首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis lipase A (BSLA) has been extensively studied through protein engineering; however, its immobilization and behavior as an insoluble biocatalyst have not been extensively explored. In this work, for the first time, a direct immobilization of recombinant BSLA from microbial culture supernatant was reported, using chemically modified porous with different electrostatic, hydrophobic, hydrophilic, and hydrophilic−hydrophobic enzyme-support interactions. The resulting biocatalysts were evaluated based on their immobilization kinetics, activity expression (pH 7.4), thermal stability (50 °C), solvent resistance and substrate preference. Biocatalysts obtained using glyoxyl silica support resulted in the selective immobilization of BSLA, resulting in an activity recovery of 50 % and an outstanding aqueous stabilization factor of 436, and 9.5 in isopropyl alcohol, compared to the free enzyme. This selective immobilization methodology of BSLA allows to efficiently generate immobilized biocatalysts, thus avoiding laborious purification steps from cell culture supernatant, which is usually a limiting step when large amounts of enzyme variants or candidates are assessed as immobilized biocatalysts. Direct enzyme immobilization from cell supernatant provides an interesting tool which can be used to facilitate the development and assessment of immobilized biocatalysts from engineered enzyme variants and mutant libraries, especially in harsh conditions, such as high temperatures or non-aqueous solvents, or against non-water-soluble substrates. Furthermore, selective immobilization approaches from cell culture supernatant or clarified lysates could help bridging the gap between protein engineering and enzyme immobilization, allowing for the implementation of immobilization steps in high throughput enzyme screening platforms for their potential use in directed evolution campaigns.  相似文献   

2.
We have investigated the utility for enzyme immobilization of several hydrophobic cellulose esters, as a function of solvent composition, extent of esterification, and enzyme. Phenoxyacetyl cellulose was also used for immobilization of rat liver microsomes, hydrophobic chromatography of proteins, and removal of Triton X-100 from protein solutions. Phenoxyacetyl groups esterified to cellulose were much less subject to enzymatic hydrolysis than soluble phenoxyacetyl esters.  相似文献   

3.
Silica xerogels are a new class of materials suitable for the immobilization of enzymes for various applications including biotransformations and biosensors. The physicochemical properties of xerogels, such as hydrophobicity, can be manipulated by the introduction of organically-modified silicates. This allows the immobilization matrix to be engineered to suit the enzyme and its application. Interfacial activation of lipase is a phenomenon in which the enzyme displays increased activity when it is bound to a hydrophobic interface. Lipase was entrapped in organically-modified xerogels in which the hydrophobicity of the enzyme support was modulated by the selection of different alkyltrimethoxysilane co-precursors and the ratio in which they were combined with tetramethyl orthosilicate. Interaction between the enzyme support and water was investigated with two methods to quantitatively assess the hydrophobicity of the entrapment matrix. The contact angle formed between the xerogel and water was used to determine hydrophobicity on a macroscopic level. Temperature-controlled water desorption was used to determine hydrophobicity on a microscopic level. Both methods were suitable for quantitatively discriminating between hydrophobic and hydrophilic materials. Further, the hydrophobicity of the enzyme support influenced the hydrolytic activity of the entrapped lipase under non-aqueous conditions. The specific activity of lipase increased only when entrapped in xerogels which could be classified as hydrophobic materials, that is with contact angles greater than 90 degrees or hydrophobicity values as determined by water desorption greater than 0.65.  相似文献   

4.
Mushroom tyrosinase was immobilized from an extract onto the totally cinnamoylated derivative of D-sorbitol by direct adsorption as a result of the intense hydrophobic interactions that took place. The immobilization pH value and mass of lyophilized mushrooms were important parameters that affected the immobilization efficiency, while the immobilization time and immobilization support concentration were not important in this respect. The extracted/immobilized enzyme could best be measured above pH 3.5 and the optimum measuring temperature was 55 degrees C. The apparent Michaelis constant using 4-tert-butylcatechol as substrate was 0.38+/-0.02 mM, which was lower than for the soluble enzyme from Sigma (1.41+/-0.20 mM). Immobilization stabilized the extracted enzyme against thermal inactivation and made it less susceptible to activity loss during storage. The operational stability was higher than in the case of the tyrosinase supplied by Sigma and immobilized on the same support. The results show that the use of p-nitrophenol as enzyme-inhibiting substrate during enzyme extraction and immobilization made the use of ascorbic acid unnecessary and is a suitable method for extracting and immobilizing the tyrosinase enzyme, providing good enzymatic activity and stability.  相似文献   

5.
Lipase QL from Alcaligenes sp. is a quite thermostable enzyme. For example, it retains 75% of catalytic activity after incubation for 100 h at 55 °C and pH 7.0. Nevertheless, an improvement of the enzyme properties was intended via immobilization by covalent attachment to different activated supports and by adsorption on hydrophobic supports (octadecyl-sepabeads). This latter immobilization technique promotes the most interesting improvement of enzyme properties: (a) the enzyme is hyperactivated after immobilization: the immobilized preparation exhibits a 135% of catalytic activity for the hydrolysis of p-nitrophenyl propionate as compared to the soluble enzyme; (b) the thermal stability of the immobilized enzyme is highly improved: the immobilized preparation exhibits a half-life time of 12 h when incubated at 80 °C, pH 8.5 (a 25-fold stabilizing factor regarding to the soluble enzyme); (c) the optimal temperature was increased from 50 °C (soluble enzyme) up to 70 °C (hydrophobic support enzyme immobilized preparations); (d) the enantioselectivity of the enzyme for the hydrolysis of glycidyl butyrate and its dependence on the experimental conditions was significantly altered. Moreover, because the enzyme becomes reversibly but very strongly adsorbed on these highly hydrophobic supports, the lipase may be desorbed after its inactivation and the support may be reused. Very likely, adsorption occurs via interfacial activation of the lipase on the hydrophobic supports at very low ionic strength. On the other hand, all the covalent immobilization protocols used to immobilize the enzyme hardly improved the properties of the lipase.  相似文献   

6.
The properties of a new and commercially available amino-epoxy support (amino-epoxy-Sepabeads) have been compared to conventional epoxy supports to immobilize enzymes, using the beta-galactosidase from Aspergillus oryzae as a model enzyme. The new support has a layer of epoxy groups over a layer of ethylenediamine that is covalently bound to the support. This support has both a great anionic exchanger strength and a high density of epoxy groups. Epoxy supports require the physical adsorption of the proteins onto the support before the covalent binding of the enzyme to the epoxy groups. Using conventional supports the immobilization rate is slow, because the adsorption is of hydrophobic nature, and immobilization must be performed using high ionic strength (over 0.5 M sodium phosphate) and a support with a fairly hydrophobic nature. Using the new support, immobilization may be performed at moderately low ionic strength, it occurs very rapidly, and it is not necessary to use a hydrophobic support. Therefore, this support should be specially recommended for immobilization of enzymes that cannot be submitted to high ionic strength. Also, both supports may be expected to yield different orientations of the proteins on the support, and that may result in some advantages in specific cases. For example, the model enzyme became almost fully inactivated when using the conventional support, while it exhibited an almost intact activity after immobilization on the new support. Furthermore, enzyme stability was significantly improved by the immobilization on this support (by more than a 12-fold factor), suggesting the promotion of some multipoint covalent attachment between the enzyme and the support (in fact the enzyme adsorbed on an equivalent cationic support without epoxy groups was even slightly less stable than the soluble enzyme).  相似文献   

7.
Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports. First, the advantages of these supports for lipase immobilization will be presented and the likeliest immobilization mechanism (interfacial activation on the support surface) will be revised. Then, its main shortcoming will be discussed: enzyme desorption under certain conditions (such as high temperature, presence of cosolvents or detergent molecules). Methods to overcome this problem include physical or chemical crosslinking of the immobilized enzyme molecules or using heterofunctional supports. Thus, supports containing hydrophobic acyl chain plus epoxy, glutaraldehyde, ionic, vinylsulfone or glyoxyl groups have been designed. This prevents enzyme desorption and improved enzyme stability, but it may have some limitations, that will be discussed and some additional solutions will be proposed (e.g., chemical amination of the enzyme to have a full covalent enzyme-support reaction). These immobilized lipases may be subject to unfolding and refolding strategies to reactivate inactivated enzymes. Finally, these biocatalysts have been used in new strategies for enzyme coimmobilization, where the most stable enzyme could be reutilized after desorption of the least stable one after its inactivation.  相似文献   

8.
Hydrophobins are fungal proteins that self-assemble spontaneously at hydrophilic-hydrophobic interfaces and change the polar nature of the surfaces to which they attach. This attribute can be used to introduce hydrophobic foci on the surface of hydrophilic supports where hydrophobins are attached by covalent binding. In this paper, we report the binding of Pleurotus ostreatus hydrophobins to a hydrophilic matrix (agarose) to construct a support for noncovalent immobilization and activation of lipases from Candida antarctica, Humicola lanuginosa, and Pseudomonas flourescens. Lipase immobilization on agarose-bound hydrophobins proceeded at very low ionic strength and resulted in increased lipase activity and stability. The enzyme could be desorbed from the support using moderate concentrations of Triton X-100, and its enantioselectivity was similar to that of lipases interfacially immobilized on conventional hydrophobic supports. These results suggest that lipase adsorption on hydrophobins follows an "interfacial activation" mechanism; immobilization on hydrophobins offers new possibilities for lipase study and modulation and reveals a new application for fungal hydrophobins.  相似文献   

9.
Chitosan is a deacetylated form of the polysaccharide chitin. Over the last decade, researchers have employed reductive amination to hydrophobically modify chitosan to induce a micellar structure. These micellar polymers have been used for a variety of purposes including drug delivery and enzyme immobilization and stabilization. However, commercial sources of chitosan vary in their degree of deacetylation and there remains a paucity of information regarding how this can impact the modified polymer’s functionality for enzyme immobilization. This paper, therefore, evaluates the effect that the degree of deacetylation has on the hydrophobic modification of medium molecular weight chitosan via reductive amination with long chain aldehydes and the resulting changes in enzyme activity after the immobilization of glucose oxidase in the micellar polymeric structure. The chitosan was deacetylated to differing degrees via autoclaving in 40–45% NaOH solutions and characterized using NMR, viscosity measurements, and differential scan calorimetry. Results suggest that a high degree of deacetylation provides optimal enzyme immobilization properties (i.e. high activity), but that the deacetylation method begins to significantly decrease the polymer molecular weight after a 20 min autoclave treatment, which negatively affects immobilized enzyme activity.  相似文献   

10.
Alpha-amylase was covalently immobilized onto maleic anhydride copolymer films preserving activity. The initial activity of the immobilized layers strongly depended on the immobilization solution, and on the physicochemical properties of the copolymer film. Higher enzyme loading (quantified by amino acid analysis using HPLC) and activity (measured by following starch hydrolysis) were attainable onto hydrophilic, highly swelling 3-D poly(ethylene-alt-maleic anhydride) (PEMA) copolymer films, while immobilization onto hydrophobic poly(octadecene-alt-maleic anhydride) (POMA) copolymer films resulted in low content enzyme layers and lower activity. No significant activity was lost upon dehydration/re-hydration or storage of enzyme containing PEMA copolymer layers in deionised water for up to 48 h. In contrast, α-amylase decorated POMA films suffered a significant activity loss under those conditions. The distinct behaviours may be attributed to the different intrinsic physicochemical properties of the copolymer films. The compact, hydrophobic POMA films possibly favours hydrophobic interactions between the hydrophobic moieties of the protein and the surface, which may result in conformational changes, and consequent loss of activity. Surprisingly, residual activity was found after harsh treatments of active α-amylase PEMA based layers revealing that immobilization onto the hydrophilic polymer films improved the stability of the enzyme.  相似文献   

11.
Over the last decade, there has been a wealth of application for immobilized and stabilized enzymes including biocatalysis, biosensors, and biofuel cells. In most bioelectrochemical applications, enzymes or organelles are immobilized onto an electrode surface with the use of some type of polymer matrix. This polymer scaffold should keep the enzymes stable and allow for the facile diffusion of molecules and ions in and out of the matrix. Most polymers used for this type of immobilization are based on polyamines or polyalcohols - polymers that mimic the natural environment of the enzymes that they encapsulate and stabilize the enzyme through hydrogen or ionic bonding. Another method for stabilizing enzymes involves the use of micelles, which contain hydrophobic regions that can encapsulate and stabilize enzymes. In particular, the Minteer group has developed a micellar polymer based on commercially available Nafion. Nafion itself is a micellar polymer that allows for the channel-assisted diffusion of protons and other small cations, but the micelles and channels are extremely small and the polymer is very acidic due to sulfonic acid side chains, which is unfavorable for enzyme immobilization. However, when Nafion is mixed with an excess of hydrophobic alkyl ammonium salts such as tetrabutylammonium bromide (TBAB), the quaternary ammonium cations replace the protons and become the counter ions to the sulfonate groups on the polymer side chains (Figure 1). This results in larger micelles and channels within the polymer that allow for the diffusion of large substrates and ions that are necessary for enzymatic function such as nicotinamide adenine dinucleotide (NAD). This modified Nafion polymer has been used to immobilize many different types of enzymes as well as mitochondria for use in biosensors and biofuel cells. This paper describes a novel procedure for making this micellar polymer enzyme immobilization membrane that can stabilize enzymes. The synthesis of the micellar enzyme immobilization membrane, the procedure for immobilizing enzymes within the membrane, and the assays for studying enzymatic specific activity of the immobilized enzyme are detailed below.  相似文献   

12.
固定化酶的空间取向控制策略   总被引:6,自引:0,他引:6  
阐述了固定化酶的空间取向控制的方法和应用研究。  相似文献   

13.
Perflex has been introduced by E. I. du Pont de Nemours and Co., Inc., as a new fluorocarbon-based technology for protein immobilization. Due to the hydrophobic character of the support, however, significant loss of enzymatic activity may occur upon immobilization of certain enzymes, which appears to be due to a large conformational change of the protein ("inversion"). Pretreatment of the Perflex support with a neutral fluorosurfactant lessened the surface hydrophobicity, thus decreasing the hydrophobic interaction between the support and the protein. Modification of enzymes with a high number of fluorocarbon residues, which forms a hydrophobic "envelope" around the protein, also appears to prevent enzyme inactivation upon immobilization on Perflex support. Moreover, preactivation of the support with either perfluorooctylpropylisocyanate or reactive poly(fluoroalkyl) sugar reagents greatly improves the enzyme particle activity by increasing the amount of immobilized enzyme. Fluorosurfactant treatment of the support activated with perfluorooctylpropylisocyanate improves the retention of activity for sensitive enzymes such as alpha-chymotrypsin and increases the wetability and ease of handling of the Perflex particles.  相似文献   

14.
Formate dehydrogenase (FDH) is a stable enzyme that may be readily inactivated by the interaction with hydrophobic interfaces (e.g., due to strong stirring). This may be avoided by immobilizing the enzyme on a porous support by any technique. Thus, even if the enzyme is going to be used in an ultra-membrane reactor, the immobilization presents some advantages. Immobilization on supports activated with bromocianogen, polyethylenimine, glutaraldehyde, etc., did not promote any stabilization of the enzyme under thermal inactivation. However, the immobilization of FDH on highly activated glyoxyl agarose has permitted increasing the enzyme stability against any distorting agent: pH, T, organic solvent, etc. The time of support-enzyme reaction, the temperature of immobilization, and the activation of the support need to be optimized to get the optimal stability-activity properties. Optimized biocatalyst retained 50% of the offered activity and became 50 times more stable at high temperature and neutral pH. Moreover, the quaternary structure of this dimeric enzyme becomes stabilized by immobilization under optimized conditions. Thus, at acidic pH (conditions where the subunit dissociation is the first step in the enzyme inactivation), the immobilization of both subunits of the enzyme on glyoxyl-agarose has allowed the enzyme to be stabilized by hundreds of times. Moreover, the optimal temperature of the enzyme has been increased (even by 10 degrees C at pH 4.5). Very interestingly, the activity with NAD(+)-dextran was around 60% of that observed with free cofactor.  相似文献   

15.
In this paper, the stabilization of a lipase from Bacillus thermocatenulatus (BTL2) by a new strategy is described. First, the lipase is selectively adsorbed on hydrophobic supports. Second, the carboxylic residues of the enzyme are modified with ethylenediamine, generating a new enzyme having 4-fold more amino groups than the native enzyme. The chemical amination did not present a significant effect on the enzyme activity and only reduced the enzyme half-life by a 3-4-fold factor in inactivations promoted by heat or organic solvents. Next, the aminated and purified enzyme is desorbed from the support using 0.2% Triton X-100. Then, the aminated enzyme was immobilized on glyoxyl-agarose by multipoint covalent attachment. The immobilized enzyme retained 65% of the starting activity. Because of the lower p K of the new amino groups in the enzyme surface, the immobilization could be performed at pH 9 (while the native enzyme was only immobilized at pH over 10). In fact, the immobilization rate was higher at this pH value for the aminated enzyme than that of the native enzyme at pH 10. The optimal stabilization protocol was the immobilization of aminated BTL2 at pH 9 and the further incubation for 24 h at 25 degrees C and pH 10. This preparation was 5-fold more stable than the optimal BTL2 immobilized on glyoxyl agarose and around 1200-fold more stable than the enzyme immobilized on CNBr and further aminated. The catalytic properties of BTL2 could be greatly modulated by the immobilization protocol. For example, from (R/S)-2- O-butyryl-2-phenylacetic acid, one preparation of BTL2 could be used to produce the S-isomer, while other preparation produced the R-isomer.  相似文献   

16.
In this work we use the steady state and time-resolved fluorescence of free and enzyme-bound fluorophores to characterize the binding capacity of both unmodified and hydrophobically modified chitosan polymers. Additionally, fluorescence emission is used to qualitatively characterize the extent to which hydrophobic modification of the chitosan polymer affects the relative polarity of the resultant amphiphillic micelles. In total, these results are used to describe how fluorescence techniques can be used to characterize the chemical microenvironment provided by immobilization polymers such as chitosan. Commentary is also given on how this information can be correlated to enzyme activity and spatial distribution during the immobilization processes.  相似文献   

17.
This paper describes the immobilization and stabilization of the lipase from Thermomyces lanuginosus (TLL) on glyoxyl agarose. Enzymes attach to this support only by the reaction between several aldehyde groups of the support and several Lys residues on the external surface of the enzyme molecules at pH 10. However, this standard immobilization procedure is unsuitable for TLL lipase due to the low stability of TLL at pH 10 and its low content on Lys groups that makes that the immobilization process was quite slow. The chemical amination of TLL, after reversible immobilization on hydrophobic supports, has been shown to be a simple and efficient way to improve the multipoint covalent attachment of this enzyme. The modification enriches the enzyme surface in primary amino groups with low pKb, thus allowing the immobilization of the enzyme at lower pH values. The aminated enzyme was rapidly immobilized at pH 9 and 10, with activities recovery of approximately 70%. The immobilization of the chemically modified enzyme improved its stability by 5-fold when compared to the non-modified enzyme during thermal inactivation and by hundreds of times when the enzyme was inactivated in the presence of organic solvents, being both glyoxyl preparations more stable than the enzyme immobilized on bromocyanogen.  相似文献   

18.
酶法拆分手性化合物HPBE   总被引:5,自引:0,他引:5  
R-HPBE(2-羟基4苯基丁酸乙酯)是一种重要的医药中间体,可以通过脂肪酶催化水解外消旋体得到。介绍了此催化过程的机理、工艺、产物检测等,并通过酶在疏水载体上的界面吸附对酶进行固定化,以提高酶活及对映选择性。  相似文献   

19.
This study reports a general strategy for the encapsulation of various enzymes in amphiphilic hollow carbonaceous microspheres (CMs). We found that enzymes could be spontaneously encapsulated in the interior cavity of the CMs via hydrophobic interactions. Due to strong hydrophobic interactions and robust confinement, leaching of the physically adsorbed enzymes is substantially restricted. As a novel immobilization matrix, the CMs display many significant advantages. They are capable of encapsulating a wide range of proteins/enzymes of different sizes, which can then be used in both aqueous and organic media and retain high activity, stability, and excellent reusability. Moreover, CMs could be considered as efficient microreactors that provide a favorable microaqueous environment for enzymes in organic systems. Therefore, this doubly effective and simple immobilization approach can be easily expanded to many other enzymes and has great potential in a variety of enzyme applications.  相似文献   

20.
The novel technique of immobilization of beta-galactosidase on colloidal liquid aphrons (CLAs) was investigated. CLAs are oil-in-water macroemulsions stabilised by a mixture of ionic and nonionic surfactants. Enzyme retention was found to be unaffected by changes in bulk phase pH and ionic strength, indicating that beta-galactosidase immobilization was due primarily to hydrophobic interactions. However, by varying the polarity of the internal solvent core, and the charge of the surfactants used in the formation of the CLAs, it was found that immobilization could be improved to almost 100% under certain conditions indicating that electrostatic interactions also affected immobilization to a lesser degree. Upon immobilization, it was found that there was a shift in the pH optimum of the enzyme, with the immobilized enzyme showing a broader range, and a maximal activity at higher pH. The immobilized beta-galactosidase displayed normal Michaelis-Menten dependence on substrate concentration, whilst also exhibiting superactivity for increased substrate concentrations. Activation energy was determined for the CLA immobilized enzyme, and it was found to decrease indicating that a conformational change had occurred that may account for the observed increase in activity. Finally, although the temperature profile of the immobilized enzyme was similar to the free enzyme, it was very stable, with a potential half-life of 3.6 years at 30 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号