首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsetse flies transmit African trypanosomes, responsible for sleeping sickness in humans and nagana in animals. This disease affects many people with considerable impact on public health and economy in sub-Saharan Africa, whereas trypanosomes' resistance to drugs is rising. The symbiont Sodalis glossinidius is considered to play a role in the ability of the fly to acquire trypanosomes. Different species of Glossina were shown to harbor genetically distinct populations of S. glossinidius. We therefore investigated whether vector competence for a given trypanosome species could be linked to the presence of specific genotypes of S. glossinidius. Glossina palpalis gambiensis individuals were fed on blood infected either with Trypanosoma brucei gambiense or Trypanosoma brucei brucei. The genetic diversity of S. glossinidius strains isolated from infected and noninfected dissected flies was investigated using amplified fragment length polymorphism markers. Correspondence between occurrence of these markers and parasite establishment was analyzed using multivariate analysis. Sodalis glossinidius strains isolated from T. brucei gambiense-infected flies clustered differently than that isolated from T. brucei brucei-infected individuals. The ability of T. brucei gambiense and T. brucei brucei to establish in G. palpalis gambiensis insect midgut is statistically linked to the presence of specific genotypes of S. glossinidius. This could explain variations in Glossina vector competence in the wild. Then, assessment of the prevalence of specific S. glossinidius genotypes could lead to novel risk management strategies.  相似文献   

2.
Abstract .In a single generation of selection, two lines of Glossina morsitans centralis were established that differed significantly in susceptibility to Trypanosoma congolense clone IL 1180. Reciprocal crosses demonstrated that susceptibility was a maternally inherited trait. Differences between the lines, to all phases of the trypanosome infection, were maintained for eight generations, whereas differences in susceptibility to midgut infections were maintained for twenty-eight generations. Thereafter, the lines did not differ in susceptibility to Trypanosoma congolense IL 1180. Susceptibility to infections with Trypanosoma congolense IL 1180 was only a weak predictor of susceptibility to T. congolense clones IL 13-E3 and K60/1, as well as clone T. brucei brucei STIB 247-L. However, the susceptible and refractory lines displayed these phenotypes when tested with Trypanosoma vivax, indicating that the factors that affect susceptibility to trypanosomes are expressed both within and outside the midgut.  相似文献   

3.
Teneral Glossina morsitans centralis Machado, G.austeni Newstead, G.palpalis palpalis Robineau-Desvoidy, G.p.gambiensis Vanderplank, G.fuscipes fuscipes Newstead, G.tachinoides Westwood and G.brevipalpis Newstead, from laboratory-bred colonies, were fed at the same time on the flanks of ten goats infected with Trypanosoma congolense Broden isolated in Tanzania or in Nigeria. The seven tsetse species were infected over the range 0.3-49.2%. Survival of both T.congolense isolates was best in G.m.centralis, poorest in G.austeni and the four palpalis group tsetse, with G.brevipalpis intermediate. It is suggested that there are differences in the gut of different laboratory-bred cultures of Glossina Westwood species and subspecies such that T.congolense parasites can survive better in the gut of some than in others and undergo cyclical development to metacyclics in the hypopharynx.  相似文献   

4.
Abstract. Teneral tsetse of four Glossina species from laboratory-reared colonies were fed on four Large White pigs infected with three different stocks of Trypanosoma simiae isolated in Coast Province, Kenya. Thereafter the tsetse were maintained on goats and dissected on day 28 to determine the trypanosome infection rates. Glossina brevipalpis was as susceptible as G.pallidipes whilst G.palpalis gambiensis was not susceptible to T.simiae CP 11 a stock causing acute infection, which was isolated from a wild G.austeni. Glossina brevipalpis was as susceptible as G.pallidipes to another stock causing acute infection, T.simiae CP 813 isolated from a wild G.pallidipes. Glossina morsitans centralis was also as susceptible as G.brevipalpis and G.pallidipes whilst G.p.gambiensis was not susceptible to this T.simiae stock. Glossina m.centralis showed very low susceptibility to a stock causing chronic infection, T.simiae CP 1896 isolated from a bushpig, whilst G.brevipalpis, G.p.gambiensis and G.pallidipes could not be infected by this T.simiae stock. Male Glossina were generally more susceptible than females to the three T.simiae stocks.  相似文献   

5.
Transmission of vector-borne diseases depends largely on the ability of the insect vector to become infected with the parasite. In tsetse flies, newly emerged or teneral flies are considered the most likely to develop a mature, infective trypanosome infection. This was confirmed during experimental infections where laboratory-reared Glossina morsitans morsitans Westwood (Diptera: Glossinidae) were infected with Trypanosoma congolense or T. brucei brucei. The ability of mature adult tsetse flies to become infected with trypanosomes was significantly lower than that of newly emerged flies for both parasites. However, the nutritional status of the tsetse at the time of the infective bloodmeal affected its ability to acquire either a T. congolense or T. b. brucei infection. Indeed, an extreme period of starvation (3-4 days for teneral flies, 7 days for adult flies) lowers the developmental barrier for a trypanosome infection, especially at the midgut level of the tsetse fly. Adult G. m. morsitans became at least as susceptible as newly emerged flies to infection with T. congolense. Moreover, the susceptibility of adult flies, starved for 7 days, to an infection with T. b. brucei was also significantly increased, but only at the level of maturation of an established midgut infection to a salivary gland infection. The outcome of these experimental infections clearly suggests that, under natural conditions, nutritional stress in adult tsetse flies could contribute substantially to the epidemiology of tsetse-transmitted trypanosomiasis.  相似文献   

6.
Puparia of Glossina morsitans centralis (Machado), G.fuscipes fuscipes (Newstead) and G.brevipalpis (Newstead) were incubated at 25 +/- 1 degrees C, 28 +/- 1:25 +/- 1 degrees C, day:night or 29 +/- 1 degrees C throughout the puparial period, and maintained at 70-80% relative humidity. Puparial mortality was higher at 29 than at 25 degrees C (optimum temperature) in all three species, particularly in G.f.fuscipes and G.brevipalpis. Adults of G.m.centralis from puparia incubated at 29 degrees C, and those of this subspecies, G.f.fuscipes and G.brevipalpis from puparia incubated at 28:25 degrees C, day:night or 25 degrees C throughout, were infected as tenerals (27 h old) by feeding them at the same time on goats infected with Trypanosoma congolense (Broden) IL 1180 after the parasites were detected in the wet blood film. Infection rates on day 25 post-infected feed were higher in G.m.centralis from puparia incubated at 29 degrees C and in adults of the three different tsetse species from puparia incubated at 28:25 degrees C, day:night, than in those from puparia incubated at 25 degrees C. However, in G.f.fuscipes the labral and hypopharyngeal infection rates were not significantly different from those of the tsetse produced by puparia kept at 25 degrees C.  相似文献   

7.
Midgut lectin activity and sugar specificity in teneral and fed tsetse   总被引:2,自引:0,他引:2  
Abstract. . Midgut infection rates of Trypanosoma congolense in Glossina palpalis palpalis and of Trypanosoma brucei rhodesiense in Glossina pallidipes are potentiated by the addition of D+ glucosamine to the infective feed, but not to the levels of super-infection reported for G. m. morsitans. G. p. palpalis and G.pallidipes are shown to possess two trypanocidal molecules: a glucosyl lectin which can be inhibited by D+ glucosamine and a galactosyl molecule inhibited by D+ galactose. Addition of both D+ glucosamine and D+ galactose to the teneral infective feed promotes super-infection of the midguts of G.p.palpalis. The glucosyl lectin is specific for rabbit erythrocytes and is present in guts of fed G.m.morsitans and G.p.palpalis , titres of lectin activity do not increase substantially after the second bloodmeal. The galactosyl specific molecule does not show any erythrocyte specificity, although haemolytic activity is observed only in G.p.palpalis and not in G.m.morsitans. The presence of two trypanocidal molecules in some species of tsetse may account for the innate refractoriness of these flies to trypanosome infection.
As D+ glucosamine also inhibits the killing of procyclic trypanosomes taken as an infective feed, it is suggested that the midgut lectin is normally responsible for the agglutination of trypanosomes in the fly midgut by binding to the pro-cyclic surface coat, prior to establishment in the ecto-peritrophic space.  相似文献   

8.
Abstract. Midgut protease activity in Glossina morsitans centralis and G. m. morsitans , at 48h post bloodmeal averaged 1.8IU of trypsin-like activity. These two tsetse subspecies differ in their susceptibility to trypanosome infection. Except for low levels in flies fed on waterbuck blood (0.7IU), activity did not differ in flies fed a variety of host bloods (goat, pig, cow, buffalo, eland) and trypanosome species ( Trypanosoma congolense, T.brucei, T.simiae ). Protease activity was also not correlated with infection rates, despite large differences in infection rates among experiments. Nevertheless, addition of 0.06M D(+)-glucosamine to parasitaemic blood resulted in a three-fold reduction in protease activity, coincident with a large increase in infection rate. This effect did not occur when parasites or D(+)-glucosamine were added alone to the bloodmeal, suggesting that the effect was due to metabolism of D(+)-glucosamine by parasites.  相似文献   

9.
Teneral Glossina morsitans centralis Machado were fed on the flanks of the African buffalo (Syncerus caffer Sparrman), N'Dama (Bos taurus L.) or Boran (Bos indicus L.) cattle infected with Trypanosoma congolense Broden. The infected tsetse were maintained on rabbits and on day 30 after the infected feed, the surviving tsetse were dissected to determine the infection rates. The mean infection rates (% +/- SE) in the midgut of tsetse fed on buffalo, N'Damas and Borans were 23.5 +/- 3.3, 31.6 +/- 2.7 and 33.7 +/- 4.6, respectively. The differences were not significant. However, the mean mature infection rate in tsetse fed on the buffalo (13.2 +/- 2.1%) was significantly lower compared to the rates in tsetse fed on the N'Dama (20.4 +/- 1.4) or the Boran cattle (21.4 +/- 1.1). When groups of teneral G.m.centralis, G.pallidipes Austen, G.p.gambiensis Vanderplank, G.f.fuscipes Newstead, G.brevipalpis Newstead and G.longipennis Corti were fed simultaneously on either an infected buffalo, an N'Dama or a Boran steer, the mature infection rates ranged from 0 to 16.1%. Irrespective of the host species used, the T.congolense infection rate was highest in G.m.centralis, lowest in the palpalis and fusca group tsetse, with G.pallidipes being intermediate. Nevertheless, the trypanoresistant African buffalo and N'Dama may serve as reservoirs of T.congolense as can trypanosusceptible Boran cattle.  相似文献   

10.
Abstract Teneral Glossina morsitans mositans, G.m.submorsitans, G.palpalis gambiensis and G.tachinoides were allowed to feed on rabbits infected with Trypanosoma congolense savannah type or on mice infected with T.congolense riverine-forest type. The four tsetse species and subspecies were also infected simultaneously in vitro on the blood of mice infected with the two clones of T.congolense via a silicone membrane. The infected tsetse were maintained on rabbits and from the day 25 after the infective feed, the surviving tsetse were dissected in order to determine the infection rates.
Results showed higher mature infection rates in morsitans-gwup tsetse flies than in palpalis-group tsetse flies when infected with the savannah type of T.congolense. In contrast, infection rates with the riverine-forest type of T.congolense were lower, and fewer flies showed full development cycle. The intrinsec vectorial capacity of G.m.submorsitans for the two T.congolense types was the highest, whereas the intrinsic vectorial capacity of G.p.gambiensis for the Savannah type and G.m.morsitans for the riverine-forest type were the lowest. Among all tsetse which were infected simultaneously with the two types of T.congolense , the polymerase chain reaction detected only five flies which had both trypanosome taxa in the midgut and the proboscis. All the other infections were attributable to the savannah type.
The differences in the gut of different Glossina species and subspecies allowing these two sub-groups of T.congolense to survive better and undergo the complete developmental cycle more readily in some species than other are discussed.  相似文献   

11.
In field studies, tsetse flies (Diptera: Glossinidae) feed more successfully on cattle infected with Trypanosoma congolense Broden (Kinetoplastida: Trypanosomatidae) than on cattle infected with T. vivax Ziemann or uninfected cattle. Here we describe the first laboratory investigation of this phenomenon. In the first experiment, caged Glossina pallidipes Austen were fed for 1 and 5 min on a Boran steer infected with T. congolense clone IL 1180 and on an uninfected steer. Feeding success was recorded in this way five times over several weeks. The same protocol was subsequently used in three additional experiments with the following combinations: G. pallidipes and a steer infected with T. vivax stock IL 3913, G. morsitans centralis Machado and a steer infected with T. congolense, and G. morsitans centralis and a steer infected with T. vivax. The four experiments were replicated once, making eight experiments in total. In three experiments there was increased tsetse feeding success, measured at 1 min, after a steer became infected (T. congolense, two experiments and T. vivax, one experiment). Analysis of all data combined found no significant differences in tsetse feeding success on the different groups of cattle prior to infection, but after infection tsetse feeding success was significantly greater on the infected cattle (P< 0.001). Trypanosoma congolense infection led to a greater increase in tsetse feeding success than T. vivax infection. The increase in feeding success was not related to changes in the level of anaemia, skin surface temperature or parasitaemia. A possible explanation is the effects of trypanosome infection on cutaneous vasodilation and/or blood clotting in infected cattle. When allowed to feed for 5 min, nearly all tsetse engorged successfully and effects of cattle infection on feeding success were not found.  相似文献   

12.
SYNOPSIS. A new culture medium (SM), based on the amino-acid composition of tsetse hemolymph and containing fetal bovine serum, was designed for the maintenance of tsetse organs and the cultivation of various trypanosomatids. For optimum growth 20% (v/v) serum was required. The medium supported prolonged peristalsis of the alimentary tract and salivary glands of pre-emerged Glossina morsitans morsitans. In established cultures, derived from bloodstream forms of pleomorphic Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense strains, inocula of ~ 106 procyclics/ml yielded 4–5 × 107 organisms/ml after 4 or 5 days of incubation at 28 C. Bloodstream forms of a cloned monomorphic T. b. brucei strain were also able to transform into procyclics, which, however, multiplied at a lower rate, with maximum yields of ~ 2 × 107 after 5 days. Cultures of Trypanosoma congolense and of a nearly monomorphic Trypanosoma brucei gambiense strains could be established in SM medium only in the presence of tsetse alimentary tract. The procyclic trypomastigotes of these species, adapted to SM medium and able to grow in it without Glossina organs, gave maximum populations of ~ 4.5 × 107 cells/ml. Promastigotes of Leishmania donovani, cultivated routinely in a diphasic Table's medium, multiplied actively upon being transferred into SM medium, producing yields of ~ 4 × 107 cells/ml.  相似文献   

13.
Studies were made of infection rates of trypanosomes in the tsetse fly Glossina morsitans morsitans Westwood (Diptera: Glossinidae) when maintained in vivo (rabbits) or in vitro on high quality, gamma-irradiated, sterile defibrinated bovine blood, obtained from the Entomology Unit of the International Atomic Energy Agency (IAEA). For both Trypanosoma congolense Broden and T. b. brucei Plimmer & Bradford, in vitro maintenance significantly reduced the proportion of flies that developed mature metacyclic trypanosome infections.  相似文献   

14.
The activity of lectins in different species of tsetse was compared in vivo by the time taken to remove all trypanosomes from the midgut following an infective feed and in vitro by agglutination tests. Teneral male Glossina pallidipes Austen, G. austeni Newstead and G. p. palpalis R-D. removed 50% of all Trypanosoma brucei rhodesiense Stephens & Fantham infections within 60 h. A 'refractory' line of G. m. morsitans Westwood took 170 h to kill 50% infections while a 'susceptible' line of the same species failed to kill 50%. Agglutination tests with midgut homogenates showed differences between fly stocks which accorded with differences in rate of trypanosome killing in vivo. Flies fed before an infective feed were able to remove trypanosomes from their midguts more quickly than flies infected as tenerals. Increasing the period of starvation before infection increased the susceptibility to trypanosome infection of non-teneral flies. Teneral flies showed little agglutinating activity in vitro, suggesting that lectin is produced in response to the bloodmeal. Feeding flies before infection also abolished the differences in rate of trypanosome killing found between teneral 'susceptible' and 'refractory' G. m. morsitans, suggesting that maternally inherited susceptibility to trypanosome infection is a phenomenon limited to teneral flies. Electron micrographs of midguts of G. m. morsitans suggest that procyclic trypanosomes are killed by cell lysis, presumably the result of membrane damage caused by lectin action.  相似文献   

15.
Sodalis glossinidius is an endosymbiont of Glossina palpalis gambiensis and Glossina morsitans morsitans, the vectors of Trypanosoma congolense. The presence of the symbiont was investigated by PCR in Trypanosoma congolense savannah type-infected and noninfected midguts of both fly species, and into the probosces of flies displaying either mature or immature infection, to investigate possible correlation with the vectorial competence of tsetse flies. Sodalis glossinidius was detected in all midguts, infected or not, from both Glossina species. It was also detected in probosces from Glossina palpalis gambiensis flies displaying mature or immature infection, but never in probosces from Glossina morsitans morsitans. These results suggest that, a) there might be no direct correlation between the presence of Sodalis glossinidius and the vectorial competence of Glossina, and b) the symbiont is probably not involved in Trypanosoma congolense savannah type maturation. It could however participate in the establishment process of the parasite.  相似文献   

16.
Abstract. Host blood effects on Trypanosoma congolense establishment in Glossina morsitans morsitans and Glossina morsitans centralis were investigated using goat, rabbit, cow and rhinoceros blood. Meals containing goat erythrocytes facilitated infection in G. m. morsitans , whereas meals containing goat plasma facilitated infection in G. m. centralis. Goat blood effects were not observed in the presence of complementary rabbit blood components. N-acetyl-glucosamine (a midguMectin inhibitor) increased infection rates in some, but not all, blood manipulations. Cholesterol increased infection rates in G. m. centralis only. Both compounds together added to cow blood produced superinfection in G. m. centralis , but not in G. m. morsitans. Midgut protease levels did not differ 6 days post-infection in flies maintaining infections versus flies clearing infections. Protease levels were weakly correlated with patterns of infection, but only in G. m. morsitans. These results suggest that physiological mechanisms responsible for variation in infection rates are only superficially similar in these closely-related tsetse.  相似文献   

17.
Abstract Two large colonies, originating from allopatric populations of Glossina pallidipes Austen, in the Shimba Hills and Nguruman, Kenya, which differ biologically and with respect to vectorial competence, were compared at fourteen enzyme loci using polyacrylamide gel electrophoresis. The colonies had similar levels of genetic diversity with approximately half of the loci being polymorphic, an average of 1.6-1.7 alleles per locus, and a mean heterozygosity per locus of approximately 18.4%. However, the colonies differed significantly in allele frequencies at the loci for phosphoglucomutase, glucose-6-phosphate dehydrogenase, xanthine oxidase, octanol dehydrogenase and phosphoglucose isomerase. The results were compared with earlier studies on this species and no evidence was found for selection of specific alleles during establishment or maintenance of colonies of G.pallidipes , nor were specific chromosomes, or marker genes, associated with the biological differences between the two colonies.  相似文献   

18.
SYNOPSIS. Culture procyclic forms of Trypanosoma brucei rhodesiense and Trypanosoma congolense were fed to Glossina morsitans morsitans through artificial membranes. A very high percentage of the flies so fed produced established midgut infections, a proportion of which went on to develop into mature metacyclic trypanosomes capable of infecting mammalian hosts. The method offers a safe, clean way of infecting tsetse flies with African trypanosomes which reduces the need for trypanosome-infected animals in the laboratory.  相似文献   

19.
20.
Abstract. A colony of Glossina pallidipes which originated from Nguruman, Rift Valley Province, Kenya, was significantly more susceptible than a colony of the same species which originated from Shimba Hills, Coast Province, Kenya, to infection with a stock of Trypanosoma simiae CP 11 isolated from wild G. austeni in Coast Province, Kenya, irrespective of whether pigs or goats were used as infecting hosts. Male G. pallidipes from both the colonies were more susceptible than females to this T. simiae stock. Similarly, a G. pallidipes colony of Nguruman origin was significantly more susceptible than the colony of Shimba Hills origin to infection with another stock of T. simiae CP 813 isolated from wild G. pallidipes in Coast Province, Kenya, again irrespective of whether pigs or goats were used as infecting hosts. The susceptibility of the sexes of G. pallidipes from both the colonies to T. simiae CP 813 did not differ significantly when pigs were used as infecting hosts, but male G. pallidipes from both the colonies were significantly more susceptible than female tsetse to this T. simiae stock when goats were used as infecting hosts. Nevertheless, if the observed differences in susceptibility of the two G. pallidipes colonies reflect transmission of trypanosomes by the two allopatric populations of tsetse in the field, then the epidemiology of simiae- trypanosomiasis probably differs between these two areas of Kenya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号