首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ISG15 is an IFN-inducible ubiquitin-like protein and its expression and conjugation to target proteins are dramatically induced upon viral or bacterial infection. We have generated a UBP43 knockout mouse model that is lacking an ISG15-specific isopeptidase to study the biological role of the protein ISGylation system. We report that UBP43-deficient mice are hypersensitive to LPS-induced lethality and that TIR domain-containing adapter inducing IFN-beta --> IFN regulatory factor 3 --> type I IFN is the major axis to induce protein ISGylation and UBP43 expression in macrophages upon LPS treatment. In ubp43(-/-) macrophages, upon LPS treatment we detected increased expression of IFN-stimulated genes, including genes for several cytokines and chemokines involved in the innate immune response. The ubp43(-/-) mice were able to restrict the growth of Salmonella typhimurium more efficiently than wild-type mice. These results clearly demonstrate two aspects of IFN-signaling, a beneficial effect against pathogens but a detriment to the body without strict control.  相似文献   

2.
The Skp2 oncoprotein belongs to the family of F-box proteins that function as substrate recognition factors for SCF (Skp1, cullin, F-box protein) E3 ubiquitin-ligase complexes. Binding of the substrate to the SCFSkp2 complex catalyzes the conjugation of ubiquitin molecules to the bound substrate, resulting in multi-ubiquitination and rapid degradation by the 26 S proteasome. Using Skp2 as bait in a yeast two-hybrid screen, we have identified UBP43 as a novel substrate for Skp2. UBP43 belongs to the family of ubiquitin isopeptidases and specifically cleaves ISG15, a ubiquitin-like molecule that is induced by cellular stresses, such as type 1 interferons (IFN), nephrotoxic damage, and bacterial infection. UBP43 was originally identified as an up-regulated gene in knock-in mice expressing an acute myelogenous leukemia fusion protein, AML1-ETO, as well as in melanoma cell lines treated with IFN-beta. The phenotype of UBP43 knockout mice includes shortened life span, hypersensitivity to IFN, and neuronal damage, suggesting that tight regulation of ISG15 conjugation is critical for normal cellular function. In this study, we demonstrate that UBP43 is ubiquitinated in vivo and accumulates in cells treated with proteasome inhibitors. We also show that Skp2 promotes UBP43 ubiquitination and degradation, resulting in higher levels of ISG15 conjugates. In Skp2-/- mouse cells, levels of UBP43 are consistently up-regulated, whereas levels of ISG15 conjugates are reduced. Our results demonstrate that the SCFSkp2 is involved in controlling UBP43 protein levels and may therefore play an important role in modulating type 1 IFN signaling.  相似文献   

3.
4.
5.
6.
Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection   总被引:15,自引:0,他引:15  
Innate immune responses provide the host with an early protection barrier against infectious agents, including viruses, and help shape the nature and quality of the subsequent adaptive immune responses of the host. Expression of ISG15 (UCRP), a ubiquitin-like protein, and protein ISGylation are highly increased upon viral infection. We have identified UBP43 (USP18) as an ISG15 deconjugating protease. Protein ISGylation is enhanced in cells deficient in UBP43 (ref. 6). Here we have examined the role of UBP43, encoded by the gene Usp18, in innate immunity to virus infection. Usp18(-/-) mice were resistant to the fatal lymphocytic choriomeningitis and myeloencephalitis that developed in wild-type mice after intracerebral inoculation with lymphocytic choriomeningitis virus (LCMV) or vesicular stomatitis virus (VSV), respectively. Survival of Usp18(-/-) mice after intracerebral LCMV infection correlated with a severe inhibition of LCMV RNA replication and antigen expression in the brain and increased levels of protein ISGylation. Consistent with these findings, mouse embryonic fibroblasts (MEF) and bone marrow-derived macrophages from Usp18(-/-) mice showed restricted LCMV replication. Moreover, MEF from Usp18(-/-) mice showed enhanced interferon-mediated resistance to the cytopathic effect caused by VSV and Sindbis virus (SNV). This report provides the first direct evidence that the ISG15 protease UBP43 and possibly protein ISGylation have a role in innate immunity against viral infection.  相似文献   

7.
8.
9.
ISG15, not just another ubiquitin-like protein   总被引:1,自引:0,他引:1  
ISG15 is a ubiquitin-like protein containing two ubiquitin homology domains and becomes conjugated to a variety of proteins when cells are treated with type I interferon or lipopolysaccharide. Although ISG15 shares several common properties with those of other ubiquitin-like molecules, it is a unique member, whose expression and conjugation to target proteins are tightly regulated by specific signaling pathways, indicating it may be associated with specialized functions in innate immune system. Loss of UBP43 (USP18), a protease that specifically removes ISG15 from ISG15-modified proteins, in mice leads to decreased life span, brain cell injury, and hypersensitivity to interferon stimulation. In UBP43 deficient cells, interferon induces a prolonged Stat1 tyrosine phosphorylation and DNA binding, which result in a prolonged and enhanced activation of interferon-stimulated genes.  相似文献   

10.
UBP43 shows significant homology to well characterized ubiquitin-specific proteases and previously was shown to hydrolyze ubiquitin-beta-galactosidase fusions in Escherichia coli. In our assays, the activity of UBP43 toward Ub fusions was undetectable in vitro directing us to investigate the possibility of Ub-like proteins such as SUMO, Nedd8, and ISG15 as probable substrates. We consequently demonstrate that UBP43 can efficiently cleave only ISG15 fusions including native ISG15 conjugates linked via isopeptide bonds. In addition to commonly used methods we introduce a new experimental design featuring ISG15-UBP43 fusion self-processing. Deletion of the UBP43 gene in mouse leads to a massive increase of ISG15 conjugates in tissues indicating that UBP43 is a major ISG15-specific protease. UBP43 is the first bona fide ISG15-specific protease reported. Both ISG15 and UBP43 genes are known to be strongly induced by interferon, genotoxic stress, and viral infection. We postulate that UBP43 is necessary to maintain a critical cellular balance of ISG15-conjugated proteins in both healthy and stressed organisms.  相似文献   

11.
Hepatitis B virus (HBV) causes both acute and chronic infection of the human liver and is associated with the development of liver cirrhosis and hepatocellular carcinoma. UBP43 (USP18) is known as an ISG15-deconjugating enzyme and an inhibitor of type I IFN signaling independent of its enzyme activity. In this study, we examined the role of these two previously identified functions of UBP43 in the innate immune response to HBV viral infection. As an in vivo HBV replication model system, a replication-competent DNA construct was injected hydrodynamically into the tail veins of mice. Although the lack of ISG15 conjugation in the absence of ISG15-activating enzyme UBE1L (UBA7) did not affect the level of HBV replication, the steady-state level of HBV DNA was substantially reduced in the UBP43-deficient mice in comparison to the wild-type controls. In addition, introduction of short hairpin RNA against UBP43 resulted in substantially lower levels of HBV DNA at day 4 postinjection and higher levels of ISG mRNAs. These results suggest that HBV infection is more rapidly cleared if UBP43 expression is reduced. Furthermore, these results illustrate the therapeutic potential of modulating UBP43 levels in treating viral infection, especially for viruses sensitive to IFN signaling.  相似文献   

12.
The expression of ubiquitin-like modifier ISG15 and its conjugation to target proteins are highly induced by interferon (IFN) stimulation and during viral and bacterial infections. However, the biological significance of this modification has not been clearly understood. To investigate the function of protein modification by ISG15, we generated a mouse model deficient in UBE1L, an ISG15-activating enzyme. Ube1L-/- mice did not produce ISG15 conjugates but expressed free ISG15 normally. ISGylation has been implicated in the reproduction and innate immunity. However, Ube1L-/- mice were fertile and exhibited normal antiviral responses against vesicular stomatitis virus and lymphocytic choriomeningitis virus infection. Our results indicate that UBE1L and protein ISGylation are not critical for IFN-alpha/beta signaling via JAK/STAT activation. Moreover, using Ube1L/Ubp43 double-deficient mice, we showed that lack of UBP43, but not the increase of protein ISGylation, is related to the increased IFN signaling in Ubp43-deficient mice.  相似文献   

13.
14.
15.
Rickettsia conorii, an obligate intracellular bacterium and the causative agent of Mediterranean spotted fever, preferentially infects microvascular endothelial cells of the mammalian hosts leading to onset of innate immune responses, characterized by the activation of intracellular signaling mechanisms, release of pro-inflammatory cytokines and chemokines, and killing of intracellular rickettsiae. Our recent studies have shown that interferon (IFN)-β, a cytokine traditionally considered to be involved in antiviral immunity, plays an important role in the autocrine/paracrine regulation of host defense mechanisms and control of R. conorii growth in the host endothelial cells. Here, we show that R. conorii infection induces the expression of ISG15 (an interferon-stimulated gene coding a protein of 17kD) and UBP43 (an ISG15-specific protease) at the levels of mRNA and protein and report the evidence of ISGylation of as yet unidentified target proteins in cultured human microvascular endothelium. Infection-induced expression of ISG15 and UBP43 requires intracellular replication of rickettsiae and production of IFN-β, because treatment with tetracycline and presence of an antibody capable of neutralizing IFN-β activity resulted in near complete attenuation of both responses. Inhibition of R. conorii-induced ISG15 by RNA interference results in significant increase in the extent of rickettsial replication, whereas UBP43 knockdown yields a reciprocal inhibitory effect. In tandem, these results demonstrate the stimulation of interferon-β-mediated innate immune mechanisms capable of perturbing the growth and replication of pathogenic rickettsiae and provide first evidence for ISG15-mediated post-translational modification of host cellular proteins during infection with an intracellular bacterium.  相似文献   

16.
17.
UBP43/USP18 was described as a specific protease that removes conjugated ubiquitin-like modifier ISG15 from target proteins. The severe phenotype of UBP43(-/-) mice characterized by premature death, brain cell injury, and deregulated STAT1 signaling was ascribed to an enhanced conjugation of ISG15. In contrast, no phenotypic changes were detected in ISG15(-/-) mice. To verify the role of ISG15 in the phenotype of UBP43(-/-) mice, we employed mice deficient for both ISG15 and UBP43. Here, we show that the phenotype of UBP43(-/-) mice was not rescued by the absence of ISG15, as evident from unchanged mortality, neurological symptoms, and occurrence of hydrocephalus. Also, the reported hypersensitivity of UBP43(-/-) mice to an interferon inducer, poly(I . C), was ISG15 independent. Furthermore, no evidence for a role of ISG15 in the modulation of STAT1 signaling or in the resistance against lymphocytic choriomeningitis virus and vesicular stomatitis virus was found. Presented results clearly demonstrate that the phenotypic alterations of UBP43(-/-) mice are not caused by the lack of ISG15 deconjugation and must be due to another, non-ISG15-mediated molecular mechanism.  相似文献   

18.
19.
20.
The expression of the ubiquitin-like protein ISG15 and protein modification by ISG15 (ISGylation) are strongly activated by interferons. Accordingly, ISG15 expression and protein ISGylation are strongly activated upon viral and bacterial infections and during other stress conditions, suggesting important roles for the ISG15 system in innate immune responses. Here, we report the identification of the ubiquitin-protein isopeptide ligase (E3) EFP (estrogen-responsive finger protein) as the ISG15 E3 ligase for 14-3-3sigma protein. Like other known components of the protein ISGylation system (ISG15, UBE1L, UBP43, and UBC8), EFP is also an interferon-inducible protein. Expression of EFP small interfering RNA decreased the ISGylation of 14-3-3sigma in the 293T cell ISGylation system as well as in MCF-7 cells upon interferon treatment. Furthermore, the ISGylation enzyme activity of EFP was RING domain-dependent. These findings indicate that EFP is an ISG15 E3 ligase for 14-3-3sigma in vivo. The fact that both UBC8 and EFP are common components in the ubiquitin and ISG15 conjugation pathways suggests a mechanism whereby a limited set of enzymes accomplishes diverse post-translational modifications of their substrates in response to changes in environmental stimulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号