首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Due to its essential roles in angiogenesis, Notch pathway has emerged as an attractive target for the treatment of pathologic angiogenesis. Although both activation and blockage of Notch signal can impede angiogenesis, activation of Notch signal may be more promising because it was shown that long-term Notch signal blockage resulted in vessel neoplasm. However, an in vivo deliverable Notch ligand with highly efficient Notch-activating capacity has not been developed. Among all the Notch ligands, Delta-like4(Dll4) is specifically involved in angiogenesis. In this study, we generated a novel soluble Notch ligand h D4 R, which consists of the Delta-Serrate-Lag-2 fragment of human Dll4 and an arginine-glycine-aspartate(RGD) motif targeting endothelial cells(ECs). We demonstrated that h D4 R could bind to ECs through its RGD motif and effectively triggered Notch signaling in ECs. Further, we confirmed that h D4 R could suppress angiogenesis in vitro as manifested by network formation assay and sprouting assay. More importantly, h D4 R efficiently repressed neonatal retinal angiogenesis and laser-induced choroidal neovascularization(CNV) as well in vivo. In conclusion, we have developed an in vivo deliverable Notch ligand h D4 R, which suppresses angiogenesis both in vitro and in vivo, thus providing a new approach to tackle excessive angiogenesis relevant disease such as CNV.  相似文献   

3.
The tetraspan protein KAI1 (CD82) has been previously shown to have important roles in cell migration, invasion, and melanoma prognosis. In this study, we investigated the role of KAI1 regarding melanoma angiogenesis. KAI1 overexpression strongly suppressed the growth of the human umbilical vein endothelial cells and their tubular structure formation in vitro. Also, KAI1 was able to inhibit both interleukin‐6 (IL‐6) and VEGF at mRNA and protein levels. Using nude mice in the in vivo study, we showed that KAI1, through the regulation of ING4, inhibited blood vessel formation in matrigel plugs along with the downregulation of IL‐6 and VEGF, and the recruitment of CD31‐positive cells. Finally, we found that KAI1 was able to suppress the activity of a serine/threonine kinase Akt by suppressing Akt phosphorylation (Ser473). Taken together, our results suggested that KAI1 was able to suppress melanoma angiogenesis by downregulating IL‐6 and VEGF expression, and the restoration of KAI1 functionality offered a new approach in human melanoma treatment.  相似文献   

4.
Angiogenesis     
Extracellular matrix (ECM) is essential for all stages of angiogenesis. In the adult, angiogenesis begins with endothelial cell (EC) activation, degradation of vascular basement membrane, and vascular sprouting within interstitial matrix. During this sprouting phase, ECM binding to integrins provides critical signaling support for EC proliferation, survival, and migration. ECM also signals the EC cytoskeleton to initiate blood vessel morphogenesis. Dynamic remodeling of ECM, particularly by membrane-type matrix metalloproteases (MT-MMPs), coordinates formation of vascular tubes with lumens and provides guidance tunnels for pericytes that assist ECs in the assembly of vascular basement membrane. ECM also provides a binding scaffold for a variety of cytokines that exert essential signaling functions during angiogenesis. In the embryo, ECM is equally critical for angiogenesis and vessel stabilization, although there are likely important distinctions from the adult because of differences in composition and abundance of specific ECM components.  相似文献   

5.
The serine/threonine protein kinase Akt is involved in a variety of cellular processes including cell proliferation, survival, metabolism and gene expression. It is essential in vascular endothelial growth factor (VEGF)-mediated angiogenesis; however, it is not known how Akt regulates the migration of endothelial cells, a crucial process for vessel sprouting, branching and the formation of networks during angiogenesis. Here we report that Akt-mediated phosphorylation of Girdin, an actin-binding protein, promotes VEGF-dependent migration of endothelial cells and tube formation by these cells. We found that exogenously delivered adenovirus harbouring Girdin short interfering RNA in Matrigel embedded in mice, markedly inhibited VEGF-mediated angiogenesis. Targeted disruption of the Girdin gene in mice impaired vessel remodelling in the retina and angiogenesis from aortic rings, whereas Girdin was dispensable for embryonic vasculogenesis. These findings demonstrate that the Akt/Girdin signalling pathway is essential in VEGF-mediated postneonatal angiogenesis.  相似文献   

6.
Sanguinarine is a benzophenanthridine alkaloid derived from the root of Sanguinaria canadensis. Its principal pharmacologic use is in dental products where it has antibacterial, antifungal, and anti-inflammatory activities that reduce gingival inflammation and supragingival plaque formation. Angiogenesis is indispensable for inflammation, and most angiogenesis is dependent on vascular endothelial growth factor (VEGF). However, the effect of sanguinarine on angiogenesis is not known. In the present study, we examined the effect of sanguinarine on VEGF-induced angiogenesis in vitro and in vivo. Interestingly, sanguinarine markedly suppressed VEGF-induced endothelial cell migration, sprouting, and survival in vitro in a dose-dependent manner at nanomolar concentrations. Furthermore, sanguinarine potently suppressed blood vessel formation in vivo in mouse Matrigel plugs and the chorioallantoic membrane of chick embryos. Our biochemical assays indicated that sanguinarine strongly suppressed basal and VEGF-induced Akt phosphorylation, while it did not produce any changes in VEGF-induced activation of ERK1/2 and PLCγ1. Therefore, we conclude that sanguinarine is a potent antiangiogenic natural product, and its mode of action could involve the blocking of VEGF-induced Akt activation. Thus, in addition to antibacterial, antifungal, and anti-inflammatory activities, sanguinarine has a novel antiangiogenic role.  相似文献   

7.
8.
刘晓萃  何守志 《生物磁学》2011,(13):2597-2600
血管再生在血管发展和内环境的稳定中起重要作用。错乱的血管再生导致多种疾病,如肿瘤和缺血性疾病。近年来研究证实,MicroRNAs在血管再生及调控内皮细胞功能中起重要作用,如miR-126在内皮细胞中特异性表达并调控血管生成;miR-210在缺氧导致的血管生成及内皮细胞存活中发挥重要作用;miR-17-92簇在体外可以抑制内皮细胞的增殖及在基质胶中抑制血管管腔的形成;miR-378、miR-296、miR-21和miR-31可促进肿瘤血管发生等。深入研究血管microRNAs的体内功能,将为有效抑制血管再生,改变血管病理发展提供一种新的治疗策略。  相似文献   

9.
血管再生在血管发展和内环境的稳定中起重要作用。错乱的血管再生导致多种疾病,如肿瘤和缺血性疾病。近年来研究证实,MicroRNAs在血管再生及调控内皮细胞功能中起重要作用,如miR-126在内皮细胞中特异性表达并调控血管生成;miR-210在缺氧导致的血管生成及内皮细胞存活中发挥重要作用;miR-17~92簇在体外可以抑制内皮细胞的增殖及在基质胶中抑制血管管腔的形成;miR-378、miR-296、miR-21和miR-31可促进肿瘤血管发生等。深入研究血管microRNAs的体内功能,将为有效抑制血管再生,改变血管病理发展提供一种新的治疗策略。  相似文献   

10.
HARP (heparin affin regulatory peptide) is a growth factor displaying high affinity for heparin. In the present work, we studied the ability of human recombinant HARP as well as its two terminal peptides (HARP residues 1-21 and residues 121-139) to promote angiogenesis. HARP stimulates endothelial cell tube formation on matrigel, collagen and fibrin gels, stimulates endothelial cell migration and induces angiogenesis in the in vivo chicken embryo chorioallantoic membrane assay. The two HARP peptides seem to be involved in most of the angiogenic effects of HARP. They both stimulate in vivo angiogenesis and in vitro endothelial cell migration and tube formation on matrigel. We conclude that HARP has an angiogenic activity when applied exogenously in several in vitro and in vivo models of angiogenesis and its NH(2) and COOH termini seem to play an important role.  相似文献   

11.
We have recently provided evidence that transplantation of G-CSF mobilized peripheral blood mononuclear cells (M-PBMNCs) improves limb ischemia in diabetic patients. This method represents a simple, safe, effective, and novel therapeutic approach for diabetic ischemia. Here we investigated the mechanisms by which mobilized blood cells transplantation improves limb ischemia. Unilateral hindlimb ischemia was surgically induced in streptozotocin-induced diabetic nude mice, and they were intramuscularly injected 10(6) M-PBMNCs, or human umbilical vein endothelial cells (HUVECs), PBS controls. We compared their blood-flow restoration via laser Doppler perfusion image (LDPI), angiogenesis via histological determination of capillary density. Physiological and histological assessment revealed an acceleration of ischemia recovery and increase in capillary density with less apoptosis in M-PBMNCs group, compared with those in HUVECs and PBS groups. In vivo noninvasive imaging and immunofluorescence revealed the survival, migration, proliferation, differentiation, and incorporation of M-PBMNCs into foci of vessel networks. More angioblasts were from blood cells after mobilization, and they also produced a number of antiapoptotic and proagniogenic factors that promoted angiogenesis in vivo. M-PBMNCs and its conditioned medium augmented the vessel formation in matrigel plugs in vivo. Thus, transplantation of M-PBMNCs achieved therapeutic neovascularization via supply of abundant angioblasts and angiogenic factors.  相似文献   

12.
Angiogenesis, a process by which the preexisting blood vasculature gives rise to new capillary vessels, is associated with a variety of physiologic and pathologic conditions. However, the molecular mechanism underlying this important process remains poorly understood. Here we show that histone deacetylase 6 (HDAC6), a microtubule-associated enzyme critical for cell motility, contributes to angiogenesis by regulating the polarization and migration of vascular endothelial cells. Inhibition of HDAC6 activity impairs the formation of new blood vessels in chick embryos and in angioreactors implanted in mice. The requirement for HDAC6 in angiogenesis is corroborated in vitro by analysis of endothelial tube formation and capillary sprouting. Our data further show that HDAC6 stimulates membrane ruffling at the leading edge to promote cell polarization. In addition, microtubule end binding protein 1 (EB1) is important for HDAC6 to exert its activity towards the migration of endothelial cells and generation of capillary-like structures. These results thus identify HDAC6 as a novel player in the angiogenic process and offer novel insights into the molecular mechanism governing endothelial cell migration and angiogenesis.  相似文献   

13.
The gap junction proteins connexin32 (Cx32), Cx37, Cx40, and Cx43 are expressed in endothelial cells, and regulate vascular functions involving inflammation, vasculogenesis and vascular remodeling. Aberrant Cxs expression promotes the development of atherosclerosis which is modulated by angiogenesis; however the role played by endothelial Cxs in angiogenesis remains unclear. In this study, we determined the effects of endothelial Cxs, particularly Cx32, on angiogenesis. EA.hy926 cells that had been transfected to overexpress Cx32 significantly increased capillary length and the number on branches compared to Cx-transfectant cells over-expressing Cx37, Cx40, and Cx43 or mock-treated cells. Treatment via intracellular transfer of anti-Cx32 antibody suppressed tube formation of human umbilical vein endothelial cells (HUVECs) compared to controls. In vitro wound healing assays revealed that Cx32-transfectant cells significantly increased the repaired area while anti-Cx32 antibody-treated HUVECs reduced it. Ex vivo aorta ring assays and in vivo matrigel plaque assays showed that Cx32-deficient mice impaired both vascular sprouting from the aorta and cell migration into the implanted matrigel. Therefore endothelial Cx32 facilitates tube formation, wound healing, vascular sprouting, and cell migration. Our results suggest that endothelial Cx32 positively regulates angiogenesis by enhancing endothelial cell tube formation and cell migration.  相似文献   

14.
Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine‐derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine‐deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.  相似文献   

15.
Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme that regulates many important biological processes, including cell migration, immune synapse formation, viral infection, and the degradation of misfolded proteins. HDAC6 deacetylates tubulin, Hsp90 and cortactin, and forms complexes with other partner proteins. Although HDAC6 enzymatic activity seems to be required for the regulation of cell morphology, the role of HDAC6 in lymphocyte chemotaxis is independent of its tubulin deacetylase activity. The diverse functions of HDAC6 suggest that it is a potential therapeutic target for the treatment of a range of diseases. This review examines the biological actions of HDAC6, focusing on its deacetylase activity and its potential scaffold functions in the regulation of cell migration and other key biological processes in which the cytoskeleton plays an important role.  相似文献   

16.
Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.  相似文献   

17.
Histone deacetylase 6 (HDAC6) is a tubulin-specific deacetylase that regulates microtubule-dependent cell movement. In this study, we identify the F-actin-binding protein cortactin as a HDAC6 substrate. We demonstrate that HDAC6 binds cortactin and that overexpression of HDAC6 leads to hypoacetylation of cortactin, whereas inhibition of HDAC6 activity leads to cortactin hyperacetylation. HDAC6 alters the ability of cortactin to bind F-actin by modulating a "charge patch" in its repeat region. Introduction of charge-preserving or charge-neutralizing mutations in this cortactin repeat region correlates with the gain or loss of F-actin binding ability, respectively. Cells expressing a charge-neutralizing cortactin mutant were less motile than control cells or cells expressing a charge-preserving mutant. These findings suggest that, in addition to its role in microtubule-dependent cell motility, HDAC6 influences actin-dependent cell motility by altering the acetylation status of cortactin, which, in turn, changes the F-actin binding activity of cortactin.  相似文献   

18.
Interactions between cell types, growth factors, and extracellular matrix components involved in angiogenesis are crucial for new vessel formation leading to tissue regeneration. This study investigated whether cocultures of fibroblasts and endothelial cells (ECs; from macro‐ or microvasculature) play a role in the formation of microvessel‐like structures by ECs, as well as modulate fibroblast differentiation and growth factors production (vascular endothelial cell growth factor, basic fibroblast growth factor, active transforming growth factor‐β1, and interleukin‐8), which are important for vessel sprouting and maturation. Data obtained revealed that in vitro coculture systems of fibroblasts and human ECs stimulate collagen synthesis and growth factors production by fibroblasts that ultimately affect the formation and distribution of microvessel‐like structures in cell cultures. In this study, areas with activated fibroblasts and high alkaline phosphatase (ALP) activity were also observed in cocultures. Molecular docking assays revealed that ALP has two binding positions for collagen, suggesting its impact in collagen proteins’ aggregation, cell migration, and microvessel assembly. These findings indicate that bioinformatics and coculture systems are complementary tools for investigating the participation of proteins, like collagen and ALP in angiogenesis.  相似文献   

19.
Histone deacetylase 6 (HDAC6) is a cytoplasmic deacetylase that uniquely catalyzes α-tubulin deacetylation and promotes cell motility. However, the mechanism underlying HDAC6-dependent cell migration and the role for microtubule acetylation in motility are not known. Here we show that HDAC6-induced global microtubule deacetylation was not sufficient to stimulate cell migration. Unexpectedly, in response to growth factor stimulation, HDAC6 underwent rapid translocation to actin-enriched membrane ruffles and subsequently became associated with macropinosomes, the vesicles for fluid-phase endocytosis. Supporting the importance of these associations, membrane ruffle formation, macropinocytosis, and cell migration were all impaired in HDAC6-deficient cells. Conversely, elevated HDAC6 levels promoted membrane ruffle formation with a concomitant increase in macropinocytosis and motility. In search for an HDAC6 target, we found that heat shock protein 90 (Hsp90), another prominent substrate of HDAC6, was also recruited to membrane ruffles and macropinosomes. Significantly, inhibition of Hsp90 activity suppressed membrane ruffling and cell migration, while expression of an acetylation-resistant Hsp90 mutant promoted ruffle formation. Our results uncover a surprising role for HDAC6 in actin remodeling-dependent processes and identify the actin cytoskeleton as an important target of HDAC6-regulated protein deacetylation.  相似文献   

20.
Angiogenesis is a process of new blood vessel formation from pre-existing ones. The most important steps in angiogenesis include detachment, proliferation, migration, homing and differentiation of vascular wall cells, which are mainly endothelial cells and their progenitors. The study focused on the effect of beta-carotene (BC) supplementation (12,000 mg/kg) in the diet on angiogenesis in Balb/c mice. Female Balb/c mice were fed for 5 weeks with two different diets: with BC or without BC supplementation. After 4 weeks of feeding, Balb/c mice were injected subcutaneously with two matrigel plugs with or without basic fibroblast growth factor (bFGF). Six days later, the animals were killed, and the matrigel plugs were used for immunohistochemical staining with CD31 antibody and for gene expression analysis. Microarray and Real-Time PCR data showed down-regulation of genes involved in proliferation and up-regulation of genes encoding inhibitors of apoptosis, proteins regulating cell adhesion, matrix-degrading enzymes and proteins involved in the VEGF pathway. The results of this study demonstrated that BC proangiogenic activity (with or without bFGF) in vivo seemed to be more significantly associated with cells’ protection from apoptosis and their stimulation of chemotaxis/homing than cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号