首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible outcomes of infection of Escherichia coli by bacteriophage Mu include lytic growth, lysogen formation, nonlysogenic surviving cells, and perhaps simple killing of the host. The influence of various parameters, including host himA and himD mutations, on lysogeny and cell survival is described. Mu does not grow lytically in or kill him bacteria but can lysogenize such hosts. Mu c+ lysogenizes about 8% of him+ bacteria infected at low multiplicity at 37 degrees C. The frequency of lysogens per infected him+ cell diminishes with increasing multiplicity of infection or with increasing temperature over the range from 30 to 42 degrees C. In him bacteria, the Mu lysogenization frequency increases from about 7% at low multiplicity of infection to approach a maximum where most but not all cells are lysogens at high multiplicity of infection. Lysogenization of him hosts by an assay phage marked with antibiotic resistance is enhanced by infection with unmarked auxiliary phage. This helping effect is possible for at least 1 h, suggesting that Mu infection results in formation of a stable intermediate. Mu immunity is not required for lysogenization of him hosts. We argue that in him bacteria, all Mu genomes which integrate into the host chromosome form lysogens.  相似文献   

2.
R. V. Sonti  D. H. Keating    J. R. Roth 《Genetics》1993,133(1):17-28
Under several circumstances, the frequency with which Mud prophages form lysogens is apparently reduced in rec strains of Salmonella typhimurium. Lysogen formation by a MudI genome (37 kb) injected by a Mu virion is unaffected by a host rec mutation. However when the same MudI phage is injected by a phage P22 virion, lysogeny is reduced in a recA or recB mutant host. A host rec mutation reduces the lysogenization of mini-Mu phages injected by either Mu or P22 virions. When lysogen frequency is reduced by a host rec mutation, the surviving lysogens show an increased probability of carrying a deletion adjacent to the Mud insertion site. We propose that the rec effects seen are due to a failure of conservative Mu transposition. Replicative Mud transposition from a linear fragment causes a break in the host chromosome with a Mu prophage at both broken ends. These breaks are lethal unless repaired; repair can be achieved by Rec functions acting on the repeated Mu sequences or by secondary transposition events. In a normal Mu infection, the initial transposition from the injected fragment is conservative and does not break the chromosome. To account for the conditions under which rec effects are seen, we propose that conservative transposition of Mu depends on a protein that must be injected with the DNA. This protein can be injected by Mu but not by P22 virions. Injection or function of the protein may depend on its association with a particular Mu DNA sequence that is present and properly positioned in Mu capsids containing full-sized Mu or MudI genomes; this sequence may be lacking or abnormally positioned in the mini-Mud phages tested.  相似文献   

3.
Data characterizing mim81 mutation obtained by the method for direct selection of transposition mutations are presented. The development of Mu is shown to be dramatically suppressed in the mutant strain both upon infection and after induction from the lysogenic state. Frequencies of lysogenization and mini-Mu-dependent formation of cointegrates in the mutant strain are comparable with those in the wild-type strain. Mu development prohibition is removed if expression of early Mu gene is provided from the modified Pe promoter. The results obtained make us believe that the mechanism of mim81 mutation action involves reduction of early gene expression to the level that is sufficient for Mu DNA integration into the chromosome during infection and for single replicative events, but insufficient for vegetative development of bacteriophage Mu.  相似文献   

4.
In vivo mutagenesis of bacteriophage Mu transposase.   总被引:5,自引:1,他引:4       下载免费PDF全文
We devised a method for isolating mutations in the bacteriophage Mu A gene which encodes the phage transposase. Nine new conditional defective A mutations were isolated. These, as well as eight previously isolated mutations, were mapped with a set of defined deletions which divided the gene into 13 100- to 200-base-pair segments. Phages carrying these mutations were analyzed for their ability to lysogenize and to transpose in nonpermissive hosts. One Aam mutation, Aam7110, known to retain the capacity to support lysogenization of a sup0 host (M. M. Howe, K. J. O'Day, and D. W. Shultz, Virology 93:303-319, 1979) and to map 91 base pairs from the 3' end of the gene (R. M. Harshey and S. D. Cuneo, J. Genet. 65:159-174, 1987) was shown to be able to complement other A mutations for lysogenization, although it was incapable of catalyzing either the replication of Mu DNA or the massive conservative integration required for phage growth. Four Ats mutations which map at different positions in the gene were able to catalyze lysogenization but not phage growth at the nonpermissive temperature. Phages carrying mutations located at different positions in the Mu B gene (which encodes a product necessary for efficient integration and lytic replication) were all able to lysogenize at the same frequency. These results suggest that the ability of Mu to lysogenize is not strictly correlated with its ability to perform massive conservative and replicative transposition.  相似文献   

5.
A study of the properties of deletion mutants at the 3’ end ofA, the gene encoding the transposase protein of phage Mu, shows that the mutants are defective in the high-frequency non-replicative transposition observed early after Mu infection as well as the high-frequency replicative transposition observed during Mu lytic growth. They show near-normal levels of lysogenization, low frequency transposition and precise excision. The mutants behave as if they are “blind” to the presence of Mu B, a protein whose function is essential for the high frequency of both replicative and non-replicative Mudna transposition. We have sequenced these deletion mutants as well as the amber mutant A 7110 which is known to be defective in replicative transposition.A 7110 maps at the 3’ end of geneA. We suggest that the carboxyl-terminal region of the A-protein is involved in protein-protein interactions, especially with the B-protein. We also show in this study that mutations upstream of the Shine-Dalgarno sequence of geneA and within the preceding genener, perturb the synthesis of A-protein and that higher levels of A-protein cause an inhibition ofA activity.  相似文献   

6.
J Y Yang  K Kim  M Jayaram    R M Harshey 《The EMBO journal》1995,14(10):2374-2384
The functional configuration of Mu transposase (A protein) is its tetrameric form. We present here a model for the organization of a functional Mu A tetramer. Within the tetramer, assembly of each of the two active sites for Mu end cleavage requires amino acid contributions from the central and C-terminal domains (domains II and III respectively) of at least two Mu A monomers in a trans configuration. The Mu enhancer is likely to function in this assembly process by specifying the two monomers that provide their C-terminal domains for strand cleavage. The Mu B protein is not required in this step. Each of the two active sites for the strand transfer reaction is also organized by domain sharing (but in the reverse mode) between Mu A monomers; i.e. a donor of domain II (also the recipient of domain III) during cleavage is a recipient of domain II (and the donor of domain III) during strand transfer. The function of the Mu B protein (which is required at the strand transfer step) and that of the enhancer element may be analogous in that their interactions with Mu A (domain III and domain I alpha respectively) promote conformations of Mu A conducive to strand cleavage or strand transfer.  相似文献   

7.
Mu insertion duplicates a 5 base pair sequence at the host inserted site.   总被引:17,自引:0,他引:17  
B Allet 《Cell》1979,16(1):123-129
Nucleotide sequences were analyzed across the two ends of lysogenic Mu DNA. These ends were cloned separately in lambdapMu hybrid particles that derived from a single Mu lysogen in the lac Z part of lambdaplac5. The obtained data imply that Mu lysogenization was associated with the duplication of 5 base pairs present in lac DNA at the Mu insertion site. As a result of this duplication, Mu DNA is flanked by two copies of five identical base pairs oriented as direct repeats. A similar conclusion has been obtained independently by other investigators with the use of a different Mu lysogen (D. Kamp and R. Kahmann, personal communication). Thus Mu insertion seems to have a striking similarity to typical IS-mediated insertions that were found to be associated with a short DNA duplication at the target site.  相似文献   

8.
Mu ligts2 mutants, defective for development and integration, show a high killing effect on the infected host. A number of survivors to Mu ligts2 infection were analyzed; they are characterized by nonpermissivity for both development and lysogenization of bacteriophage Mu. Bacteriophages D108 and P1 are also inhibited in these strains as is transposon Tn9. The corresponding mutation site was mapped at 82 min and identified with the Escherichia coli gyrB site.  相似文献   

9.
We have shown that a mini-Mu can transpose into itself in vivo to generate a circle containing only transposon sequences. This deletion-inversion product, which has previously been observed in vitro, is formed by non-replicative transposition and has directly repeated Mu ends. It therefore cannot undergo further rounds of transposition and retains the two copies of the target sequence duplicated in the event. Thus we have been able to confirm that a mini-Mu can undergo non-replicative reactions in vivo and that these generate a 5 bp target site duplication, as has been shown to occur following replicative transposition and lysogenization with Mu.  相似文献   

10.
Genetic proofs of the fact that lysogenization of recipient cells by Mu phage in the course of zygotic induction is normally a slowed process were obtained. Stabilization of lysogenic state seems to occur after the stage of induced excision of Mu DNA during the process of conjugational crossing followed by integration as such of Mu DNA-containing recombinant structure into the recipient chromosome.  相似文献   

11.
Bacteriophage Mu transposition requires two phage-encoded proteins, the transposase, Mu A, and an accessory protein, Mu B. Mu B is an ATP-dependent DNA-binding protein that is required for target capture and target immunity and is an allosteric activator of transpososome function. The recent NMR structure of the C-terminal domain of Mu B (Mu B223-312) revealed that there is a patch of positively charged residues on the solvent-exposed surface. This patch may be responsible for the nonspecific DNA binding activity displayed by the purified Mu B223-312 peptide. We show that mutations of three lysine residues within this patch completely abolish nonspecific DNA binding of the C-terminal peptide (Mu B223- 312). To determine how this DNA binding activity affects transposition we mutated these lysine residues in the full-length protein. The full-length protein carrying all three mutations was deficient in both strand transfer and allosteric activation of transpososome function but retained ATPase activity. Peptide binding studies also revealed that this patch of basic residues within the C-terminal domain of Mu B is within a region of the protein that interacts directly with Mu A. Thus, we conclude that this protein segment contributes to both DNA binding and protein-protein contacts with the Mu transposase.  相似文献   

12.
G Chaconas  E B Giddens  J L Miller  G Gloor 《Cell》1985,41(3):857-865
The phage-encoded proteins required for conservative integration of infecting bacteriophage Mu DNA were investigated. Our findings show that functional gpA, an essential component of the phage transposition system, is required for integration. The Mu B protein, which greatly enhances replicative transposition of Mu DNA, is also required. Furthermore, a truncated form of gpB lacking 18 amino acids from the carboxy terminus is blocked in replicative transposition, but not conservative integration. Our results point to a more prominent role for gpB than simply a replication enhancer in Mu DNA transposition. The ability of a truncated form of B to function in conservative integration, but not replicative transposition, also suggests a key role for the carboxy-terminal domain of the protein in the replicative reaction. The existence of a shortened form of gpB, which uncouples conservative integration from replicative transposition, should be invaluable for future dissection of Mu DNA transposition.  相似文献   

13.
R Craigie  K Mizuuchi 《Cell》1985,41(3):867-876
Mu transposition works efficiently in vitro and generates both cointegrate and simple insert products. We have examined the reaction products obtained under modified in vitro reaction conditions that do not permit efficient initiation of DNA replication. The major product is precisely the intermediate structure predicted from one of the current models of DNA transposition. Both cointegrates and simple inserts can be made in vitro using this intermediate as the DNA substrate, demonstrating that it is indeed a true transposition intermediate. The requirements for efficient formation of the intermediate include the Mu A protein, the Mu B protein, an unknown number of E. coli host proteins, ATP, and divalent cation. Only E. coli host proteins are required for conversion of the intermediate to cointegrate or simple insert products. Structures resulting from DNA strand transfer at only one end of the transposon are not observed, suggesting that the strand transfers at each end of the transposon are tightly coupled.  相似文献   

14.
Hybrid plasmids obtained as a result of Mu phage insertions into the RP4::D3112 plasmid in Escherichia coli cells were studied. Stable maintenance of RP4::D3112 plasmid in E. coli cells was provided by using the D3112 phage genome with a point polar mutation in the A gene which prevented early genes' expression. The presence of D3112A- in the RP4 plasmid has been shown to have no effect on efficiency of phage Mu transposition into this plasmid. Moreover, RP4 and D3112 genomes were equivalent targets for Mu integration. The integration of transposable phage into genome of nonrelated phage can be used as one of the approaches to construct recombinant phage genomes in vivo in the absence of DNA homology.  相似文献   

15.
We examined several aspects of bacteriophage Mu development in Escherichia coli strains that carry mutations in the polA structural gene for DNA polymerase I (PolI). We found that polA mutants were markedly less efficient than PolI wild-type (PolI+) strains in their capacity to form stable Mu lysogens and to support normal lytic growth of phage Mu. The frequency of lysogenization was determined for polA mutants and their isogenic PolI+ derivatives, with the result that mutants were lysogenized 3 to 8 times less frequently than were PolI+ cells. In one-step growth experiments, we found that phage Mu grew less efficiently in polA cells than in PolI+ cells, as evidenced by a 50 to 100% increase in the latent period and a 20 to 40% decrease in mean burst size in mutant cells. A further difference noted in infected polA strains was a 10-fold reduction in the frequency of Mu-mediated transposition of chromosomal genes to an F plasmid. Pulse labeling and DNA-DNA hybridization assays to measure the rate of phage Mu DNA synthesis after the induction of thermosensitive prophages indicated that phage Mu replication began at about the same time in both polA and PolI+ strains, but proceeded at a slower rate in polA cells. We conclude that PolI is normally involved in the replication and integration of phage Mu. However, since phage Mu does not exhibit an absolute requirement for normal levels of PolI, it appears that residual PolI activity in the mutant strains, other cellular enzymes, or both can partially compensate for the absence of normal PolI activity.  相似文献   

16.
Mutator transposons   总被引:11,自引:0,他引:11  
Mutator (Mu) element insertion has become the main way of mutating and cloning maize genes, but we are only beginning to understand how this transposon system is regulated. Mu elements are under tight developmental control and are subject to a form of epigenetic regulation that shares some features with the regulation of paramutable maize genes. Mu-like elements (MULEs) are widespread among angiosperms, and multiple diverged functional variants appear to have coexisted in genomes for long periods. In addition to its utility, the means by which this widespread and highly mutagenic system is held in check should help us to address fundamental issues concerning the stability of genomes.  相似文献   

17.
B T Waggoner  T Wade  M L Pato 《Gene》1988,62(1):111-119
To identify the second region of sequence nonhomology between the genomes of the transposable bacteriophages Mu and D108 originally observed by electron-microscopic analysis of DNA heteroduplexes and to localize functions ascribed to the 'accessory' or 'semi-essential' early regions of the phages between genes B and C, a 0.9-kb fragment of each genome located immediately beyond the B gene was cloned and sequenced. Three open reading frames (ORFs) were identified in each. The region of nonhomology is located within the 3' portion of the third ORF. D108 is shown to possess a Kil function similar to that previously shown for Mu, and that function is encoded by the first ORF.  相似文献   

18.
Bacteriophage Mu DNA, like other transposable elements, requires DNA sequences at both extremities to transpose. It has been previously demonstrated that the transposition activity of various transposons can be influenced by sequences outside their ends. We have found that alterations in the neighboring plasmid sequences near the right extremity of a Mini-Mu, inserted in the plasmid pSC101, can exert an influence on the efficiency of Mini-Mu DNA transposition when an induced helper Mu prophage contains a polar insertion in its semi-essential early region (SEER). The SEER of Mu is known to contain several genes that can affect DNA transposition, and our results suggest that some function(s), located in the SEER of Mu, may be required for optimizing transposition (and thus, replication) of Mu genomes from restrictive locations during the lytic cycle.  相似文献   

19.
K Adzuma  K Mizuuchi 《Cell》1989,57(1):41-47
DNA molecules carrying a Mu end(s) are inefficient targets in the Mu DNA strand-transfer reaction. This target immunity is due to preferential dissociation of Mu B protein from DNA molecules that have Mu A protein bound to the Mu end; free DNA is a much poorer target than DNA with Mu B protein bound. We show that Mu B protein, which binds nonspecifically to DNA, is immobile once bound. An encounter between Mu A and Mu B proteins, bound some distance apart along DNA, is necessary to facilitate the Mu B dissociation. Experiments which show that DNA without a Mu end can acquire immunity, by catenation to DNA with a Mu end(s), are consistent with a model of Mu A-Mu B interaction by DNA looping, but not by linear movement of protein(s) along DNA.  相似文献   

20.
Induction of the Mu prophage of a lysogenic HfrP4X strongly stimulates the early transfer of the purE gene, which is located far from the origin of transfer. By using a rec- Mu cts62 X lysogenic donor, it was established that this process reflects the inversion of the origin of transfer in part of the Hfr population. Hfr's with inverted polarity of gene transfer were isolated; their analysis suggests that two Mu genomes in opposite orientation surround the inverted DNA fragment. Due to the presence of the Mu genome of the invertible G segment, homologous regions in the same orientation can appear in Mu genomes in opposite orientation. In a Rec+ background, Hfr's with inverted polarity (i) return to their original polarity of transfer by recomination between the two inverted Mu and (ii) produce new F' strains by recombination between the two similarly oriented G segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号