共查询到20条相似文献,搜索用时 15 毫秒
1.
Yi Guo Jinzhong Yuan Hui Liang Jingjing Xiao Hongbo Xu Lamei Yuan Kai Gao Bin Wu Yongchang Tang Xiaorong Li Hao Deng 《Molecular biology reports》2014,41(6):3631-3635
Alport syndrome (AS) is an inherited disorder and clinically characterized by glomerulonephritis and end-stage kidney disease (ESRD). The aim of this study was to identify the gene responsible for glomerulopathy in a 4-generation Chinese pedigree. Exome sequencing was conducted in four patients of the family, and then direct sequencing was performed in other members of the pedigree. A novel missense mutation c.368G>A (p.Gly123Glu) in the collagen type IV alpha-5 gene (COL4A5) was found to be the genetic cause. The p.Gly123Glu mutation occurs prior to Gly-X-Y repeats in the alpha-5 chain of type IV collagen. Neither sensorineural hearing loss nor ocular abnormalities were present in patients of this family. Other clinical features, such as age of onset, age of ESRD, disease severity and complications, varied among patients of this family. Our finding may provide new insights into the cause and diagnosis of AS, and also have implications for genetic counseling. 相似文献
2.
Li Zhihui Zhu Peng Huang Hui Pan Ying Han Peng Cui Huanhuan Kang Zhijuan Xun Mai Zhang Yi Liu Saijun Wang Jian Wu Jing 《中国科学:生命科学英文版》2019,62(12):1572-1579
Alport syndrome(AS) is a hereditary progressive nephropathy characterized by hematuria, ultrastructural lesions of the glomerular basement membrane, ocular lesions and sensorineural hearing loss. Germline mutations of COL4 A5 are associated with X-linked AS with an extreme phenotypic heterogeneity. Here, we investigated a Chinese family with Alport syndrome. The proband was a 9-year-old boy with hematuria and proteinuria. Based on the test results of renal biopsy and immunofluorescence,the proband was initially diagnosed as Ig A nephropathy and the treatment was recommended accordingly. Meanwhile, we found that the treatment outcome was poor. Therefore, for proper clinical diagnosis and appropriate treatment, targeted exome-based next-generation sequencing has been undertaken. We identified a novel hemizygous single nucleotide deletion c.1902 del A in COL4 A5 gene. Segregation analysis identified that this novel mutation is co-segregated among the affected family members but absent in unaffected family members. The clinical diagnosis of the proband was revised as AS accompanied by Ig A nephropathy,which has been rarely reported. Our findings demonstrated the significance of the application of Genetic screening, expanded the mutation spectrum of COL4 A5 associated AS patients with atypical renal phenotypes and provided a good lesson to be learned from our detour during the diagnosis. 相似文献
3.
Nance-Horan Syndrome (NHS) is a rare X-linked syndrome characterized by congenital cataract which leads to profound vision loss, characteristic dysmorphic features and specific dental anomalies. Microcornea, microphthalmia and mild or moderate mental retardation may accompany these features. Heterozygous females often manifest similarly but with less severe features than affected males. We describe two brothers who have the NHS phenotype and their carrier mother who had microcornea but not cataract. We identified a previously unreported frameshift mutation (c.558insA) in exon 1 of the NHS gene in these patients and their mother which is predicted to result in the incorporation of 11 aberrant amino acids prior to a stop codon (p.E186Efs11X). We also discussed genotype–phenotype correlation according to relevant literature. 相似文献
4.
5.
Alessandra Renieri Marco Seri Lucia Galli Pablo Cosci Enrico Imbasciati Laura Massella Gianfranco Rizzoni Gabriella Restagno Angelo O. Carbonara Emanuele Stramignoni Bruno Basolo Giuseppe Piccoli Mario De Marchi 《Human genetics》1993,92(4):417-420
Small frameshift deletions within the COL4A5 gene were identified in three Alport syndrome Italian families by non-isotopic single-strand conformation polymorphism (SSCP) screening: in family RMA, a 7-bp deletion (GGGTGAA) in exon 39; in family DGR, a 4-bp deletion (TGGA) in exon 41; in family MIB, deletion of a G in exon 50. The phenotype was characterized by juvenile-onset renal failure with sensorineural hearing loss in males, and a milder clinical pattern in heterozygous females. 相似文献
6.
Mutations in the basement membrane collagen gene COL4A5 cause the progressive renal glomerular nephropathy and typical hearing
loss that occur in X-linked Alport syndrome. Nearly all cases involve distinct mutations, as expected for an X-linked disease
that significantly reduces the fitness of affected males. A few exceptional COL4A5 mutations appear to be associated with
a reduced disease severity and may account for a significant proportion of late-onset Alport syndrome in populations where
a founder effect has occurred. The novel mutation reported here, COL4A5 arg1677gln, has been detected in three independently
ascertained Ashkenazi-American families, causes a relatively mild form of nephritis with typical onset in the fourth or fifth
decade, and may be involved in the etiology of a large proportion of adult-onset hereditary nephritis in Ashkenazi Jews.
Received: 14 October 1996 / Revised: 11 December 1996 相似文献
7.
X-linked Alport syndrome: an SSCP-based mutation survey over all 51 exons of the COL4A5 gene. 总被引:12,自引:1,他引:12
下载免费PDF全文
![点击此处可从《American journal of human genetics》网站下载免费的PDF全文](/ch/ext_images/free.gif)
A. Renieri M. Bruttini L. Galli P. Zanelli T. Neri S. Rossetti A. Turco N. Heiskari J. Zhou R. Gusmano L. Massella G. Banfi F. Scolari A. Sessa G. Rizzoni K. Tryggvason P. F. Pignatti M. Savi A. Ballabio M. De Marchi 《American journal of human genetics》1996,58(6):1192-1204
The COL4A5 gene encodes the alpha5 (type IV) collagen chain and is defective in X-linked Alport syndrome (AS). Here, we report the first systematic analysis of all 51 exons of COL4A5 gene in a series of 201 Italian AS patients. We have previously reported nine major rearrangements, as well as 18 small mutations identified in the same patient series by SSCP analysis of several exons. After systematic analysis of all 51 exons of COL4A5, we have now identified 30 different mutations: 10 glycine substitutions in the triple helical domain of the protein, 9 frameshift mutations, 4 in-frame deletions, 1 start codon, 1 nonsense, and 5 splice-site mutations. These mutations were either unique or found in two unrelated families, thus excluding the presence of a common mutation in the coding part of the gene. Overall, mutations were detected in only 45% of individuals with a certain or likely diagnosis of X-linked AS. This finding suggests that mutations in noncoding segments of COL4A5 account for a high number of X-linked AS cases. An alternative hypothesis is the presence of locus heterogeneity, even within the X-linked form of the disease. A genotype/phenotype comparison enabled us to better substantiate a significant correlation between the degree of predicted disruption of the alpha5 chain and the severity of phenotype in affected male individuals. Our study has significant implications in the diagnosis and follow-up of AS patients. 相似文献
8.
Xiuzhen Liu Hongliang Dong Yuerong Gong Lianqing Wang Ruyi Zhang Tihua Zheng Yuxi Zheng Shuang Shen Chelsea Zheng Mingming Tian Naiguo Liu Xiaolin Zhang Qing Yin Zheng 《Journal of cellular and molecular medicine》2022,26(5):1530
Stickler syndrome type I (STL1, MIM 108300) is characterized by ocular, auditory, skeletal and orofacial manifestations. Nonsyndromic ocular STL1 (MIM 609508) characterized by predominantly ocular features is a subgroup of STL1, and it is inherited in an autosomal dominant manner. In this study, a novel variant c.T100>C (p.Cys34Arg) in COL2A1 related to a large nonsyndromic ocular STL1 family was identified through Exome sequencing (ES). Bioinformatics analysis indicated that the variant site was highly conserved and the pathogenic mechanism of this variant may involve in affected structure of chordin‐like cysteine‐rich (CR) repeats of ColIIA. Minigene assay indicated that this variant did not change alternative splicing of exon2 of COL2A1. Moreover, the nonsyndromic ocular STL1 family with 16 affected members showed phenotype variability and certain male gender trend. None of the family members had hearing loss. Our findings would expand the knowledge of the COL2A1 mutation spectrum, and phenotype variability associated with nonsyndromic ocular STL1. Search for genetic modifiers and related molecular pathways leading to the phenotype variation warrants further studies. 相似文献
9.
Spectrum of mutations in the COL4A5 collagen gene in X-linked Alport syndrome. 总被引:12,自引:1,他引:12
下载免费PDF全文
![点击此处可从《American journal of human genetics》网站下载免费的PDF全文](/ch/ext_images/free.gif)
B. Knebelmann C. Breillat L. Forestier C. Arrondel D. Jacassier I. Giatras L. Drouot G. Deschênes J. P. Grünfeld M. Broyer M. C. Gubler C. Antignac 《American journal of human genetics》1996,59(6):1221-1232
Alport syndrome is a mainly X-linked hereditary disease of basement membranes that is characterized by progressive renal failure, deafness, and ocular lesions. It is associated with mutations of the COL4A5 gene located at Xq22 and encoding the alpha5 chain of type IV collagen. We have screened 48 of the 51 exons of the COL4A5 gene by SSCP analysis and have identified 64 mutations and 10 sequence variants among 131 unrelated Alport syndrome patients. This represents a mutation-detection rate of 50%. There were no hot-spot mutations and no recurrent mutations in our population. The identified mutations were 6 nonsense mutations, 12 frameshift mutations, 17 splice-site mutations, and 29 missense mutations, 27 of the latter being glycine substitutions in the collagenous domain. Two of these occurred on the same allele in one patient and segregated with the disease in the family. We showed that some of the glycine substitutions could be associated with the lack of immunological expression of the alpha3(IV)-alpha5(IV) collagen chains in the glomerular basement membrane. 相似文献
10.
The X-linked form of Alport syndrome is caused by mutations in the COL4A5 gene in Xq22. This large multiexonic gene has, in the past, been difficult to screen, with several studies detecting only about 50% of mutations. We report three novel intronic mutations that may, in part, explain this poor success rate and demonstrate that single base changes deep within introns can, and do, cause disease: one mutation creates a new donor splice site within an intron resulting in the inclusion of a novel in-frame cryptic exon; a second mutation results in a new exon splice enhancer sequence (ESE) that promotes splicing of a cryptic exon containing a stop codon; a third patient exhibits exon skipping as a result of a base substitution within the polypyrimidine tract that precedes the acceptor splice site. All three cases would have been missed using an exon-by-exon DNA screening approach. 相似文献
11.
Y Ueki I Naito T Oohashi M Sugimoto T Seki H Yoshioka Y Sado H Sato T Sawai F Sasaki M Matsuoka S Fukuda Y Ninomiya 《American journal of human genetics》1998,62(2):253-261
Diffuse esophageal leiomyomatosis (DL), a benign smooth-muscle-cell tumor, is characterized by abnormal cell proliferation. DL is sometimes associated with X-linked Alport syndrome (AS), an inherited nephropathy caused by COL4A5 gene mutations. COL4A5 is tightly linked, in a head-to-head fashion, to the functionally related and coordinately regulated COL4A6 gene. No X-linked AS cases are due to COL4A6 mutations, but all DL/AS cases are always associated with deletions spanning the 5' regions of the COL4A5/COL4A6 cluster. Unlike the COL4A5 breakpoints, those of COL4A6 are clustered within intron 2 of the gene. We identified a DL/AS deletion and the first characterization of the breakpoint sequences. We show that a deletion eliminates the first coding exon of COL4A5 and the first two coding exons of COL4A6. The breakpoints share the same sequence, which, in turn, is closely homologous to the consensus sequences of topoisomerases I and II. Additional DNA evidence suggested that the male patient is a somatic mosaic for the mutation. Immunohistochemical analysis using alpha-chain-specific monoclonal antibodies supported this conclusion, since it revealed the absence of the alpha5(IV) and alpha6(IV) collagen chains in most but not all of the basement membranes of the smooth-muscle-cell tumor. We also documented a similar segmental staining pattern in the glomerular basement membranes of the patient's kidney. This study is particularly relevant to the understanding of DL pathogenesis and its etiology. 相似文献
12.
13.
14.
Kentarou Hashikami Makoto Asahina Kandai Nozu Kazumoto Iijima Michio Nagata Michiyasu Takeyama 《Biochemistry and Biophysics Reports》2019
Alport syndrome (AS) is an inherited disorder characterized by glomerular basement membrane (GBM) abnormality and development of chronic kidney disease at an early age. The cause of AS is a genetic mutation in type IV collagen, and more than 80% of patients have X-linked AS (XLAS) with mutation in COL4A5. Although the causal gene has been identified, mechanisms of progression have not been elucidated, and no effective treatment has been developed. In this study, we generated a Col4a5 mutant mouse harboring a nonsense mutation (R471X) obtained from a patient with XLAS using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system. Col4a5 mRNA and protein expressions were not observed in the kidneys of hemizygous R471X male mice. R471X mice showed proteinuria and hematuria. Pathology revealed progression of glomerulosclerosis and interstitial fibrosis by age. Electron microscopy identified irregular thickening in GBM accompanied by irregular lamination. These observations were consistent with the clinical and pathological features of patients with AS and other established models. In addition, our mice models develop end-stage renal disease at the median age of 28 weeks, much later compared to previous models much more consistent with clinical course of human XLAS. Our models have advantages for future experiments in regard with treatment for human XLAS. 相似文献
15.
通过PCR和直接测序的方法,对一性连锁Alport综合征家系17个受检个体的COL4A5基因所有51个外显子及其相邻内含子的DNA序列进行检测。结果发现,在第26外显子2240位点,男患者存在C碱基缺失(2240delc),女患者存在杂合缺失,同时对女患者相应的PCR产物进行克隆和测序以验证PCR测序结果的可靠性,而在正常家系成员和80例对照中均未发现此位点异常,说明2240delc为引起该家系临床病变的突变位点,不是多态性位点。在性连锁Alport综合征中,COL4A5基因的这个单碱基缺失突变位点为首次报道。 相似文献
16.
Determination of the genomic structure of the COL4A4 gene and of novel mutations causing autosomal recessive Alport syndrome. 总被引:4,自引:0,他引:4
E Boye G Mollet L Forestier L Cohen-Solal L Heidet P Cochat J P Grünfeld J B Palcoux M C Gubler C Antignac 《American journal of human genetics》1998,63(5):1329-1340
Autosomal recessive Alport syndrome is a progressive hematuric glomerulonephritis characterized by glomerular basement membrane abnormalities and associated with mutations in either the COL4A3 or the COL4A4 gene, which encode the alpha3 and alpha4 type IV collagen chains, respectively. To date, mutation screening in the two genes has been hampered by the lack of genomic structure information. We report here the complete characterization of the 48 exons of the COL4A4 gene, a comprehensive gene screen, and the subsequent detection of 10 novel mutations in eight patients diagnosed with autosomal recessive Alport syndrome. Furthermore, we identified a glycine to alanine substitution in the collagenous domain that is apparently silent in the heterozygous carriers, in 11.5% of all control individuals, and in one control individual homozygous for this glycine substitution. There has been no previous finding of a glycine substitution that is not associated with any obvious phenotype in homozygous individuals. 相似文献
17.
18.
Pendred syndrome (PS) is an autosomal recessive disorder characterized by congenital bilateral sensorineural hearing loss, goiter, and incomplete iodide organification. Patients with PS also have structural anomalies of the inner ear such as enlarged vestibular aqueducts (EVA) and Mondini's malformation. The goiter, which is a major clinical manifestation of PS, usually develops around adolescence. PS is caused by biallelic mutations of the SLC26A4 gene, while nonsyndromic bilateral EVA is associated with zero or one SLC26A4 mutant allele. We report here a Korean family including a young female with PS who had goiter and progressive, fluctuating sensorineural hearing loss that could be partially recovered by oral steroid treatment. Genetic investigation revealed compound heterozygous mutations for p.R677AfsX11, a novel frameshift mutation, and p.H723R in the SLC26A4 gene. Our findings provide detailed information regarding the distribution of mutant alleles for PS and may serve as a foundation for studies to comprehend the genetic portion of syndromic hearing loss. 相似文献
19.
J. Bonaventure C. Philippe G. Plessis J. Vigneron C. Lasselin P. Maroteaux S. Gilgenkrantz 《Human genetics》1992,90(1-2):164-168
Summary A three generation family with Stickler syndrome is reported. Affected patients exhibited myopia with frequent retinal detachment or glaucoma. Most of them had characteristic facial dysmorphism, the Pierre-Robin sequence being observed in four individuals. Neonatal radiological signs of the Weissenbacher-Zweymüller syndrome were also noticed but early arthopathy was not reported in adults. Restriction fragment length polymorphism studies with the type II collagen gene (COL2A1) showed a recombination event between the disease locus and COL2A1, thus excluding collagen type II as the candidate gene. Although the calculation of the likelihood of genetic heterogeneity versus homogeneity based on 10 families was not statistically significant, we suggest that a second locus is probably involved in this highly variable syndrome. 相似文献
20.
Mucolipidosis type IV is a rare autosomal recessive lysosomal storage disorder reported among Ashkenazi Jews and to a lesser extent in other ethnic groups. Several mutations have been reported in MCOLN1 which is the only known gene associated with the disorder. Here we report the first Saudi patient with Mucolipidosis type IV from a consanguineous family with two branches having a total of five patients carrying a novel transition mutation, c.1307A > G (p.Y436C) in exon 11. The clinical course of the patient was nonspecific and a lysosomal storage disorder was not highly suspected due to lack of coarse facial features, organomegaly and skeletal findings of dysostosis multiplex. The detailed bioinformatics analysis on the deleterious effects of the mutation is discussed. Emphasis is made on the importance of brain magnetic resonance imaging (MRI) findings and serum gastrin level as key clues to the diagnosis of this often subtle neurodevelopmental disorder. 相似文献