首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A general morphometrical analysis of the M1 was conducted to identify the subterranean vole species found in Upper Pleistocene localities from Serbia and Montenegro, and to clarify the systematic position and the phylogenetic relationships between the different species in the Balkans. From the different localities studied, we can assign one population toMicrotus (Terricola) thomasi and the others to theM. (T.) subterraneus group. This study suggests thatM. (T.) grafi can be considered as a chronological sub-species ofM. (T.) subterraneus or as a different but phylogenetically very close species.  相似文献   

2.
Aim  Pleistocene climatic cycles have left marked signatures in the spatial and historical genetic structure of high‐latitude organisms. We examine the mitochondrial (cytochrome b) genetic structure of the singing vole, Microtus miurus (Rodentia: Cricetidae: Arvicolinae), a member of the Pleistocene Beringian fauna, and of the insular vole, Microtus abbreviatus, its putative sister species found only on the St Matthew Archipelago. We reconstruct the phylogenetic and phylogeographical structure of these taxa, characterize their geographical partitioning and date coalescent and cladogenetic events in these species. Finally, we compare the recovered results with the phylogenetic, coalescent and spatial genetic patterns of other eastern Beringian mammals and high‐latitude arvicoline rodents. Location  Continental Alaska (alpine and arctic tundra) and the St Matthew Archipelago (Bering Sea). Methods  We generated and analysed cytochrome b sequences of 97 singing and insular voles (M. miurus and M. abbreviatus) from Alaska. Deep evolutionary structure was inferred by phylogenetic analysis using parsimony, maximum likelihood and Bayesian approaches; the geographical structure of genetic diversity was assessed using analysis of molecular variance and network analysis; ages of cladogenetic and coalescent events were estimated using a relaxed molecular clock model with Bayesian approximation. Results  Regional nucleotide diversity in singing voles is higher than in other high‐latitude arvicoline species, but intra‐population diversity is within the observed range of values for arvicolines. Microtus abbreviatus specimens are phylogenetically nested within M. miurus. Molecular divergence date estimates indicate that current genetic diversity was formed in the last glacial (Wisconsinan) and previous interglacial (Sangamonian) periods, with the exception of a Middle Pleistocene split found between samples collected in the Wrangell Mountains region and all other singing vole samples. Main conclusions  High levels of phylogenetic and spatial structure are observed among analysed populations. This pattern is consistent with that expected for a taxon with a long history in Beringia. The spatial genetic structure of continental singing voles differs in its northern and southern ranges, possibly reflecting differences in habitat distribution between arctic and alpine tundra. Our phylogenetic results support the taxonomic inclusion of M. miurus in its senior synonym, M. abbreviatus.  相似文献   

3.
A study of voles (Arvicolidae, Rodentia) from Gansu (China) designed to identify a potential host of Echinococcus multilocularis, responsible for human alveolar echinococcosis, leads to a general analysis of Microtus limnophilus population karyotypes, M1 of M. oeconomus populations from all of Eurasia and of M. limnophilus of Mongolia. The Microtus of Gansu belonging to the nominal subspecies M. limnophilus limnophilus (2n = 38; NF = 58) differs markedly in size and shape of M1 from the M. limnophilus of Mongolia, which must therefore be considered as a new subspecies M. limnophilus of malygini nov. ssp. (2n = 38; NF = 60) and the M. oeconomus of Mongolia should be ranked as M. oeconomus kharanurensis nov. ssp. (2n = 30; NF = 60).  相似文献   

4.
Using chromosomal and molecular (cytb) markers, the specific identity of 78 individuals of cryptic species of voles of the subgenus Terricola was ascertained. The animal samples were obtained at 13 localities of the Caucasian region, from Krasnodar krai to North Ossetia in the Greater Caucasus and in the Stavropol Upland (forest island in the steppe) in Ciscaucasia, which had not been covered earlier in genetic studies. In the total sample, two chromosomal forms (cryptic species), namely, Microtus (Terricola) majori (2n = 54, NF = 60) and M. (T.) daghestanicus (2n = 54, NF = 58), were identified. The specific identity of most animals tested was confirmed by karyological means, and for individuals from two localities on the south slopes of the Greater Caucasus (Adlerskii district of Krasnodar krai), it was confirmed exclusively by means of molecular (cytb) markers. The last two records were used for evaluation of the differential role of sibling-species of the subgenus Terricola in circulation of the pathogen in mountain loci of hemorrhagic fever with renal syndrome (HFRS) in the Western Caucasus. For the first time, using the example of M. (T.) majori from the Ciscaucasia, which was compared with those of the mountain part of the species’ natural habitat, the role of isolation factors in morphogenesis of the subgenus Terricola was studied. As a whole, the results obtained specify the character of the geographical distribution and biotope attachment of cryptic species of the subgenus Terricola in the Caucasian region.  相似文献   

5.
The two Iberian species of pine voles, Microtus (Terricola) duodecimcostatus and M. (T.) lusitanicus of the subfamily Arvicolinae (Cricetidae, Rodentia), were compared after G- and C-banding and chromosomal mapping of ribosomal RNA genes (rDNA), telomeric repeats, and satellite DNA Msat-160. Notwithstanding their close relationship (one sister group in phylogenetic analyses) and sharing of the diploid and fundamental chromosome numbers, the 2 species show notable differences in the sex chromosome morphology, the number and distribution of rDNA sites, constitutive heterochromatin and satDNA patterns. The only telomeric repeats showed normal, all-telomeric, distribution in karyotypes of both species. The data are discussed with regard to interspecific and intrageneric variation of the analyzed characters and the chromosomal evolution in the genus Microtus.  相似文献   

6.
The objective of this study was to establish whether the Quaternary climatic fluctuations influenced the tempo and mode of diversification in European rodents. Our case study is the subgenus Microtus (Terricola) distributed from western Europe to the Caucasus. Mitochondrial cytochrome b gene sequences from several representatives of all the species were used to generate maximum‐likelihood and Bayesian phylogenetic trees, to estimate divergence times, to identify biogeographic ancestral areas and to study the rate of diversification. Results showed that phylogenetic tree topologies were similar to previous published studies but with a better resolution at some nodes. The origin of Microtus (Terricola) is dated back to approximately 4.05 Myr in the Early Pliocene, and molecular dating for most Terricola species corresponds to several glacial periods of the Pleistocene. Results of the biogeographic ancestral area reconstruction suggest that Microtus (Terricola) diversified from the Caucasus/Turkey/Iran area through western Europe. Several periods of diversity variation were highlighted as follows: two period of diversity increase, between 3 and 2 Myr, and after 1 Myr; two periods of diversity decrease, before 3 Myr, and between 2 and 1 Myr. The diversification rate of Microtus (Terricola) was 0.353 ± 0.004 event/Myr, a rate similar to that of the Muridae family. To conclude, although the Pleistocene glacial conditions had an impact on the speciation events, the Quaternary does not appear however as a period with an exceptional rate of diversification for European rodents.  相似文献   

7.
Blood parasites of small mammals living in Białowieża Forest (eastern Poland) were investigated between 1996 and 2002. The following haemoparasite species were found:Trypanosoma (Herpetosoma) evotomys in bank voleClethrionomys glareolus; T. (H.) microti in root voleMicrotus oeconomus; Babesia microti in root vole;Hepatozoon erhardovae in bank vole andHepatozoon sp. in root vole. Some non-identifiedBartonella species were found in bank vole, root vole, field voleMicrotus agrestis, yellow-necked mouseApodemus flavicollis, common shrewSorex araneus, Eurasian water shrewNeomys fodiens, and Mediterranean water shrewN. anomalus. The prevalence and diversity of blood parasites were lower in shrews than small rodents. Totally, 52.0% of bank voles, 50.0% of root voles, 32.5% of common shrews, and 41.2% of Eurasian water shrews were infected with any of the blood parasites. Mixed infections were seldom observed in bank vole (17.3% of investigated individuals) and root vole (14.7%). No animals were infected with three or four parasites simultaneously. Infection of Białowieża small mammals with haemoparasites seemed to be similar to those described in other temperate forest regions rather than boreal ones. Infection rates of rodent species seem to be higher in their typical habitats: for bank vole it was the highest in mixed forest, whereas for root vole in sedge swamp. The results suggest that Arvicolidae play a greater role than Muridae or Soricidae in maintenance ofBabesia andHepatozoon foci in natural environments of central Europe.  相似文献   

8.
The phylogenetic relationships of seven rodent species Microtus atticus, M. thomasi, M. epiroticus (family Arvicolidae) and Mus domesticus, Rattus norvegicus, Apodemus flavicollis and A. mystacinus (family Muridae) have been studied. In order to define these relationships we study the albumin evolution using the micro-complement fixation test (MC'F). No phylogenetic (immunological) distance between M. atticus and M. thomasi was found, a fact which confirms from the biochemical point of view the opinion that the former taxon is a synonym of the latter one. A molecular time scale relating MC'F immunological distances and geological time was established based on the assumption of a rate of 100 amino acid substitutions per–20 million years. The time of divergence between M. epiroticus and M. thomasi was estimated to be 0.5–0.6 million years ago (Pleistocene). Such a recent divergence corroborates the opinion based on morphological and protein electrophoretic criteria according to which Terricola (formerly Pitymys ) must be considered as a subgenus of the genus Microtus and not as a distinct genus Pitymys , as previously had been accepted. Apodemus flavicollis and A. mystacinus were separated about 0.65–0.8 million years ago (Pleistocene). The Rattus norvegicus lineage was separated–12.5 million years ago (end of Miocene), shortly before the Mus and Apodemus divergence. Our data indicate that the common ancestor of Arvicolidae and Muridae lived–25 million years ago (early Miocene). All these results are in agreement with paleontological and some recent DNA-DNA hybridization and electrophoretic data.  相似文献   

9.
The distribution of C-heterochromatin and nucleolar organizer regions (NORs) was studied in three species of voles of the Microtus arvalis group in Iran: M. mystacinus, M. kermanensis, and M. transcaspicus. The C-banding pattern and NORs distribution were similar in M. mystacinus and M. kermanensis suggesting taxonomic proximity of these two species. At the same time, the karyotypes of M. mystacinus from Iran were different in C-banding pattern from the complements of conspecific 54-chromosome voles from Europe and other regions of Asia. The most distinct difference was in size of the distal C-positive block of heterochromatin on the X chromosome. In this respect M. mystacinus from Iran and M. kermanensis resembled M. transcaspicus. Small size of the distal C-positive heterochromatic block may be ancestral whereas larger size is derived. The X chromosome of M. transcaspicus can be derived from that of M. mystacinus and M. kermanensis by a large inversion or centromeric shift.  相似文献   

10.
SYNOPSIS. Eimeria ochrogasteri n. sp. (Coccidia, Eimeriidae) from a prairie vole Microtus ochrogaster (Rodentia, Cricetidae) is described. This is the first recorded coccidium in prairie voles. Sporulated oocysts spherical to ellipsoidal, mean 24.0 by 20.5 μ. Oocyst wall double, outer layer thick, yellow-brown, deeply pitted, inner layer clear. Oocyst residuum varies from many small globules to a coalesced group of large and/or small globules. Polar granule present. Micropyle absent. Sporocysts ovoid with “capped” Stieda body, mean 12.3 by 8.2 μ. Sporocyst residuum present. Sporozoites average 14.9 by 2.9 μ with spherical anterior and oblong posterior refractile globules. This species was found in 1 of 71 voles from Weld county, Colorado.  相似文献   

11.
Morphometric data for the five vole species of the genus Microtus living in Greece are old, sparse, poor and insufficiently analysed. This work aims to give the first comprehensive morphometric analysis of body and skull inter‐ and intraspecific variation for M. (M.) guentheri, M. (M.) rossiaemeridionalis, M. (Terricola) subterraneus, M. (T.) felteni and M. (T.) thomasi, applying multivariate statistics to 28 linear morphometric variables. It was based on ample material (202 adult individuals) using samples from localities that adequately cover the entire distributional range of each species in Greece. The five species and the two subgenera (Microtus and Terricola) were morphometrically clearly distinguished and discriminating variables were revealed. However, morphometrics did not provide robust criteria to infer phylogenetic relations among species. Furthermore, three species, M. (M.) guentheri, M. (M.) rossiaemeridionalis and M. (T.) thomasi, exhibited considerable intraspecific size or shape variation, which was mostly random and not associated with geographical proximity. Comparisons with data in the literature, mainly concerning populations of these species from adjacent areas, indicate that the Greek M. (M.) guentheri, M. (M.) rossiaemeridionalis and M. (T.) thomasi tend to be smaller than their conspecifics, while M. (T.) subterraneus and M. (T.) felteni are about equal in size to their Balkan relatives.  相似文献   

12.
Summary We investigated how far competitive interactions influence the use of habitats and relative abundance of two species of Microtus in the southwestern Yukon. We worked in the ecotone between alpine tundra and subalpine shrub tundra where populations of singing voles (Microtus miurus) and tundra voles (M. oeconomus) overlap little.We removed tundra voles from shrub tundra on one live-trapping area to look at the effect on the contiguous population of singing voles in alpine tundra. The removal of tundra voles did not affect the distribution or relative abundance of singing voles. The spatial distribution of these species and their movements within habitats suggest that they have a strong habitat preference.Populations of small mammals in the area are extremely dynamic and the relative importance of competitive interactions may change as density varies. At present we have no evidence that competition affects habitat use in M. miurus.  相似文献   

13.
The role of glacial refugia in shaping contemporary species distribution is a long-standing question in phylogeography and evolutionary ecology. Recent studies are questioning previous paradigms on glacial refugia and postglacial recolonization pathways in Europe, and more flexible phylogeographic scenarios have been proposed. We used the widespread common vole Microtus arvalis as a model to investigate the origin, locations of glacial refugia, and dispersal pathways, in the group of “Continental” species in Europe. We used a Bayesian spatiotemporal diffusion analysis (relaxed random walk model) of cytochrome b sequences across the species range, including newly collected individuals from 10 Iberian localities and published sequences from 68 localities across 22 European countries. Our data suggest that the species originated in Central Europe, and we revealed the location of multiple refugia (in both southern peninsulas and continental regions) for this continental model species. Our results confirm the monophyly of Iberian voles and the pre-LGM divergence between Iberian and European voles. We found evidence of restricted postglacial dispersal from refugia in Mediterranean peninsulas. We inferred a complex evolutionary and demographic history of M. arvalis in Europe over the last 50,000 years that does not adequately fit previous glacial refugial scenarios. The phylogeography of M. arvalis provides a paradigm of ice-age survival of a temperate continental species in western and eastern Mediterranean peninsulas (sources of endemism) and multiple continental regions (sources of postglacial spread). Our findings also provide support for a major role of large European river systems in shaping geographic boundaries of M. arvalis in Europe.  相似文献   

14.
The California vole, Microtus californicus, restricted to habitat patches where water is available nearly year‐round, is a remnant of the mesic history of the southern Great Basin and Mojave deserts of eastern California. The history of voles in this region is a model for species‐edge population dynamics through periods of climatic change. We sampled voles from the eastern deserts of California and examined variation in the mitochondrial cytb gene, three nuclear intron regions, and across 12 nuclear microsatellite markers. Samples are allocated to two mitochondrial clades: one associated with southern California and the other with central and northern California. The limited mtDNA structure largely recovers the geographical distribution, replicated by both nuclear introns and microsatellites. The most remote population, Microtus californicus scirpensis at Tecopa near Death Valley, was the most distinct. This population shares microsatellite alleles with both mtDNA clades, and both its northern clade nuclear introns and southern clade mtDNA sequences support a hybrid origin for this endangered population. The overall patterns support two major invasions into the desert through an ancient system of riparian corridors along streams and lake margins during the latter part of the Pleistocene followed by local in situ divergence subsequent to late Pleistocene and Holocene drying events. Changes in current water resource use could easily remove California voles from parts of the desert landscape.  相似文献   

15.
Natural hybridization between species is not a rare event. In arvicoline rodents, hybridization is known to occur in the wild and/or in captivity. In the Microtus arvalis group, cytogenetic studies revealed that there were two distinct chromosomal forms (2n = 46 but a different fundamental number of autosomes). These forms have been attributed to two cryptic species: the common (arvalis) and Altai (obscurus) voles. Recently, individuals with intermediate karyotypes (F1 and backcrosses) were discovered in central European Russia, and, for this reason, other studies have regarded obscurus and arvalis as conspecific. In the present study, to address the question of the species limits in the Altai vole and to infer its evolutionary history, a phylogeographical analysis combined with multivariate morphometric methods and original chromosome data was performed. Two obscurus lineages were identified: the Sino‐Russian and South Caucasian lineages. Both lineages are characterized by low genetic diversity, resulting, in the former, from a past bottleneck event caused by encroaching periglacial areas and, in the latter, from recent rapid population divergence. Introgressive hybridization between the Altai and common voles appears to be the result of a secondary contact following the Last Glacial Maximum in central European Russia. Despite the fact that speciation is an ongoing process in most arvicoline species, the common and Altai voles are genetically divergent, morphologically and karyologically distinct, and exhibit contrasting evolutionary histories. For all these reasons, they should be ranked as species: M. arvalis and M. obscurus. © 2013 The Linnean Society of London  相似文献   

16.
Genetic and morphological variability of whipworms Trichuris Roederer, 1761 (Nematoda: Trichuridae), parasites of small rodents in southwestern Europe, was studied. Isozyme patterns of natural populations of nematodes parasitizing rodent species of the Muridae (Apodemus sylvaticus, Apodemus flavicollis, Mus musculus) and Arvicolidae (Clethrionomys glareolus, Microtus agrestis, Microtus arvalis) were analyzed at 6 putative loci. Two diagnostic loci were found in T. muris from Muridae and from Arvicolidae. Thus, the existence of 2 species of Trichuris restricted to different host families was indicated. They included Trichuris muris Schrank, 1788, originally described as being from mice, and Trichuris arvicolae n. sp., parasitizing the above species of Arvicolidae. The morphological variability of both species was compared. Although ranges of all morphological characters of the new species overlapped with those of T. muris, stepwise discriminant analysis yielded a 100% accurate classification of females when using vagina length and egg size. Males of T. muris and T. arvicolae cannot be separated entirely. A set of 6 variables yielded 95.7% discrimination; the most discriminating variables were spicule size and body width.  相似文献   

17.
We sequenced the entire cytochrome b gene in Microtus paradoxus from Turkmenistan and Microtus socialis from Crimea and Kalmykia. Phylogenetic relationships among social voles were reconstructed by the inclusion into analyses of a further 23 published haplotypes belonging to six species. The two probabilistic methods which were used in phylogenetic analyses, the Bayesian inference and Maximum Likelihood, yielded very similar results. Both trees showed two highly divergent lineages which were further subdivided into seven species. The socialis lineage encompassed four species (M. socialis, M. irani, M. anatolicus, and M. paradoxus), and the remaining three species clustered into the guentheri lineage (M. guentheri, M. hartingi, M. dogramacii). The ranges for nucleotide divergences between seven species of social voles (4.95–9.28% and 4.18–8.81% for mean and net divergences, respectively) mainly exceeded 4.3%, which is frequently regarded as the conservative cut-off between sibling species in the specious genus Microtus.  相似文献   

18.
ABSTRACT

The acoustic communication of three species of social voles from the subgenus SumeriomysMicrotus socialis (two subspecies: M. s. socialis and M. s. goriensis), M. paradoxus and M. hartingi – are described. Vole sound communication includes two main signals: squeaks and singing. The sounds made by M. hartingi have significantly higher frequency parameters than those of other species. Voles of all species squeak in situations of distress, and the males sing during courtship of the females. However, singing in social voles is not a necessary pattern for sexual behaviour: less than half of M. s. socialis and M. paradoxus males sang, M. hartingi sang even more rarely and M. s. goriensis did not demonstrate this behaviour at all. Despite the great similarity of the squeaks, its parameters differ significantly between species and differ from those of the common voles. This introduces one more argument that M. paradoxus and M. socialis are independent species, as are the subgenera Sumeriomys and Microtus.  相似文献   

19.
Social behavior of small mammals living under natural conditions often is inferred from live-trapping data, particularly from incidents in which two or more individuals are captured together in a trap. We examined whether multiple-capture data from a long-term study of prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus) were consistent with well-known species differences in social behavior (whereas prairie voles are highly social and display monogamy, meadow voles are less social and promiscuous). When possible, we also examined multiple captures of two nontarget species, northern short-tailed shrews (Blarina brevicauda) and western harvest mice (Reithrodontomys megalotis). Percent of total captures that were multiple captures and percent of total adult captures that were male–female captures were highest for prairie voles and lowest for meadow voles; values for harvest mice and shrews were in between those of the vole species, but more similar to values for meadow voles. Repeat captures of the same male–female pair occurred most commonly in prairie voles, and multiple captures of this species typically involved individuals from the same social group. Multiple captures of adults and juveniles were more common in prairie voles than meadow voles, except for captures of at least one adult male and at least one juvenile, which did not differ between the two vole species. Multiple capture data for prairie voles and meadow voles were largely consistent with established species differences in social behavior, suggesting that such data can provide an accurate indication of social and mating systems of small mammals.  相似文献   

20.
The morphology of the first lower molar (M1) of Microtus (Terricola) multiplex (Fatio, 1905) was compared amongst 15 populations from the Alps (Switzerland, Italy, France). M. multiplex orientalis from Trentino Alto Adige is close to the nominative subspecies M. multiplex multiplex from Ticino characterised by a great size, a not tilted pitymyan rhombus and an important development of the anterior part of the M1. M. multiplex druentius from Ubaye mainly differs from the nominative subspecies by a smaller tooth size. Populations from Valle d’Aosta and Piemonte show on the whole a morphology intermediate between M. m. multiplex and M. m. druentius subspecies, however, the pitymyan rhombus is more tilted and the development of the anterior part more reduced in populations from Eastern and Central Piemonte. The Western populations (from Trièvès, Vercors, Royans and Chambaran) belonging to the subspecies M. m. niethammeri are the most differentiated with a small or median size of the M1, a reduced development of the anterior part and a very tilted pitymyan rhombus, particularly in the population from Chambaran. The populations from Matheysine and Grésivaudan are morphologically a link between M. m. druentius and M. m. niethammeri subspecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号