enzymes like cyclooxygenases or prostaglandin synthases may be activated by Rho inhibitors. Western blot analyses of toxin A-, Y27632- and lovastatin-stimulated cells reveal that the cytosolic group IV PLA2 (cPLA2) and the cytosolic PGE2 synthase (cPGES), but not the sPLA2-IIA, cyclooxygenase-2 or the microsomal PGE2 synthase (mPGES), are upregulated compared to unstimulated cells. Furthermore, the Rho inhibitors induced arachidonic acid release from intact cells which is blocked by the cPLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP). In summary, these data show that inhibition of the small G-protein Rho, either by toxin A, lovastatin, or Y27632, exert a dual effect on mesangial cells: (i) in the absence of an inflammatory stimulus it activates the constitutive cPLA2 and cPGE2 synthase and generates low amount of PGE2. (ii) In the presence of inflammatory cytokines it potentiates sPLA2-IIA expression and subsequent PGE2 formation. In addition, we identified lovastatin and Y27632 as direct inhibitors of sPLA2-IIA in a cell-free system.  相似文献   

7.
The effects of interleukin (IL)-1 alpha, IL-1 beta and TNF alpha on prostaglandin-E2 synthesis in Madin-Darby canine kidney (MDCK) cells were investigated. IL-1 beta time- and dose-dependently stimulated prostaglandin-E2 synthesis. While TNF alpha produced a comparatively small but significant stimulation of PGE2 release, coincubation of IL-1 beta with TNF alpha produced a marked synergistic stimulation of PGE2 release. The effect of IL-1 beta and of IL-1 beta and TNF alpha was apparent as early as after 2 h of incubation. The enhanced PGE2 synthesis was inhibited by indomethacin as well as actinomycin D, while cycloheximide surprisingly potentiated PGE2 synthesis in response to both IL-1 beta and TNF alpha. IL-1 alpha alone was ineffective in stimulating a significant release of PGE2 at concentrations as high as 10 nM. However, it also showed a marked synergistic interaction with TNF alpha in stimulating PGE2 release.  相似文献   

8.
Proliferating keratinocyte cultures have been reported to synthesize higher concentrations of prostaglandin (PG) E than confluent ones. As interleukin-1 (IL-1) stimulates keratinocyte PGE synthesis we investigated whether the degree of confluency of the keratinocyte culture modified the response of the cells to IL-1. It was found that IL-1alpha (100 U/ml) stimulated PGE(2) synthesis by proliferating (7 days in culture) but not differentiating (14 days in culture) keratinocytes. Similar effects were observed using tumour necrosis factor-alpha. Both arachidonic acid (AA) and the calcium ionophore A23187 stimulated PGE(2) synthesis by 7 and 14 day cultures although the increase was greatest when 7 day cultures were used. Our data indicate that there is a specific down-regulation of the mechanism(s) by which some inflammatory cytokines stimulate keratinocyte eicosanoid synthesis as cultured keratinocytes begin to differentiate.  相似文献   

9.
We examined the interactions between supernatant from FMLP-activated human granulocytes, recombinant interleukin-1 (IL-1) and recombinant tumor necrosis factor (TNF) in the stimulation of prostaglandin E2 (PGE2) production by human amnion cells. Amnion cells from elective term cesarian sections were cultured in monolayer culture. Human granulocytes were activated with FMLP and centrifuged to obtained cell-free supernatant. Amnion cells were treated with granulocyte supernatant, IL-1 alpha, IL-1 beta, TNF-alpha, TNF-beta, or different combinations of these. Each of the stimulators alone enhanced the PGE2 production 5- to 27-fold. Granulocyte supernatant was synergistic with each of the cytokines. The combinations of IL-1 alpha or IL-1 beta with either TNF-alpha or TNF-beta caused a synergistic stimulation of amnion cell PGE2 production as well, whereas the combinations of IL-1 alpha with IL-1 beta or of TNF-alpha with TNF-beta were not synergistic. Furthermore, granulocyte supernatant was synergistic with the combination of IL-1 and TNF, resulting in a more than 150-fold stimulation of PGE2 production. Indomethacin completely suppressed these effects. We propose that granulocyte products acting together with IL-1 and TNF enhance PGE2 synthesis during inflammation, and serve as signals for the initiation of preterm labor in the setting of intra-amniotic infection.  相似文献   

10.
A method for the preparation of a highly purified sample of rabbit blood monocytes is described. The metabolism of arachidonic acid (AA) in these cells was studied. Mononuclear cells were prepared by centrifugation on Ficoll-Paque gradients and the monocytes were obtained by further centrifugation and adherence onto plastic culture dishes. These procedures provided a preparation which contained 95% monocytes (non-specific esterase positive). Incubation of [1-14C]-AA with these cells produced four major metabolites which were separated by TLC; these corresponded to prostaglandin (PG) D2, thromboxane (TX) B2, 12-hydroxyheptadecatrienoic acid (HHT) and 12-/15-hydroxyeicosatetraenoic acid (HETE). A minor product which co-migrated with PGE2 was also detected but neither 6-keto-PGF1 alpha nor PGF2 alpha were detected. Also, there was no evidence of the formation of 5-lipoxygenase products (5-HETE and LTB4) by rabbit monocytes with or without calcium-ionophore A23187-stimulation. The production of PGD2, TXB2 and PGE2 was further confirmed by analyzing [3H]-AA metabolites using high-performance liquid chromatography (HPLC) with tritiated standards as references. The biosynthesis of these compounds from endogenous substrate in A23187-stimulated monocytes was confirmed by specific radioimmunoassays with or without prior HPLC separation. The synthesis of immunoreactive LTB4 and LTC4 by A23187-stimulated cells was also monitored and found to be relatively low. The synthesis of PGD2, TXB2 and PGE2 from both exogenous and endogenous substrate was suppressed by treatment of the monocytes with indomethacin (10(-6) M).  相似文献   

11.
The effects of luteinizing hormone-releasing hormone (LHRH) and its putative intracellular mediators on progesterone (P) and prostaglandin E2 (PGE2) formation were studied in rat granulosa cells. A calcium ionophore (A23187), 12-0-tetradecanoylphorbol-13-acetate (TPA), and melittin (a phospholipase A2-stimulator) were used to later intracellular calcium, protein kinase C, and arachidonic acid levels, respectively. During a 5-h incubation, LHRH increased basal P levels but failed to affect the formation of P induced by cholera toxin (CT). On the other hand, both basal and CT-stimulated PGE2 formation were increased by LHRH. Treatment of the cells with A23187 or TPA attenuated the formation of P induced by CT or FSH. By contrast, A23187 or TPA significantly augmented CT- or FSH-stimulated PGE2 formation. Interestingly, the effects of A23187 and TPA on PGE2 were synergistic, whether or not FSH or CT was present during the incubation. This synergy was not observed with regard to P formation. Melittin also increased basal P and PGE2 levels, and enhanced the stimulation of PGE2 by A23187 or TPA. However, in the combined presence of A23187 and TPA, melittin failed to further enhance the high levels of PGE2 accumulated. These findings further support a role for the intracellular calcium, protein kinase C, and arachidonic acid metabolic pathways in the multiple actions of LHRH in the ovary.  相似文献   

12.
Treatment of rat glomerular mesangial cells with recombinant human interleukin 1 alpha (rIL-1 alpha), recombinant human interleukin 1 beta (rIL-1 beta) or recombinant human tumor necrosis factor (rTNF) induces prostaglandin E2 (PGE2) synthesis and the release of a phospholipase A2 (PLA2) activity. rIL-1 beta is significantly more potent than rIL-1 alpha or rTNF in stimulating PGE2 as well as PLA2 release from mesangial cells. When given together, rTNF interacts in a synergistic fashion with rIL-1 alpha and rIL-1 beta to enhance both, PGE2 synthesis and PLA2 release. The released PLA2 has a neutral pH optimum and is calcium-dependent. Pretreatment of cells with actinomycin D or cycloheximide inhibits basal and cytokine-stimulated PGE2 and PLA2 release.  相似文献   

13.
Prostaglandin synthesis by human glomerular cells in culture   总被引:2,自引:0,他引:2  
PG synthesis by cultured human glomerular mesangial and epithelial cells incubated with [1- 14C] arachidonic acid was determined by radioimmunoassay (RIA) after high performance liquid chromatography purification. Both dissociated cells and cell monolayers were studied under basal conditions. PG synthesis by epithelial cells was undetectable. Mesangial cells produced low amounts of PGE2, PGF2 alpha and 6 keto-PGF1 alpha and no TXB2. We also examined the effects of several agents on PG synthesis in these two types of cells scraped away from their flasks using direct RIA. Arachidonic acid produced a slight stimulation only with mesangial cells whereas angiotensin II, cyclic AMP and calcium ionophore were inactive with both cell lines. Homogenization of the cells did not enhance the stimulatory effect of arachidonic acid. Alkalinization of the incubation medium produced an increase of PG production by mesangial cells. These results suggest that two types of human glomerular cells, particularly epithelial cells, possess low cyclooxygenase activity. The low capacity of human mesangial and epithelial cells to produce PG may have consequences for the endocrine control of the glomerular microcirculation in man.  相似文献   

14.
Treatment of mesangial cells with recombinant human interleukin 1 beta (IL-1 beta) or recombinant human tumor necrosis factor alpha (TNF alpha) dose-dependently increased cGMP formation. Both IL-1 beta and TNF alpha-stimulated formation of cGMP occurred after a initial lag period of 4 to 8 hours. Treatment of cells with actinomycin D, cycloheximide or dexamethason completely abolished cytokine-induced cGMP formation. Furthermore, the guanylate cyclase inhibitor Methylene blue completely blocked IL-1 beta- and TNF alpha-stimulated cGMP generation. NG-mono-methyl-L-arginine attenuated IL-1 beta- and TNF alpha-induced cGMP production, an effect that was reversed by L-arginine.  相似文献   

15.
Treatment of mesangial cells with interleukin 1 beta (IL-1 beta) or tumour necrosis factor alpha (TNF alpha) has been shown to induce nitric oxide (NO) synthase with subsequent autocrine stimulation of soluble guanylate cyclase (Pfeilschifter and Schwarzenbach, 1990, FEBS Lett. 273, 185-187). Here we report that transforming growth factor beta 2 (TGF beta 2) dose-dependently inhibits IL-1 beta- and TNF alpha-stimulated cGMP formation in mesangial cells. Half-maximal inhibition is observed at concentrations of 0.4 and 0.06 ng/ml of TGF beta 2, respectively. Maximum inhibition of cGMP formation over a 24 h period requires the presence of TGF beta 2 during the first 4 h of induction. In addition, the inhibitory effect of TGF beta 2 on cytokine-induced cGMP formation is not affected by the potent cyclo-oxygenase inhibitor indomethacin, thus excluding prostaglandins as mediators.  相似文献   

16.
The release of the prostanoids prostaglandin D2 (PGD2), prostaglandin E2 (PGE2) and thromboxane induced by zymosan and phorbol ester in cultured rat Kupffer cells was found to depend on the extracellular concentration of Ca2+ to some extent. Prostanoid formation following the addition of the calcium ionophore A 23187 was totally inhibited when calcium ions were withdrawn from the medium whereas the prostanoid synthesis from added arachidonic acid was independent of Ca2+. A half-maximal rate of PGE2 release by cells treated with zymosan, phorbol ester or A23187 was obtained at 0.6-0.7 microM free extracellular Ca2+ and greater than or equal to 100 microM free Ca2+ was required to stimulate PGE2 formation maximally. The calmodulin antagonist R24571 partially inhibited the release of PGE2 elicited by zymosan and A23187 but not by phorbol ester or arachidonic acid. Verapamil and nifedipine, two calcium channel blockers, had no effect on the formation of PGE2 irrespective of the stimulus. TMB 8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester] an intracellular calcium antagonist, inhibited the synthesis of PGE2 induced by zymosan and phorbol ester. The superoxide formation following the addition of zymosan and phorbol ester was not influenced by removal of calcium ions from the medium or by addition of the various calcium antagonists. The data presented here suggest that Ca2+-dependent reactions are involved in the synthesis of prostanoids induced by zymosan and phorbol ester and that both extracellular Ca2+ and mobilization of Ca2+ from intracellular stores are needed to induce maximally the production of prostanoids in cultured rat Kupffer cells.  相似文献   

17.
Effects of prostaglandins on adrenal steroidogenesis in the rat   总被引:3,自引:0,他引:3  
To elucidate the role of prostaglandins in adrenal steroidogenesis, we studied aldosterone and corticosterone responses to 3 x 10(-8) M--3 x 10(-4) M of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), prostacyclin (PGI2), and arachidonic acid (AA) in collagenase dispersed rat adrenal capsular and decapsular cells. Whereas adrenocorticotrophic hormone (ACTH) and angiotensin II (AII) stimulated aldosterone production in capsular cells and ACTH stimulated corticosterone production in decapsular cells in a dose dependent fashion, aldosterone and corticosterone production were not stimulated significantly by PGE2, PGF2 alpha, PGI2, and AA. Although preincubation of dispersed adrenal cells with indomethacin (3 x 10(-5) M) markedly inhibited PGE2 synthesis, ACTH- and AII-stimulated aldosterone production and ACTH-stimulated corticosterone production were not attenuated despite prostaglandin blockade. These results indicate that prostaglandins are unlikely to play an important role in adrenal steroidogenesis.  相似文献   

18.
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme regulating the synthesis of prostaglandin E2 (PGE2) in inflammatory conditions. In this study we investigated the regulation of mPGES-1 in gingival fibroblasts stimulated with the inflammatory mediators interleukin-1 beta (IL-1beta) and tumour necrosis factor alpha (TNFalpha). The results showed that IL-1beta and TNFalpha induce the expression of mPGES-1 without inducing the expression of early growth response factor-1 (Egr-1). Treatment of the cells with the PLA2 inhibitor 4-bromophenacyl bromide (BPB) decreased the cytokine-induced mPGES-1 expression accompanied by decreased PGE2 production whereas the addition of arachidonic acid (AA) upregulated mPGES-1 expression and PGE2 production. The protein kinase C (PKC) activator PMA did not upregulate the expression of mPGES-1 in contrast to COX-2 expression and PGE2 production. In addition, inhibitors of PKC, tyrosine and p38 MAP kinase markedly decreased the cytokine-induced PGE2 production but not mPGES-1 expression. Moreover, the prostaglandin metabolites PGE2 and PGF2alpha induced mPGES-1 expression as well as upregulated the cytokine-induced mPGES-1 expression indicating positive feedback regulation of mPGES-1 by prostaglandin metabolites. The peroxisome proliferator-activated receptor-gamma (PPARgamma) ligand, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), decreased mPGES-1 expression but not COX-2 expression or PGE2 production. The results indicate that the inflammatory-induced mPGES-1 expression is regulated by PLA2 and 15d-PGJ2 but not by PKC, tyrosine kinase or p38 MAP kinase providing new insights into the regulation of mPGES-1.  相似文献   

19.
Cytokines and growth factors have been proposed to act as in vivo modulators of amnion prostaglandin production at parturition. To characterize the effects of the 'anti-inflammatory' cytokine interleukin (IL)-4 on amnion prostaglandin production, amnion epithelium-derived WISH cells were treated with IL-4 in the presence/absence of IL-1beta, tumour necrosis factor-alpha (TNF-alpha) or epidermal growth factor (EGF). IL-4 (0.08-10 ng/ml) potently inhibited cytokine-stimulated PGE2 production over 16 h (maximal inhibition approximately 66% at 2.0 ng/ml IL-4). Delaying addition of IL-4 (1 ng/ml) by up to 8 h after IL-1beta addition only slightly attenuated its inhibitory effects, from approximately 65% to approximately 50%. EGF-stimulated PGE2 production was either not inhibited or slightly stimulated by IL-4. Immunoblotting studies revealed that IL-4 (10 ng/ml) significantly suppressed prostaglandin-H synthase-2 (PGHS-2) levels in cells stimulated with IL-1beta and TNF-alpha over 16 h, but had no consistent effects on cytosolic phospholipase A2 (cPLA2) levels under any condition. In the presence of arachidonic acid (10 microM), IL-4 again inhibited cytokine-stimulated, but not EGF-stimulated, PGE2 production. The presence of IL-4 also failed to alter the amount of arachidonic acid released in response to EGF. These findings suggest a role and potential therapeutic application for IL-4 in inhibiting amnion PGHS-2 expression and hence prostaglandin production in infection-driven preterm labour, but not labour in the absence of inflammatory initiators.  相似文献   

20.
Platelet-derived growth factor (PDGF) is a biological mediator for connective tissue cells and plays a critical role in a wide variety of physiological and pathological processes. We here investigated the effect of PDGF on arachidonic acid release and prostaglandin E(2) (PGE(2)) synthesis in human gingival fibroblasts (HGF). PDGF induced arachidonic acid release in a time- and dose-dependent manner, and simultaneously induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), but less provoked PGE(2) release and cyclooxygenase-2 (COX-2) mRNA expression. When [Ca(2+)](i) was increased by Ca(2+)-mobilizing reagents, arachidonic acid release was increased. The PDGF-induced arachidonic acid release and increase in [Ca(2+)](i) were prevented by a tyrosine kinase inhibitor. On the other hand, in the HGF pre-stimulated with interleukin-1beta (IL-1beta), PDGF clearly increased PGE(2) release. The PDGF-induced PGE(2) release was inhibited by a tyrosine kinase inhibitor. In the HGF pretreated with IL-1beta, arachidonic acid strongly enhanced PGE(2) release and COX-2 mRNA expression. These results suggest that PDGF stimulates arachidonic acid release by the increase in [Ca(2+)](i) via tyrosine kinase activation, and which contributes to PGE(2) production via COX-2 expression in HGF primed with IL-1beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号