首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of molecular biology》2019,431(12):2248-2265
Apolipoprotein E4 (ApoE4) is one of three (E2, E3 and E4) human isoforms of an α-helical, 299-amino-acid protein. Homozygosity for the ε4 allele is the major genetic risk factor for developing late-onset Alzheimer's disease (AD). ApoE2, ApoE3 and ApoE4 differ at amino acid positions 112 and 158, and these sequence variations may confer conformational differences that underlie their participation in the risk of developing AD. Here, we compared the shape, oligomerization state, conformation and stability of ApoE isoforms using a range of complementary biophysical methods including small-angle x-ray scattering, analytical ultracentrifugation, circular dichroism, x-ray fiber diffraction and transmission electron microscopy We provide an in-depth and definitive study demonstrating that all three proteins are similar in stability and conformation. However, we show that ApoE4 has a propensity to polymerize to form wavy filaments, which do not share the characteristics of cross-β amyloid fibrils. Moreover, we provide evidence for the inhibition of ApoE4 fibril formation by ApoE3. This study shows that recombinant ApoE isoforms show no significant differences at the structural or conformational level. However, self-assembly of the ApoE4 isoform may play a role in pathogenesis, and these results open opportunities for uncovering new triggers for AD onset.  相似文献   

2.
Apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4) each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD). Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ) peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS), we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis.  相似文献   

3.
Human apolipoprotein E (apoE) is a 299-amino-acid protein with a molecular weight of 34 kDa. The difference between the apoE3 and apoE4 isoforms is a single residue substitution involving a Cys-Arg replacement at residue 112. ApoE4 is positively associated with atherosclerosis and late-onset and sporadic Alzheimer's disease (AD). ApoE4 and its C-terminal truncated fragments have been found in the senile plaques and neurofibrillary tangles in the brain of AD patients. However, detail structural information regarding isoform and domain interaction remains poorly understood. We prepared full-length, N-, and C-terminal truncated apoE3 and apoE4 proteins and studied their structural variation. Sedimentation velocity and continuous size distribution analysis using analytical ultracentrifugation revealed apoE3(72-299) as consisting of a major species with a sedimentation coefficient of 5.9. ApoE4(72-299) showed a wider and more complicated species distribution. Both apoE3 and E4 N-terminal domain (1-191) existed with monomers as the major component together with some tetramer. The oligomerization and aggregation of apoE protein increased when the C-terminal domain (192-271) was incorporated. The structural influence of the C-terminal domain on apoE is to assist self-association with no significant isoform preference. Circular dichroism and fluorescence studies demonstrated that apoE4(72-299) possessed a more alpha-helical structure with more hydrophobic residue exposure. The structural variation of the N-terminal truncated apoE3 and apoE4 protein provides useful information that helps to explain the greater aggregation of the apoE4 isoform and thus has implication for the involvement of apoE4 in AD.  相似文献   

4.
Apolipoprotein E (ApoE) is an abundant plasma protein that interacts with low density lipoprotein receptors and other proteins, participating in the transport of cholesterol and lipids. Research has revealed many other roles for this multifunctional protein. ApoE is polymorphic and exists in three major isoforms: ApoE2, ApoE3 (the most common isoform) and ApoE4, which differ by only one amino acid, at positions 112 and 158. The altered binding to lipids and receptors by ApoE isoforms E2 and E4 results in an elevated risk for neurological, cerebrovascular and cardiovascular pathologies. Most notably, ApoE4 is associated with an elevated risk (relative to E3) for Alzheimer’s disease. The application of mass spectrometry for genotyping and also direct measurement of ApoE protein isoforms is a recent development and is well suited to high-throughput applications. The precise quantification of protein isoforms will allow better characterization of effects resulting from heterozygous APOE genotypes.  相似文献   

5.
Huang RY  Garai K  Frieden C  Gross ML 《Biochemistry》2011,50(43):9273-9282
Apolipoprotein E, a 34 kDa protein, plays a key role in triglyceride and cholesterol metabolism. Of the three common isoforms (ApoE2, -3, and -4), only ApoE4 is a risk factor for Alzheimer's disease. All three isoforms of wild-type ApoE self-associate to form oligomers, a process that may have functional consequences. Although the C-terminal domain, residues 216-299, of ApoE is believed to mediate self-association, the specific residues involved in this process are not known. Here we report the use of hydrogen/deuterium exchange (H/DX) coupled with enzymatic digestion to identify those regions in the sequence of full-length apoE involved in oligomerization. For this determination, we compared the results of H/DX of the wild-type proteins and those of monomeric forms obtained by modifying four residues in the C-terminal domain. The three wild-type and mutant isoforms show similar structures based on their similar H/DX kinetics and extents of exchange. Regions of the C-terminus (residues 230-270) of the ApoE isoforms show significant differences of deuterium uptake between oligomeric and monomeric forms, confirming that oligomerization occurs at these regions. To achieve single amino acid resolution, we examined the extents of H/DX by using electron transfer dissociation (ETD) fragmentation of peptides representing selected regions of both the monomeric and the oligomeric forms of ApoE4. From these experiments, we could identify the specific residues involved in ApoE oligomerization. In addition, our results verify that ApoE4 is composed of a compact structure at its N-terminal domain. Regions of C-terminal domain, however, appear to lack defined structure.  相似文献   

6.
Humans have three major apolipoprotein E (ApoE) alleles (APOE; ε2, ε3 and ε4) that produce three ApoE protein isoforms. The ε2 allele encodes the ApoE2 isoform (Cys112, Cys158), whereas ε3 encodes the wild-type ApoE3 isoform (Cys112, Arg158) and ε4 encodes the ApoE4 isoform (Arg112, Arg158). Because the type of ApoE expressed is related to sporadic Alzheimer’s disease risk and familial hyperlipidemia, many clinical studies have utilized ApoE typing in recent years. ApoE serotyping is based on the correlation between ApoE genotype and isoform; it is therefore possible to determine the genotype from the blood ApoE isoform combination. Serotyping ApoE using mass spectrometry promises highly accurate results while requiring minimal amounts of blood and reagents, resulting in lower costs, which suggest that proteomic-based ApoE serotyping may eventually become a routine clinical laboratory test. Not limited to ApoE, proteomic analysis of human samples could be used to intentionally determine – and perhaps unintentionally reveal – personal genetic information.  相似文献   

7.
Using apolipoprotein E (ApoE) as a model protein, we developed a protein isoform analysis method utilizing stable isotope labeling tandem mass spectrometry (SILT MS). ApoE isoforms are quantitated using the intensities of the b and y ions of the 13C-labeled tryptic isoform-specific peptides versus unlabeled tryptic isoform-specific peptides. The ApoE protein isoform analysis using SILT allows for the simultaneous detection and relative quantitation of different ApoE isoforms from the same sample. This method provides a less biased assessment of ApoE isoforms compared to antibody-dependent methods, and may lead to a better understanding of the biological differences between isoforms.  相似文献   

8.
The relationship between Apolipoprotein E (ApoE) and the aggregation processes of the amyloid β (Aβ) peptide has been shown to be crucial for Alzheimer''s disease (AD). The presence of the ApoE4 isoform is considered to be a contributing risk factor for AD. However, the detailed molecular properties of ApoE4 interacting with the Aβ peptide are unknown, although various mechanisms have been proposed to explain the physiological and pathological role of this relationship. Here, computer simulations have been used to investigate the process of Aβ interaction with the N-terminal domain of the human ApoE isoforms (ApoE2, ApoE3 and ApoE4). Molecular docking combined with molecular dynamics simulations have been undertaken to determine the Aβ peptide binding sites and the relative stability of binding to each of the ApoE isoforms. Our results show that from the several ApoE isoforms investigated, only ApoE4 presents a misfolded intermediate when bound to Aβ. Moreover, the initial α-helix used as the Aβ peptide model structure also becomes unstructured due to the interaction with ApoE4. These structural changes appear to be related to a rearrangement of the salt bridge network in ApoE4, for which we propose a model. It seems plausible that ApoE4 in its partially unfolded state is incapable of performing the clearance of Aβ, thereby promoting amyloid forming processes. Hence, the proposed model can be used to identify potential drug binding sites in the ApoE4-Aβ complex, where the interaction between the two molecules can be inhibited.  相似文献   

9.
After receptor-mediated endocytosis of apolipoprotein E (apoE)-containing lipoproteins in hepatocytes, the isoform apoE3 is efficiently recycled in a process which is associated with cholesterol efflux. Recycling and cholesterol efflux are greatly reduced when apoE4 is the only isoform present. ApoE is the main apolipoprotein in cerebrospinal fluid, and it plays a pivotal role in maintaining cholesterol homeostasis in the brain. The isoform apoE4 is associated with an increased risk of Alzheimer's disease and it has been postulated that high intracellular cholesterol levels promote the amyloidogenic processing of amyloid precursor protein. Therefore we investigated the cellular processing of different apoE isoforms as well as the associated cholesterol efflux in the murine neuronal cell line HT-22. Uptake of apoE3-containing lipoproteins resulted in the expected recycling while, as seen in non-neuronal cells, recycling of apoE4 was significantly reduced. However, despite these differences in apoE recycling, there was no difference in rates of cholesterol efflux. Therefore we conclude that in this neuronal cell model the reduced recycling of apoE4 does not affect cellular cholesterol metabolism.  相似文献   

10.
ApoE4 (apolipoprotein E4) is the major known genetic risk factor for AD (Alzheimer's disease). In most clinical studies, apoE4 carriers account for 65-80% of all AD cases, highlighting the importance of apoE4 in AD pathogenesis. Emerging data suggest that apoE4, with its multiple cellular origins and multiple structural and biophysical properties, contributes to AD in multiple ways either independently or in combination with other factors, such as Aβ (amyloid β-peptide) and tau. Many apoE mouse models have been established to study the mechanisms underlying the pathogenic actions of apoE4. These include transgenic mice expressing different apoE isoforms in neurons or astrocytes, those expressing neurotoxic apoE4 fragments in neurons and human apoE isoform knock-in mice. Since apoE is expressed in different types of cells, including astrocytes and neurons, and in brains under diverse physiological and/or pathophysiological conditions, these apoE mouse models provide unique tools to study the cellular source-dependent roles of apoE isoforms in neurobiology and in the pathogenesis of AD. They also provide useful tools for discovery and development of drugs targeting apoE4's detrimental effects.  相似文献   

11.
We examined the effect of the three human isoforms of apolipoprotein E (ApoE2, ApoE3, and ApoE4) on the canonical Wnt signaling pathway in undifferentiated PC12 cells. Addition of recombinant ApoE4 reduced Wingless-Int7a-stimulated gene expression at concentrations of 80 and 500 nm. Recombinant ApoE2 and ApoE3 were virtually inactive. Recombinant ApoE4 also inhibited Wnt signaling when combined with very low density lipoproteins (VLDLs) or in cells over-expressing the low density lipoprotein receptor-related protein, LRP6. In contrast, the enforced expression of LRP5 unmasked an inhibition by ApoE2 and ApoE3, which, however, were less effective than ApoE4 in inhibiting Wnt signaling. We also transfected PC12 cells with constructs encoding for the three human ApoE isoforms to examine whether endogenously expressed ApoE isoforms could modulate the Wnt pathway. Under these conditions, all three ApoE isoforms were able to inhibit Wnt signaling, although ApoE4 showed the greatest efficacy. Only the conditioned medium collected from cultures transfected with ApoE4 induced a significant inhibition of Wnt7a-stimulated gene expression, confirming that ApoE4 has an extracellular action that is not shared by the other ApoE isoforms. We conclude that ApoE4 behaves as an inhibitor of the canonical Wnt pathway in a context-independent manner.  相似文献   

12.
Apolipoprotein E: a major piece in the Alzheimer's disease puzzle   总被引:5,自引:1,他引:4  
Alzheimer's disease (AD) is a complex neurodegenerative disorder with multiple etiologies. The presence of the E4 isoform of apolipoprotein E (apoE) has been shown to increase the risk and to decrease the age of onset for AD and is the major susceptibility factor known for the disease. ApoE4 has been shown to intensify all the biochemical distrubances characteristic of AD, including beta amyloid (Aβ) deposition, tangle formation, neuronal cell death, oxidative stress, synaptic plasticity and dysfunctions of lipid homeostasis and cholinergic signalling. In contrast, other apoE isoforms are protective. Here we review and discuss these major hypotheses of the apoE4-AD association.  相似文献   

13.
Garai K  Frieden C 《Biochemistry》2010,49(44):9533-9541
The apolipoprotein E family consists of three major protein isoforms: apolipoprotein E4 (ApoE4), ApoE3, and ApoE2. The isoforms, which contain 299 residues, differ only by single-amino acid changes, but of the three, only ApoE4 is a risk factor for Alzheimer’s disease. At micromolar concentrations, lipid-free ApoE exists predominantly as tetramers. In more dilute solutions, lower-molecular mass species predominate. Using fluorescence correlation spectroscopy (FCS), intermolecular fluorescence resonance energy transfer (FRET), and sedimentation methods, we found that the association?dissociation reaction of ApoE can be modeled with a monomer?dimer?tetramer process. Equilibrium constants have been determined from the sedimentation data, while the individual rate constants for association and dissociation were determined by measurement of the kinetics of dissociation of ApoE and are in agreement with the equilibrium constants. Dissociation kinetics as measured by intermolecular FRET show two phases reflecting the dissociation of tetramer to dimer and of dimer to monomer, with dissociation from tetramer to dimer being more rapid than the dissociation from dimer to monomer. The rate constants differ for the different ApoE isoforms, showing that the association?dissociation process is isoform specific. Strikingly, the association rate constants are almost 2 orders of magnitude slower than expected for a diffusion-controlled process. Dissociation kinetics were also monitored by tryptophan fluorescence in the presence of acrylamide and the data found to be consistent with the monomer?dimer?tetramer model. The approach combining multiple methods establishes the reaction scheme of ApoE self-association.  相似文献   

14.
Human apolipoprotein (apo) E exists as one of three major isoforms, E2, E3 or E4. Individuals carrying the 4 allele have an increased risk of heart disease and premature onset of Alzheimer's disease. To investigate the molecular basis for this phenomenon, the N-terminal domain of apoE3, apoE2 and apoE4 were expressed in bacteria, isolated and employed in lipid binding and stability studies. Far UV circular dichroism spectroscopy in buffer at pH 7 revealed a similar amount of -helix secondary structure for the three isoforms. By contrast, differences were noted in apoE-NT isoform-specific transformation of bilayer vesicles of dimyristoylphosphatidylglycerol (DMPG) into discoidal complexes. ApoE4-NT induced transformation was most rapid, followed by apoE3-NT and apoE2-NT. To determine if differences in the rate of apoE-NT induced DMPG vesicle transformation is due to isoform-specific differences in helix bundle stability, guanidine HCl denaturation studies were conducted. The results revealed that apoE2-NT was the most stable, followed by apoE3-NT and apoE4-NT, establishing an inverse correlation between helix bundle stability and DMPG vesicle transformation rate at pH 7. When the zwitterionic dimyristoylphosphatidylcholine (DMPC) was employed as the model lipid surface, interaction of apoE-NT isoforms with the lipid substrate was slow. However, upon lowering the pH from 7 to 3, a dramatic increase in the rate of DMPC vesicle transformation rate was observed for each isoform. To evaluate if the increased DMPC vesicle transformation rates observed at low pH is due to pH-dependent alterations in helix bundle stability, guanidine HCl denaturation studies were performed. ApoE2-NT and apoE3-NT displayed increased resistance to denaturation as a function of decreasing pH, while apoE4-NT showed no change in stability. Studies with the fluorescent probe, 8-anilino-1-naphthalene sulfonic acid, indicated an increase in apoE hydrophobic surface exposure upon decreasing the pH to 3.0. Taken together, the data indicate that changes in the stability of secondary structure elements in apoE-NT isoforms are not responsible for pH-induced increases in lipid binding activity. It is likely that pH-induced disruption of inter-helical tertiary contacts may promote helix bundle conformational changes that present the hydrophobic interior of the protein to potential lipid surface binding sites.  相似文献   

15.
Since the identification of the apolipoprotein E (apoE) *ε4 allele as a major genetic risk factor for late-onset Alzheimer's disease, significant efforts have been aimed at elucidating how apoE4 expression confers greater brain amyloid-β (Aβ) burden, earlier disease onset and worse clinical outcomes compared to apoE2 and apoE3. ApoE primarily functions as a lipid carrier to regulate cholesterol metabolism in circulation as well as in the brain. However, it has also been suggested to interact with hydrophobic Aβ peptides to influence their processing in an isoform-dependent manner. Here, we review evidence from in vitro and in vivo studies extricating the effects of the three apoE isoforms, on different stages of the Aβ processing pathway including synthesis, aggregation, deposition, clearance and degradation. ApoE4 consistently correlates with impaired Aβ clearance, however data regarding Aβ synthesis and aggregation are conflicting and likely reflect inconsistencies in experimental approaches across studies. We further discuss the physical and chemical properties of apoE that may explain the inherent differences in activity between the isoforms. The lipidation status and lipid transport function of apoE are intrinsically linked with its ability to interact with Aβ. Traditionally, apoE-oriented therapeutic strategies for Alzheimer's disease have been proposed to non-specifically enhance or inhibit apoE activity. However, given the wide-ranging physiological functions of apoE in the brain and periphery, a more viable approach may be to specifically target and neutralise the pathological apoE4 isoform.  相似文献   

16.
Apolipoprotein (apo) E4 is a major risk factor for Alzheimer and cardiovascular diseases. ApoE4 differs from the two other common isoforms (apoE2 and apoE3) by its lower resistance to denaturation and greater propensity to form partially folded intermediates. As a first step to determine the importance of stability differences in vivo, we reengineered a partially humanized variant of the amino-terminal domain of mouse apoE (T61R mouse apoE) to acquire a destabilized conformation like that of apoE4. For this process, we determined the crystal structure of wild-type mouse apoE, which, like apoE4, forms a four-helix bundle, and identified two structural differences in the turn between helices 2 and 3 and in the middle of helix 3 as potentially destabilizing sites. Introducing mutations G83T and N113G at these sites destabilized the mouse apoE conformation. The mutant mouse apoE more rapidly remodeled phospholipid than T61R mouse apoE, which supports the hypothesis that a destabilized conformation promotes apoE4 lipid binding.  相似文献   

17.
18.
Mutations to the cholesterol transport protein apolipoprotein E (ApoE) have been identified as a major risk factor for the development of sporadic or late-onset Alzheimer’s disease (AD), with the e4 allele representing an increased risk and the rare e2 allele having a reduced risk compared to the primary e3 form. The reasons behind the change in risk are not entirely understood, though ApoE4 has been connected to inflammation and toxicity in both the brain and the periphery. The goal of this study was to better understand how the ApoE isoforms (ApoE2/3/4) confer differential AD-related risk by assessing cell-specific ApoE-related neuroinflammatory and neurotoxic effects. We compared the effects of ApoE isoforms in vitro on human astrocytes, a human immortalized microglia cell line (HMC3), and the human neuroblastoma cell line SH-SY5Y. Cells were treated for 24 h with or without recombinant ApoE2, ApoE3, or ApoE4 (20 nM) and inflammation and toxicity markers assessed. Our results indicated the expression of inflammatory cytokines IL-1β, TNFα, and IL-6 in human astrocytes was increased in response to all ApoE isoforms, with ApoE4 evoking the highest level of cytokine expression. In response to ApoE2 or ApoE3, microglial cells showed reduced levels of microglial activation markers TREM2 and Clec7a, while ApoE4 induced increased levels of both markers. ApoE2 promoted neuron survival through increased BDNF release from astrocytes. In addition, ApoE2 promoted, while ApoE4 reduced, neuronal viability. Overall, these results suggest that ApoE4 acts on cells in the brain to promote inflammation and neuronal injury and that the deleterious effects of ApoE4 on these cells may, in part, contribute to its role as a risk factor for AD.  相似文献   

19.
Su KL  Wen TH  Chou CY  Chang GG  Liu GY  Hung HC 《Proteins》2007,68(1):363-374
A growing amount of evidence implicates the involvement of apolipoprotein E (apoE) in the development of late-onset and sporadic forms of Alzheimer's disease (AD). It is now generally believed that the epsilon4 allele is associated with AD and the oxidative stress is more pronounced in AD. However, only limited data are available on apoE isoform-specificity and its relationship to both the oxidative susceptibility and conformational stability of apoE. In this article, we use site-directed mutagenesis to investigate the structural role of amino acid residue 112, which is the only differing residue between apoE3 and E4. We examine the structural variation manipulating the oxidative susceptibility and conformational stability of apolipoprotein E isoforms. Arg112 in apoE4 was changed to Ala and Glu. Previous research has reported that apoE4 is more susceptible to free radicals than apoE3. In protein oxidation experiments, apoE4-R112A becomes more resistant to free radicals to the same extent as apoE3. In contrast, apoE4-R112E becomes the most susceptible protein to free radicals among all the apoE proteins. We also examine the conformational stability and the quaternary structural change by fluorescence spectroscopy and analytical ultracentrifugation, respectively. ApoE3 and E4 show apparent three- and two-state unfolding patterns, respectively. ApoE4-R112A, similar to apoE3, demonstrates a biphasic denaturation with an intermediate that appears. The denaturation curve for apoE4-R112E, however, also displays a biphasic profile but with a slight shoulder at approximately 1.5M GdmCl, implying that an unstable intermediate existed in the denaturation equilibrium. The size distribution of apoE isoforms display similar patterns. ApoE4-R112E, however, has a greater tendency to dissociate from high-molecular-weight species to tetramers. These experimental data suggest that the amino acid residue 112 governs the differences in salt-bridges between these two isoforms and thus has a significant impact on the free radical susceptibility and structural variation of the apoE isoforms.  相似文献   

20.
Abstract: The genes for both the β-amyloid precursor protein and apolipoprotein E (ApoE) have been linked to Alzheimer's disease. This connection suggests the possibility that these proteins interact physically or functionally. To explore this idea, we focused on the neuroprotective activity of secreted amyloid precursor protein (sAPP) and related signal transduction events. After coincubation with ApoE, sAPP exhibited an enhanced [Ca2+]i-lowering activity and enhanced protection against excitotoxicity in rat primary hippocampal neurons. In contrast, the stimulation of phosphoinositide production by sAPP was inhibited by ApoE. Kinetic analyses and coimmunoprecipitation experiments indicated that these actions result from formation of a heteromeric complex between ApoE and sAPP. Furthermore, the ApoE4 isoform, which seems to accelerate the onset of Alzheimer's disease, was less potent than ApoE3 in modifying each activity of sAPP. These data suggest that sAPP-dependent neuroprotective mechanisms would be compromised in individuals expressing ApoE4, a scenario that may contribute to the development of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号