首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a high-resolution mass spectrometric (MS) footprinting method enabling identification of contact amino acids in protein–protein complexes. The method is based on comparing surface topologies of a free protein versus its complex with the binding partner using differential accessibility of small chemical group selective modifying reagents. Subsequent MS analysis reveals the individual amino acids selectively shielded from modification in the protein–protein complex. The current report focuses on probing interactions between full-length HIV-1 integrase and its principal cellular partner lens epithelium-derived growth factor. This method has a generic application and is particularly attractive for studying large protein–protein interactions that are less amenable for crystallographic or NMR analysis.  相似文献   

2.
3.
Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibrium experiments. By liquid chromatography, all three isoforms consisted of three major species with Stokes radii of 4.0, 5.0 and 6.6 nm. Sedimentation velocity confirmed the presence of monomers, dimers and tetramers as major species of each isoform. The association schemes established by sedimentation equilibrium experiments corresponded to monomer-dimer-tetramer-octamer for apoE2, monomer-dimer-tetramer for apoE3 and monomer-dimer-tetramer-octamer for apoE4. Each of the three isoforms exhibits a distinct self-association pattern. The apolipoprotein multi-domain structure was mapped by limited proteolysis with trypsin, chymotrypsin, elastase, subtilisin and Staphylococcus aureus V8 protease. All five enzymes produced stable intermediates during the degradation of the three apoE isoforms, as described for plasma apoE3. The recombinant apoE isoforms, thus, consist of N- and C-terminal domains. The presence of the fusion peptide did not appear to alter the apolipoprotein tertiary organization. However, a 30 kDa amino-terminal fragment appeared during the degradation of the recombinant apoE isoforms resulting from cleavage in the 273-278 region. This region, not accessible in plasma apoE3, results from a different conformation of the C-terminal domain in the recombinant isoforms. A specific pattern for the apoE4 C-terminal domain was observed during the proteolysis. The region 230-260 in apoE4, in contrast to that of apoE3 and apoE2, was not accessible to proteases, probably due to the existence of a longer helix in this region of apoE4 stabilized by an interdomain interaction.  相似文献   

4.
Features of multimeric proteins are reviewed to shed light on the formation of protein assemblies from a structural perspective. The features comprise biochemical and geometric properties. They are compiled on new low-redundancy sets of crystal structures of homomeric proteins with different symmetry and subunit multiplicity, as well as on a set of heteromeric proteins. Crystal structures of likely monomers provide a control group.  相似文献   

5.
There are three major apolipoprotein E (apoE) isoforms. Although APOE-epsilon3 is considered a longevity gene, APOE-epsilon4 is a dual risk factor to atherosclerosis and Alzheimer disease. We have expressed full-length and N- and C-terminal truncated apoE3 and apoE4 tailored to eliminate helix and domain interactions to unveil structural and functional disturbances. The N-terminal truncated apoE4-(72-299) and C-terminal truncated apoE4-(1-231) showed more complicated or aggregated species than those of the corresponding apoE3 counterparts. This isoformic structural variation did not exist in the presence of dihexanoylphosphatidylcholine. The C-terminal truncated apoE-(1-191) and apoE-(1-231) proteins greatly lost lipid binding ability as illustrated by the dimyristoylphosphatidylcholine turbidity clearance. The low density lipoprotein (LDL) receptor binding ability, determined by a competition binding assay of 3H-LDL to the LDL receptor of HepG2 cells, showed that apoE4 proteins with N-terminal (apoE4-(72-299)), C-terminal (apoE4-(1-231)), or complete C-terminal truncation (apoE4-(1-191)) maintained greater receptor binding abilities than their apoE3 counterparts. The cholesterol-lowering abilities of apoE3-(72-299) and apoE3-(1-231) in apoE-deficient mice were decreased significantly. The structural preference of apoE4 to remain functional in solution may explain the enhanced opportunity of apoE4 isoform to display its pathophysiologic functions in atherosclerosis and Alzheimer disease.  相似文献   

6.
The stabilities toward thermal and chemical denaturation of three recombinant isoforms of human apolipoprotein E (r-apoE2, r-apoE3 and r-apoE4), human plasma apoE3, the recombinant amino-terminal (NT) and the carboxyl-terminal (CT) domains of plasma apoE3 at pH 7 were studied using near and far ultraviolet circular dichroism (UV CD), fluorescence and size-exclusion chromatography. By far UV CD, thermal unfolding was irreversible for the intact apoE isoforms and consisted of a single transition. The r-apoE3 was found to be less stable as compared to the plasma protein and the stability of recombinant isoforms was r-apoE4相似文献   

7.
Neurodegeneration in Alzheimer's disease (AD) is associated with the activation of neurogenesis. The mechanisms underlying this crosstalk between neuronal death and birth and the extent to which it is affected by genetic risk factors of AD are not known. We employed transgenic mice expressing human apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for AD, or expressing human apoE3 (an AD-benign allele), in order to examine the hypothesis that apoE4 tilts the balance between neurogenesis and neuronal cell death in favor of the latter. The results showed an isoform-specific increase in neurogenesis in the hippocampal dentate gyrus (DG) under standard conditions in apoE4-transgenic mice. Environmental stimulation, which increases neurogenesis in the DG of apoE3-transgenic and wild-type mice, had the opposite effect on the apoE4 mice, where it triggered apoptosis while decreasing hippocampal neurogenesis. These effects were specific to the DG and were not observed in the subventricular zone, where neurogenesis was unaffected by either the apoE genotype or the environmental conditions. These in vivo findings demonstrate a linkage between neuronal apoptosis and the impaired neuronal plasticity and cognition of apoE4-transgenic mice, and suggest that similar interactions between apoE4 and environmental factors might occur in AD.  相似文献   

8.
Human apolipoprotein E (apoE) exists as three main isoforms, differing by single amino acid substitutions, with the apoE4 isoform strongly linked to the incidence of late onset Alzheimer's disease. We have expressed and purified apoE3 and apoE4 from Escherichia coli and compared their hydrodynamic properties by gel permeation liquid chromatography, capillary electrophoresis, circular dichroism, and sedimentation methods. Sedimentation velocity experiments, employing a new method for determining the size distribution of polydisperse macromolecules in solution (Schuck, P. (2000) Biophys. J. 78, 1606-1619), provide direct evidence for the heterogeneous solution structures of apoE3 and apoE4. In a lipid-free environment, apoE3 and apoE4 exist as a slow equilibrium mixture of monomer, tetramer, octamer, and a small proportion of higher oligomers. Both sedimentation velocity and equilibrium experiments indicate that apoE4 has a greater propensity to self-associate. We also demonstrate that apoE3 and apoE4 oligomers dissociate significantly in the presence of dihexanoylphosphatidylcholine micelles (20 mm) and to a lesser extent at submicellar concentrations (4 mm). The alpha-helical content for both isoforms was almost identical (50%) in the presence and absence of dihexanoylphosphatidylcholine. These results reveal that apoE oligomers undergo phospholipid-induced dissociation to folded monomers, suggesting the monomeric form prevails on the lipoprotein surface in vivo.  相似文献   

9.
Human apolipoprotein (apo) E is polymorphic. We have investigated the effect of the apo-E polymorphism on quantitative plasma levels of apo E, apo B, and total cholesterol in a sample of 563 blood-bank donors from Marburg and Giessen, West Germany. The relative frequencies of the epsilon 2, epsilon 3, and epsilon 4 alleles are .063, .793, and .144, respectively. The average effects of the epsilon 2 allele are to raise apo-E levels by 0.95 mg/dl, lower apo B levels by 9.46 mg/dl, and lower total cholesterol levels by 14.2 mg/dl. The average effects of the epsilon 4 allele are to lower apo-E levels by 0.19 mg/dl, to raise apo-B levels by 4.92 mg/dl, and to raise total cholesterol levels by 7.09 mg/dl. The average effects of the epsilon 3 allele are near zero for all three phenotypes. The apo-E polymorphism accounts for 20% of the variability of plasma apo-E levels, 12% of the variability of plasma apo-B levels, and 4% of the variability of total plasma cholesterol levels. The inverse relationship between the genotype-specific average apo-E levels and both the genotype-specific average apo-B and cholesterol levels is offset by a positive relationship between apo-E levels and both apo-B and cholesterol levels within an apo-E genotype. The apo-E polymorphism also has a direct effect on the correlation between apo-E and total cholesterol levels. The implication of these results on multivariate genetic analyses of these phenotypes is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
All members in the protein tyrosine phosphatase (PTP) family of enzymes contain an invariant Cys residue which is absolutely indispensable for catalysis. Due to the unique microenvironment surrounding the active center of PTPs, this Cys residue exhibits an unusually low pKa characteristic, thus being highly susceptible to oxidation or S-nitrosylation. While oxidation-dependent regulation of PTP activity has been extensively examined, the molecular details and biological consequences of PTP S-nitrosylation remain unexplored. We hypothesized that the catalytic Cys residue is targeted by proximal nitric oxide (NO) and its derivatives collectively termed reactive nitrogen species (RNS), leading to nitrosothiol formation concomitant with reversible inactivation of PTPs. To test this hypothesis, we have developed novel strategies to examine the redox status of Cys residues of purified PTP1B that was exposed to NO donor S-Nitroso-N-penicillamine (SNAP). A gel-based method in conjunction with mass spectrometry (MS) analysis revealed that the catalytic Cys215 of PTP1B was reversibly modified when PTP1B was briefly treated with SNAP. In order to further identify the exact mode of NO-induced modification, we employed an online LC-ESI-MS/MS analysis incorporating a mass difference-based, data-dependent acquisition function that effectively mapped the S-nitrosylated Cys residues. Our results demonstrated that treating PTP1B with SNAP led to S-nitrosothiol formation of the catalytic Cys215. Interestingly, SNAP-induced modifications were strictly reversible as highly oxidized Cys derivatives (Cys-SO(2)H or Cys-SO(3)H) were not identified by MS analyses. Thus, the methods introduced in this study provide direct evidence to prove the direct link between S-nitrosylation of the catalytic Cys residue and reversible inactivation of PTPs.  相似文献   

11.
12.
Human apolipoprotein E (apoE) is a 299-amino-acid protein with a molecular weight of 34 kDa. The difference between the apoE3 and apoE4 isoforms is a single residue substitution involving a Cys-Arg replacement at residue 112. ApoE4 is positively associated with atherosclerosis and late-onset and sporadic Alzheimer's disease (AD). ApoE4 and its C-terminal truncated fragments have been found in the senile plaques and neurofibrillary tangles in the brain of AD patients. However, detail structural information regarding isoform and domain interaction remains poorly understood. We prepared full-length, N-, and C-terminal truncated apoE3 and apoE4 proteins and studied their structural variation. Sedimentation velocity and continuous size distribution analysis using analytical ultracentrifugation revealed apoE3(72-299) as consisting of a major species with a sedimentation coefficient of 5.9. ApoE4(72-299) showed a wider and more complicated species distribution. Both apoE3 and E4 N-terminal domain (1-191) existed with monomers as the major component together with some tetramer. The oligomerization and aggregation of apoE protein increased when the C-terminal domain (192-271) was incorporated. The structural influence of the C-terminal domain on apoE is to assist self-association with no significant isoform preference. Circular dichroism and fluorescence studies demonstrated that apoE4(72-299) possessed a more alpha-helical structure with more hydrophobic residue exposure. The structural variation of the N-terminal truncated apoE3 and apoE4 protein provides useful information that helps to explain the greater aggregation of the apoE4 isoform and thus has implication for the involvement of apoE4 in AD.  相似文献   

13.
The interaction of human apolipoprotein (apo-) E3 with heparin was examined using heparin-Sepharose as a model system. The approach taken to determine the region of apo-E that is responsible for binding to heparin was to identify apo-E monoclonal antibodies that inhibited heparin binding, to determine the epitopes of the inhibiting antibodies, and finally to examine the heparin binding of fragments containing the inhibiting antibody epitopes. Three antibodies, designated 1D7, 6C5, and 3H1, were found to inhibit binding, suggesting that multiple heparin binding sites were present on apo-E. The epitopes of the inhibiting antibodies were determined by immunoblot analysis of synthetic or proteolytic fragments of apo-E. Measurement of the heparin binding activity of fragments containing epitopes of the inhibiting antibodies demonstrated that apo-E3 contains two heparin binding sites. The first site is located in the vicinity of residues 142-147 and coincides with the 1D7 epitope. The second binding site is contained in the carboxyl-terminal region of apo-E and is inhibited by 3H1, the epitope of which is located between residues 243 and 272. The epitope of the third inhibiting antibody, 6C5, is located at the amino terminus of apo-E; however, this antibody inhibits the second heparin binding site located in the carboxyl-terminal region. A head-to-tail association of apo-E, in which the 6C5 epitope and the second heparin binding site would be in close proximity, is proposed to account for this observation. In the lipid-free state both heparin binding sites on apo-E are expressed; however, when apo-E is complexed to phospholipid or on the surface of a lipoprotein particle, only the first binding site (residues 142-147) is expressed.  相似文献   

14.
Chang IF 《Proteomics》2006,6(23):6158-6166
In recent years, MS has been widely used to study protein complex in eukaryotes. The identification of interacting proteins of a particular target protein may help defining protein-protein interaction and proteins of unknown functions. To isolate protein complexes, high-speed ultracentrifugation, sucrose density-gradient centrifugation, and coimmunoprecipitation have been widely used. However, the probability of getting nonspecific binding is comparatively high. Alternatively, by use of one- or two-step (tandem affinity purification) epitope-tag affinity purification, protein complexes can be isolated by affinity or immunoaffinity columns. These epitope-tags include protein A, hexahistidine (His), c-Myc, hemaglutinin (HA), calmodulin-binding protein, FLAG, maltose-binding protein, Strep, etc. The isolated protein complex can then be subjected to protease (i.e., trypsin) digestion followed by an MS analysis for protein identification. An example, the epitope-tag purification of the Arabidopsis cytosolic ribosomes, is addressed in this article to show the success of the application. Several representative protein complexes in eukaryotes been isolated and characterized by use of this approach are listed. In this review, the comparison among different tag systems, validation of interacting relationship, and choices of MS analysis method are addressed. The successful rate, advantages, limitations, and challenges of the epitope-tag purification are also discussed.  相似文献   

15.
Lipoproteins are a heterogeneous population of blood plasma particles composed of apolipoproteins and lipids. Lipoproteins transport exogenous and endogenous triglycerides and cholesterol from sites of absorption and formation to sites of storage and usage. Three major classes of lipoproteins are distinguished according to their density: high-density (HDL), low-density (LDL) and very low-density lipoproteins (VLDL). While HDLs contain mainly apolipoproteins of lower molecular weight, the two other classes contain apolipoprotein B and apolipoprotein (a) together with triglycerides and cholesterol. HDL concentrations were found to be inversely related to coronary heart disease and LDL/VLDL concentrations directly related. Although many studies have been published in this area, few have concentrated on the exact protein composition of lipoprotein particles. Lipoproteins were separated by density gradient ultracentrifugation into different subclasses. Native gel electrophoresis revealed different gel migration behaviour of the particles, with less dense particles having higher apparent hydrodynamic radii than denser particles. Apolipoprotein composition profiles were measured by matrix-assisted laser desorption/ionization-mass spectrometry on a macromizer instrument, equipped with the recently introduced cryodetector technology, and revealed differences in apolipoprotein composition between HDL subclasses. By combining these profiles with protein identifications from native and denaturing polyacrylamide gels by liquid chromatography-tandem mass spectrometry, we characterized comprehensively the exact protein composition of different lipoprotein particles. We concluded that the differential display of protein weight information acquired by macromizer mass spectrometry is an excellent tool for revealing structural variations of different lipoprotein particles, and hence the foundation is laid for the screening of cardiovascular disease risk factors associated with lipoproteins.  相似文献   

16.
The apolipoprotein E family contains three major isoforms (ApoE4, E3, and E2) that are directly involved with lipoprotein metabolism and cholesterol transport. ApoE3 and apoE4 differ in only a single amino acid with an arginine in apoE4 changed to a cysteine at position 112 in apoE3. Yet only apoE4 is recognized as a risk factor for Alzheimer''s disease. Here we used 19F NMR to examine structural differences between apoE4 and apoE3 and the effect of the C-terminal domain on the N-terminal domain. After incorporation of 5-19F-tryptophan the 1D 19F NMR spectra were compared for the N-terminal domain and for the full length proteins. The NMR spectra of the N-terminal region (residues 1–191) are reasonably well resolved while those of the full length wild-type proteins are broad and ill-defined suggesting considerable conformational heterogeneity. At least four of the seven tryptophan residues in the wild type protein appear to be solvent exposed. NMR spectra of the wild-type proteins were compared to apoE containing four mutations in the C-terminal region that gives rise to a monomeric form either of apoE3 under native conditions (Zhang et al., Biochemistry 2007; 46: 10722–10732) or apoE4 in the presence of 1 M urea. For either wild-type or mutant proteins the differences in tryptophan resonances in the N-terminal region of the protein suggest structural differences between apoE3 and apoE4. We conclude that these differences occur both as a consequence of the Arg158Cys mutation and as a consequence of the interaction with the C-terminal domain.  相似文献   

17.
We describe sensitive new approaches for detecting and quantitating protein-lipid interactions using analytical ultracentrifugation and continuous size-distribution analysis [Schuck (2000) Biophys. J.78, 1606-1619]. The new methods were developed to investigate the binding of human apolipoprotein E (apoE) isoforms to size-fractionated lipid emulsions, and demonstrate that apoE3 binds preferentially to small lipid emulsions, whereas apoE4 exhibits a preference for large lipid particles. Although the apparent binding affinity for large emulsions is similar (Kd approximately 0.5 micro m), the maximum binding capacity for apoE4 is significantly higher than for apoE3 (3.0 and 1.8 amino acids per phospholipid, respectively). This indicates that apoE4 has a smaller binding footprint at saturation. We propose that apoE isoforms differentiate between lipid surfaces on the basis of size, and that these differences in lipid binding are due to a greater propensity of apoE4 to adopt a more compact closed conformation. Implications for the role of apoE4 in blood lipid transport and disease are discussed.  相似文献   

18.
Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures.   总被引:4,自引:11,他引:4       下载免费PDF全文
Sucrose gradient sedimentation analysis of rotavirus SA11-infected Ma104 cells revealed the presence of oligomers of VP7, the structural glycoprotein, and NS28, the nonstructural glycoprotein. Cross-linking the proteins, either before or after sucrose gradient centrifugation, stabilizes oligomers, which can be analyzed by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation. The major NS28 oligomer was tetrameric, though dimers and higher-order structures were observed as well. VP7 formed predominantly dimers, and again tetramers and higher oligomeric forms were present. Each oligomer of VP7 and NS28 sedimented at the same characteristic rate through the sucrose gradient either in the presence or absence of cross-linking. Monomers could not be cross-linked to form oligomers, demonstrating that cross-linked oligomers were not artifactually derived from monomers. Reversing the cross-linking of immunoprecipitated VP7 on reducing SDS-PAGE resulted in the appearance of only the monomeric form of VP7. Dissociation of the NS28 oligomers resulted in stable dimers as well an monomers. In the faster-sedimenting fractions, a 16S to 20S complex, which contained the rotavirus outer shell proteins VP7 and VP4 cross-linked to NS28, was observed. These complexes were shown not to be associated with any known subviral particle. The association of VP4, NS28, and VP7 may represent sites on the endoplasmic reticulum membrane that participate in the budding of the single-shelled particles into the lumen of the endoplasmic reticulum, where maturation to double-shelled particles occurs.  相似文献   

19.
Interacting domains of E2F1, DP1, and the adenovirus E4 protein.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

20.
The peak bone mass and the rate of bone loss are in part genetically determined. It has been suggested that bone mineral density (BMD) may be related to allelic variation in the apolipoprotein E (ApoE) gene locus. ApoE is important in the receptor-mediated clearance of chylomicron particles from the plasma, Apo E4 having the highest and Apo E2 the lowest receptor affinity. Chylomicrons are the main carrier of vitamin K in the plasma; vitamin K plays an important role in the carboxylation of osteocalcin. We have tested the hypothesis that persons with E4 variant would have lower BMD and increased bone turnover than those with E2 variant. A total of 18 ApoE 2/2 and ApoE 4/4 homozygotes were selected from 873 patients who were examined for the ApoE genotype. BMD in lumbar vertebral, femoral neck and distal forearm was measured and plasma concentrations of osteocalcin and C-terminal fragments of collagen (CTx) were determined. BMD values (expressed as T-score) at the three specified sites were -0.12+/-1.72, -0.52+/-1.32 and -0.52+/-0.81 in ApoE 2/2 group and -0.24+/-1.22, 0.00+/-0.84 and -0.17+/-1.07 in the ApoE 4/4 group. Plasma osteocalcin and CTx were within normal limits in both groups. In conclusion, we did not observe any association of ApoE genotype with BMD and biochemical markers of bone metabolism in ApoE 2/2 and ApoE 4/4 homozygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号