首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prion diseases are associated with the presence of PrP(Sc), a disease-associated misfolded conformer of the prion protein. We report that superparamagnetic nanoparticles bind PrP(Sc) molecules efficiently and specifically, permitting magnetic separation of prions from a sample mixture. Captured PrP(Sc) molecules retain the activity to seed protein misfolding cyclic amplification (PMCA) reactions, enabling the rapid concentration of dilute prions to improve detection. Furthermore, superparamagnetic nanoparticles clear contaminated solutions of PrP(Sc). Our findings suggest that coupling magnetic nanoparticle capture with PMCA could accelerate and improve prion detection. Magnetic nanoparticles may also be useful for developing a nontoxic prion decontamination method for biologically derived products.  相似文献   

2.
Prions are proteinaceous infectious agents responsible for the transmission of prion diseases. The lack of a procedure for cultivating prions in the laboratory has been a major limitation to the study of the unorthodox nature of this infectious agent and the molecular mechanism by which the normal prion protein (PrP(C)) is converted into the abnormal isoform (PrP(Sc)). Protein misfolding cyclic amplification (PMCA), described in detail in this protocol, is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA involves incubating materials containing minute amounts of infectious prions with an excess of PrP(C) and boosting the conversion by cycles of sonication to fragment the converting units, thereby leading to accelerated prion replication. PMCA is able to detect the equivalent of a single molecule of infectious PrP(Sc) and propagate prions that maintain high infectivity, strain properties and species specificity. A single PMCA assay takes little more than 3 d to replicate a large amount of prions, which could take years in an in vivo situation. Since its invention 10 years ago, PMCA has helped to answer fundamental questions about this intriguing infectious agent and has been broadly applied in research areas that include the food industry, blood bank safety and human and veterinary disease diagnosis.  相似文献   

3.
Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform of prion protein, PrPSc, which leads to marked accumulation of PrPSc in brains, is a key pathogenic event in prion diseases, a group of fatal neurodegenerative disorders caused by prions. However, the exact mechanism of PrPSc accumulation in prion-infected neurons remains unknown. We recently reported a novel cellular mechanism to support PrPSc accumulation in prion-infected neurons, in which PrPSc itself promotes its accumulation by evading the cellular inhibitory mechanism, which is newly identified in our recent study. We showed that the VPS10P sorting receptor sortilin negatively regulates PrPSc accumulation in prion-infected neurons, by interacting with PrPC and PrPSc and trafficking them to lysosomes for degradation. However, PrPSc stimulated lysosomal degradation of sortilin, disrupting the sortilin-mediated degradation of PrPC and PrPSc and eventually evoking further accumulation of PrPSc in prion-infected neurons. These findings suggest a positive feedback amplification mechanism for PrPSc accumulation in prion-infected neurons.  相似文献   

4.
As concepts evolve in mammalian and yeast prion biology, rather preliminary research investigating the interplay between prion and RNA processes are gaining momentum. The yeast prion [PSI+] represents an aggregated state of the translation termination factor Sup35 resulting in the tendency of ribosomes to readthrough stop codons. This "nonsense suppression" activity is investigated for its possible physiological role to engender on Saccharomyces cerevisiae the ability to respond to stress or variable growth conditions and thereby act as a capacitor to evolve. The interaction between prion and RNA is a two way street--the cell may have adopted RNA processes in translation to govern the presence of prions and the [PSI+] prion's nonsense suppressor phenotype may exhibit different growth phenotypes by its control of translation termination. RNA processes in the mammalian cell also effect and are affected by prions.  相似文献   

5.
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative disorders affecting humans and animals. At present, it is not possible to recognize individuals incubating the disease before the clinical symptoms appear. We investigated the effectiveness of the "Protein Misfolding Cyclic Amplification" (PMCA) technology to detect the protease-resistance disease-associated prion protein (PrP(res)) in pre-symptomatic stages. PMCA allowed detection of PrP(res) in the brain of pre-symptomatic hamsters, enabling a clear identification of infected animals as early as two weeks after inoculation. Furthermore, PMCA was able to amplify minute quantities of PrP(res) from a variety of experimental and natural TSEs. Finally, PMCA allowed the demonstration of PrP(res) in an experimentally infected cow 32 month post-inoculation, that did not show clinical signs and was negative by standard Western blot analysis. Our findings indicate that PMCA may be useful for the development of an ultra-sensitive diagnostic test to minimize the risk of further propagation of TSEs.  相似文献   

6.
Prions are the unconventional infectious agents responsible for transmissible spongiform encephalopathies, which appear to be composed mainly or exclusively of the misfolded prion protein (PrPSc). Prion replication involves the conversion of the normal prion protein (PrPC) into the misfolded isoform, catalyzed by tiny quantities of PrPSc present in the infectious material. We have recently developed the protein misfolding cyclic amplification (PMCA) technology to sustain the autocatalytic replication of infectious prions in vitro. Here we show that PMCA enables the specific and reproducible amplification of exceptionally minute quantities of PrPSc. Indeed, after seven rounds of PMCA, we were able to generate large amounts of PrPSc starting from a 1x10(-12) dilution of scrapie hamster brain, which contains the equivalent of approximately 26 molecules of protein monomers. According to recent data, this quantity is similar to the minimum number of molecules present in a single particle of infectious PrPSc, indicating that PMCA may enable detection of as little as one oligomeric PrPSc infectious particle. Interestingly, the in vitro generated PrPSc was infectious when injected in wild-type hamsters, producing a disease identical to the one generated by inoculation of the brain infectious material. The unprecedented amplification efficiency of PMCA leads to a several billion-fold increase of sensitivity for PrPSc detection as compared with standard tests used to screen prion-infected cattle and at least 4000 times more sensitivity than the animal bioassay. Therefore, PMCA offers great promise for the development of highly sensitive, specific, and early diagnosis of transmissible spongiform encephalopathy and to further understand the molecular basis of prion propagation.  相似文献   

7.
Prion sorption to soil is thought to play an important role in the transmission of scrapie and chronic wasting disease (CWD) via the environment. Sorption of PrP to soil and soil minerals is influenced by the strain and species of PrP(Sc) and by soil characteristics. However, the ability of soil-bound prions to convert PrP(c) to PrP(Sc) under these wide-ranging conditions remains poorly understood. We developed a semiquantitative protein misfolding cyclic amplification (PMCA) protocol to evaluate replication efficiency of soil-bound prions. Binding of the hyper (HY) strain of transmissible mink encephalopathy (TME) (hamster) prions to a silty clay loam soil yielded a greater-than-1-log decrease in PMCA replication efficiency with a corresponding 1.3-log reduction in titer. The increased binding of PrP(Sc) to soil over time corresponded with a decrease in PMCA replication efficiency. The PMCA efficiency of bound prions varied with soil type, where prions bound to clay and organic surfaces exhibited significantly lower replication efficiencies while prions bound to sand exhibited no apparent difference in replication efficiency compared to unbound controls. PMCA results from hamster and CWD agent-infected elk prions yielded similar findings. Given that PrP(Sc) adsorption affinity varies with soil type, the overall balance between prion adsorption affinity and replication efficiency for the dominant soil types of an area may be a significant determinant in the environmental transmission of prion diseases.  相似文献   

8.
Oligomerization directs active site formation in homotrimeric 2'-deoxyuridine triphosphate pyrophosphatases (dUTPases). Stability of the homotrimer is a central determinant in enzyme function. The present comparative studies of bacterial and fruitfly dUTPases with homologous 3D structures by differential scanning microcalorimetry; fluorescence, circular dichorism and infrared spectroscopies, demonstrate that unfolding is a two-state highly cooperative transition in both dUTPases excluding a significantly populated intermediate state of dissociated and folded monomers. The eukaryotic protein is much less resistant against either thermal or guanidine hydrochloride-induced denaturation. Results suggest that hydrophobic packing of the inner threefold channel of the dUTPase homotrimer greatly contributes to stability.  相似文献   

9.
Introns were found to enhance almost every steps of gene expression except increasing mRNA stability. By analyzing the genome-wide data of mRNA stability published by someone previously, we found that human intron-containing genes have more stable mRNAs than intronless genes, and the Arabidopsis thaliana genes with the most unstable mRNAs have fewer introns than other genes in the genome. After controlling for mRNA length, we found mRNA stability is still positively correlated with intron number in human intron-containing genes. But in yeast Saccharomyces cerevisiae, two different datasets on mRNA half-life gave conflicting results. The components of messenger ribonucleoprotein particles recruited during intron splicing may be retained in cytoplasmic mRNPs and act as signals of mRNA stability or simply insulators to avoid mRNA degradation.  相似文献   

10.
Core stability has received considerable attention with regards to functional training in sports. Core stability provides the foundation from which power is generated in cycling. No research has described the relationship between core stability and cycling mechanics of the lower extremity. The purpose of this study was to determine the relationship between cycling mechanics and core stability. Hip, knee, and ankle joint kinematic and pedal force data were collected on 15 competitive cyclists while cycling untethered on a high-speed treadmill. The exhaustive cycling protocol consisted of cycling at 25.8 km x h(-1) while the grade was increased 1% every 3 minutes. A core fatigue workout was performed before the second treadmill test. Total frontal plane knee motion (test 1: 15.1 +/- 6.0 degrees ; test 2: 23.3 +/- 12.5 degrees), sagittal plane knee motion (test 1: 69.9 +/- 4.9 degrees ; test 2: 79.3 +/- 10.1 degrees), and sagittal plane ankle motion (test 1: 29.0 +/- 8.5 degrees ; test 2: 43.0 +/- 22.9 degrees) increased after the core fatigue protocol. No significant differences were demonstrated for pedaling forces. Core fatigue resulted in altered cycling mechanics that might increase the risk of injury because the knee joint is potentially exposed to greater stress. Improved core stability and endurance could promote greater alignment of the lower extremity when riding for extended durations as the core is more resistant to fatigue.  相似文献   

11.
BackgroundProtein antigens are degraded by endosomal protease in antigen presentation cell. T cells recognize peptides derived from antigen proteins bound to class II major histocompatibility complex molecules. We previously reported that an increase in the conformational stability of an antigen depressed its immunogenicity. However, there is little information on antigens with differences in molecular properties such as net charges and molecular weight.MethodsDenaturation experiments against guanidine hydrochloride. The serum IgE levels to protein antigens at 35 days after the first immunization analyzed using ELISA.ResultsThe Der p 2 mutations in which Ile13 is mutated to Ala (I13A) and Ala122 is mutated to Ile (A122I) were shown to have lower and higher conformational stability than the wild-type, respectively, by denaturation experiments. The amount of IgE production by the less stable I13A mutant was higher and that of the stable A122I mutant was lower than that of the wild-type.ConclusionOur results suggest that the increased conformational stability of Der p 2 depressed the IgE production in mice.General significanceThese findings should provide a milestone for the engineering of allergen vaccines.  相似文献   

12.
Chondroitinase ABC Ι can promote the recovery of spinal cord injuries by depolimerization of glycosaminoglycans. However, low thermal stability is one of the limitations regarding its clinical application. In order to increase the conformational stability of the enzyme, Leu679 at the starting point of a short helix located at the C‐terminal domain of the protein was replaced by serine (L679S mutant) and aspartic acid (L679D mutant). Theoretical and spectroscopic studies showed that the stability of enzyme increased upon mutation. Based on the activity measurements, the catalytic efficiency of L679S was improved in comparison with the wild‐type protein; while that of L679D (a more stabilized protein) was not changed. According to the structural and kinetic data, we proposed a model in which a higher conformational stability results in a slower rate of the formation of the open conformation. On the other hand, a higher flexibility slows down the rate of the formation and holding of the closed conformation. Therefore, the L679S mutant, which is structurally stable relative to the wild‐type protein and is destabilized compared to the L679D mutant, exhibited the best catalytic efficiency. However, it was also found that the L679D mutant was more suitable for long‐term storage of the enzyme.  相似文献   

13.
14.
Circular dichroism (CD) and immunochemical measurements have been used to examine conformational properties of COOH-terminal fragments 121-316, 206-316 and 225(226)-316 of thermolysin, and to compare these properties to those of native thermolysin and thermolysin S, the stable partially active two-fragment complex composed of fragments 5-224(225) and 225(226)-316. In aqueous solution at neutral pH, all the COOH-terminal fragments attain a native-like conformation, as judged both by the content of secondary structure deduced from far-ultraviolet CD spectra and by the recognition of rabbit polyclonal antibodies specific for the COOH-terminal region in native thermolysin. The three fragments showed reversible cooperative unfolding transitions mediated by both heat and guanidine hydrochloride (Gdn X HCl). The phase transition curves were analyzed for Tm (temperature of half-denaturation) and Gibbs free energies (delta GD) of unfolding from native to denatured state. The observed order of thermal stability is 225(226)-316 less than or equal to 206-316 less than 121-316 less than thermolysin S less than thermolysin. The ranking of delta GD values for the three fragments correlates with the size of each fragment. Competitive binding studies by radioimmunoassay using 14C-labeled thermolysin and affinity purified antibodies specific for native antigenic determinants in segment 206-316 of native thermolysin indicate that the COOH-terminal fragments adopt native-like conformations which are in equilibrium with non-native conformations. These equilibria are shifted towards the native state as the fragment size increases from 225(226)-316, to 206-316, to 121-316. Fragment 225(226)-316, when combined with fragment 5-224(225) in the thermolysin S complex, adopts a more stable native-like conformation and becomes much more antigenic. It has been shown that the degree of antigenicity of COOH-terminal fragments towards thermolysin antibodies correlates directly with their conformational stability. The results of this study are discussed in relation to the recently proposed correlation between antigenicity and segmental mobility of globular proteins.  相似文献   

15.
Oligopeptide repeats appear in many proteins that undergo conformational conversions to form amyloid, including the mammalian prion protein PrP and the yeast prion protein Sup35. Whereas the repeats in PrP have been studied more exhaustively, interpretation of these studies is confounded by the fact that many details of the PrP prion conformational conversion are not well understood. On the other hand, there is now a relatively good understanding of the factors that guide the conformational conversion of the Sup35 prion protein. To provide a general model for studying the role of oligopeptide repeats in prion conformational conversion and amyloid formation, we have substituted various numbers of the PrP octarepeats for the endogenous Sup35 repeats. The resulting chimeric proteins can adopt the [PSI+] prion state in yeast, and the stability of the prion state depends on the number of repeats. In vitro, these chimeric proteins form amyloid fibers, with more repeats leading to shorter lag phases and faster assembly rates. Both pH and the presence of metal ions modulate assembly kinetics of the chimeric proteins, and the extent of modulation is highly sensitive to the number of PrP repeats. This work offers new insight into the properties of the PrP octarepeats in amyloid assembly and prion formation. It also reveals new features of the yeast prion protein, and provides a level of control over yeast prion assembly that will be useful for future structural studies and for creating amyloid-based biomaterials.  相似文献   

16.
17.
The effect of monovalent cations on the thermal stability of a small model DNA hairpin has been measured by capillary electrophoresis, using an oligomer with 16 thymine residues as an unstructured control. The melting temperature of the model hairpin increases approximately linearly with the logarithm of increasing cation concentration in solutions containing Na(+), K(+), Li(+), NH(4)(+), Tris(+), tetramethylammonium (TMA(+)), or tetraethylammonium (TEA(+)) ions, is approximately independent of cation concentration in solutions containing tetrapropylammonium (TPA(+)) ions, and decreases with the logarithm of increasing cation concentration in solutions containing tetrabutylammonium (TBA(+)) ions. At constant cation concentration, the melting temperature of the DNA model hairpin decreases in the order Li(+) ~ Na(+) ~ K(+) > NH(4)(+) > TMA(+) > Tris(+) > TEA(+) > TPA(+) > TBA(+). Isothermal studies indicate that the decrease in the hairpin melting temperature with increasing cation hydrophobicity is not due to saturable, site-specific binding of the cation to the random coil conformation, but to the concomitant increase in cation size with increasing hydrophobicity. Larger cations are less effective at shielding the charged phosphate residues in B-form DNA because they cannot approach the DNA backbone as closely as smaller cations. By contrast, larger cations are relatively more effective at shielding the phosphate charges in the random coil conformation, where the phosphate-phosphate distance more closely matches cation size. Hydrophobic interactions between alkylammonium ions interacting electrostatically with the phosphate residues in the coil may amplify the effect of cation size on DNA thermal stability.  相似文献   

18.
The inherent chemical instability of RNA under physiological conditions is primarily due to the spontaneous cleavage of phosphodiester linkages via intramolecular transesterification reactions. Although the protonation state of the nucleophilic 2'-hydroxyl group is a critical determinant of the rate of RNA cleavage, the precise geometry of the chemical groups that comprise each internucleotide linkage also has a significant impact on cleavage activity. Specifically, transesterification is expected to be proportional to the relative in-line character of the linkage. We have examined the rates of spontaneous cleavage of various RNAs for which the secondary and tertiary structures have previously been modeled using either NMR or X-ray crystallographic data. Rate constants determined for the spontaneous cleavage of different RNA linkages vary by almost 10,000-fold, most likely reflecting the contribution that secondary and tertiary structures make towards the overall chemical stability of RNA. Moreover, a correlation is observed between RNA cleavage rate and the relative in-line fitness of each internucleotide linkage. One linkage located within an ATP-binding RNA aptamer is predicted to adopt most closely the ideal conformation for in-line attack. This linkage has a rate constant for transesterification that is approximately 12-fold greater than is observed for an unconstrained linkage and was found to be the most labile among a total of 136 different sites examined. The implications of this relationship for the chemical stability of RNA and for the mechanisms of nucleases and ribozymes are discussed.  相似文献   

19.
20.
The folding stability of insulin is positively correlated with the expression yield of the precursor expressed in yeast. Insulin assembles into dimers and hexamers in a concentration-dependent manner and amino acid substitutions that impair the ability of insulin to associate into dimers concomitantly decrease the expression yield (excluding substitutions that enhance folding stability). In contrast, introduction of an amino substitution that enhances the self-association of insulin improved the yeast expression yield. In the monomeric state the majority of the non-polar residues of insulin are exposed to the solvent and assembly into dimers and hexamers shields these from contact with the solvent. It is proposed that self-association enhances the flux of insulin through the secretory pathway by increasing the hydrophilicity, decreasing the surface area as well as decreasing the molar concentration in the secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号