共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of red blood cell (RBC) aggregation on blood flow in vivo has been under debate since early 1900's, yet a full understanding has still has not been reached. Enhanced RBC aggregation is well known to increase blood viscosity measured in rotational viscometers. However, it has been demonstrated that RBC aggregation may decrease flow resistance in cylindrical tubes, due to the formation of a cell-poor zone near the tube wall which results from the enhanced central accumulation of RBC. There is also extensive discussion regarding the effects of RBC aggregation on in vivo blood flow resistance. Several groups have reported increased microcirculatory flow resistance with enhanced RBC aggregation in experiments that utilized intravital microscopy. Alternatively, whole organ studies revealed that flow resistance may be significantly decreased if RBC aggregation is enhanced. Recently, new techniques have been developed to achieve well-controlled, graded alterations in RBC aggregation without influencing suspending phase properties. Studies using this technique revealed that the effects of RBC aggregation are determined by the degree of aggregation changes, and that this relationship can be explained by different hemodynamic mechanisms. 相似文献
2.
Rheological effects of red blood cell aggregation in the venous network: a review of recent studies 总被引:3,自引:0,他引:3
It has long been recognized that understanding the rheological properties of blood is essential to a full understanding of the function of the circulatory system. Given the difficulty of obtaining carefully controlled measurements in vivo, most of our current concepts of the flow behavior of blood in vivo are based on its properties in vitro. Studies of blood rheology in rotational and tube viscometers have defined the basic properties of blood and pointed to certain features that may be especially significant for understanding in vivo function. At the same time, differences between in vivo and in vitro systems combined with the complex rheological properties of blood make it difficult to predict in vivo blood rheology from in vitro studies. We have investigated certain flow properties of blood in vivo, using the venular network of skeletal muscle as our model system. In the presence of red blood cell aggregation, venous velocity profiles become blunted from the parabolic as in Poiseuille flow, as pseudo-shear rate (= mean fluid velocity/vessel diameter) is decreased from approximately 100 s(-1) to 5 s(-1). At control flow rates, the short distance between venular junctions does not appear to permit significant axial migration and red cell depletion of the peripheral fluid layer before additional red cells and aggregates are infused from a feeding tributary. Formation of a cell-free plasma layer at the vessel wall and sedimentation in vivo are evident only at very low pseudo-shear rates (<5 s(-1)). These findings may explain in large part observations in whole organs of increased venous resistance with reduction of blood flow. 相似文献
3.
Polymer-induced red blood cell (RBC) aggregation is of current basic science and clinical interest, and a depletion-mediated model for this phenomenon has been suggested; to date, however, analytical approaches to this model are lacking. An approach is thus described for calculating the interaction energy between RBC in polymer solutions. The model combines electrostatic repulsion due to RBC surface charge with osmotic attractive forces due to polymer depletion near the RBC surface. The effects of polymer concentration and polymer physicochemical properties on depletion layer thickness and on polymer penetration into the RBC glycocalyx are considered for 40 to 500 kDa dextran and for 18 to 35 kDa poly (ethylene glycol). The calculated results are in excellent agreement with literature data for cell-cell affinities and with RBC aggregation-polymer concentration relations. These findings thus lend strong support to depletion interactions as the basis for polymer-induced RBC aggregation and suggest the usefulness of this approach for exploring interactions between macromolecules and the RBC glycocalyx. 相似文献
4.
The reversible aggregation of red blood cells (RBC) into linear and three-dimensional structures continues to be of basic science and clinical interest: RBC aggregation affects low shear blood viscosity and microvascular flow dynamics, and can be markedly enhanced in several clinical states. Until fairly recently, most research efforts were focused on relations between suspending medium composition (i.e., protein levels, polymer type and concentration) and aggregate formation. However, there is now an increasing amount of experimental evidence indicating that RBC cellular properties can markedly affect aggregation, with the term "RBC aggregability" coined to describe the cell's intrinsic tendency to aggregate. Variations of aggregability can be large, with some changes of aggregation substantially greater than those resulting from pathologic states. The present review provides a brief overview of this topic, and includes such areas as donor-to-donor variations, polymer-plasma correlations, effects of RBC age, effects of enzymatic treatment, and current developments related to the mechanisms involved in RBC aggregation. 相似文献
5.
6.
7.
Hyun-jung Lim Yong-Jin Lee Jeong-Hun Nam Seok Chung Sehyun Shin 《Journal of biomechanics》2010,43(3):546-550
Red blood cell (RBC) aggregation is becoming an important hemorheological parameter, which exhibits a unique temperature dependence. However, further investigation is still required for understanding the temperature-dependent characteristics of hemorheology that includes RBC aggregation. In the present study, blood samples were examined at 3, 10, 20, 30, and 37 °C. When the temperature decreases, the whole-blood and plasma viscosities increase, whereas the aggregation indices (AI, M, and b) yield contrary results. Since these contradictory results are known to arise from an increase in the plasma viscosity as the temperature decreases, aggregation indices that were corrected for plasma viscosity were examined. The corrected indices showed mixed results with the variation of the temperature. However, the threshold shear rate and the threshold shear stress increased as the temperature decreased, which is a trend that agrees with that of the blood viscosity. As the temperature decreases, RBC aggregates become more resistant to hydrodynamic dispersion and the corresponding threshold shear stress increases as does the blood viscosity. Therefore, the threshold shear stress may help to better clarify the mechanics of RBC aggregation under both physiological and pathological conditions. 相似文献
8.
9.
In order to clarify the mechanism of dextran-induced aggregation, the effect of the ionic strength (I) on the minimal shear stress (tau(c)) required to rupture RBC doublets was studied for suspensions with the external media containing 76 and 298 kDa dextrans. At low and high ionic strengths, tau(c) increases with increasing I, whereas at intermediate I values, tau(c) versus I dependencies reveal a plateau step. The non-monotonous shape of these curves disagrees with the depletion model of RBC aggregation and is consistent with the predictions of the bridging mechanism. Literature reports point out that elastic behavior of dextran molecules in low and high I regions is fairly typical of Hookean springs and hence predict an increase in tau(c) with increasing I. A plateau step is accounted for by the enthalpic component of the dextran elasticity due to the shear-induced chair-boat transition of the dextran's glucopyranose rings. A longer plateau step for suspensions with a higher molecular weight dextran is explained by a larger contribution of the enthalpic component to the dextran elasticity. Thus, the results reported in this study provide evidence that RBC aggregation is caused by the formation of dextran bridges between the cells. 相似文献
10.
11.
We present a new application of nuclear magnetic resonance to monitor rouleaux formation in static blood suspensions of physiological hematocrit. The method measures the apparent mean residence time of water inside the rouleaux and yields the kinetics and the extent of red cell aggregation in units of cells per aggregate. 相似文献
12.
The reversible aggregation of human red blood cells (RBC) by proteins or polymers continues to be of biologic and biophysical interest, yet the mechanistic details governing the process are still being explored. Although a depletion model with osmotic attractive forces due to polymer depletion near the RBC surface has been proposed for aggregation by the neutral polyglucose dextran, its applicability at high molecular mass has not been established. In this study, RBC aggregation was measured over a wide range of dextran molecular mass (70 kDa to 28 MDa) at concentrations ≤2 g/dL. Our results indicate that aggregation does not monotonically increase with polymer size; instead, it demonstrates an optimum dextran molecular mass around 200-500 kDa. We used a model for depletion-mediated RBC aggregation to calculate the expected depletion energies. This model was found to be consistent with the experimental results and thus provides new insight into polymer-RBC interactions. 相似文献
13.
Reversible aggregation of red blood cells (RBC) plays an important role in determining the flow properties of blood. To study different factors affecting RBC aggregation we used a new commercially available erythro-aggregameter (SEFAM, Nancy, France). The method allows the photometric quantitation of the kinetics of RBC aggregation and the estimation of the shear resistance of the aggregates. Modification of the hematocrit acts mostly on the determination of the disaggregation shear rate, while plasma composition strongly affects all measurements. Anticoagulants per se do no influence the aggregation process, but can alter the value of the parameters through a plasma dilution effect. Presence of white blood cells and platelets in the sample did not modify the data. Study on the effects of low concentration of heparin and low molecular weight heparin showed that at therapeutical doses these drugs did not alter the values of the aggregation parameters. Provided that precise guidelines are followed for the processing of blood samples, this method may serve to investigate RBC aggregation in various diseases and to search for adequate hemorheologic treatment. 相似文献
14.
15.
Previous reports have suggested that non-ionic poloxamer surfactants of appropriate molecular mass and composition can reduce red blood cell (RBC) aggregation in whole blood and in RBC-plasma suspensions. We have thus evaluated this phenomenon for RBC aggregated by several water-soluble polymers, using poloxamer 188 (P188), a non-ionic, tri-block molecule (total molecular mass of 8.40 kDa, 80% polyoxyethylene). Human RBC were washed, then re-suspended in isotonic solutions of dextran 70 (70.3 kDa), dextran 500 (476 kDa), PVP (360 kDa) or P-L-GLU (61.2 kDa); density-separated RBC were also studied. RBC aggregation was quantitated via a computerized Myrenne Aggregometer (extent, strength) and by the Microscopic Aggregation Index (MAI) method. Over the range of 0.5 to 5 mg/ml, poloxamer 188 inhibited both the extent and strength of aggregation in a dose-dependent manner, with the magnitude of the decrease related to polymer type (e.g., at 5 mg/ml, 62% decrease for dextran 70 vs. 14% decrease for P-L-GLU); MAI results with dextran 70 also showed a dose-dependent decrease. Poloxamer 188 at 5 mg/ml was more effective with younger, less-dense cells. Based upon the depletion model for polymer-induced aggregation, these findings suggest that poloxamer 188 acts by penetrating the depletion layer near the glycocalyx, thereby reducing the osmotic gradient between the intercellular gap and the suspending medium. Regardless of the specific mechanism(s) of action, poloxamers appear to offer interesting approaches for future basic science and clinical studies, and thus the possibility for greater insight into RBC aggregation. 相似文献
16.
Ami RB Barshtein G Zeltser D Goldberg Y Shapira I Roth A Keren G Miller H Prochorov V Eldor A Berliner S Yedgar S 《American journal of physiology. Heart and circulatory physiology》2001,280(5):H1982-H1988
To identify clinically relevant parameters of red blood cell (RBC) aggregation, we examined correlations of aggregation parameters with C-reactive protein and fibrinogen in unstable angina (UA), acute myocardial infarction (AMI), and bacterial infection (BI). Aggregation parameters were derived from the distribution of RBC population into aggregate sizes (cells per aggregate) and changing of the distribution by flow-derived shear stress. Increased aggregation was observed in the following order: UA, AMI, and BI. The best correlation was obtained by integration of large aggregate fraction as a function of shear stress. To differentiate plasmatic from cellular factors in RBC aggregation, we determined the aggregation in the presence and absence of plasma and formulated a "plasma factor" (PF) ranging from 0 to 1. In AMI the enhanced aggregation was entirely due to PF (PF = 1), whereas in UA and BI it was due to both plasmatic and cellular factors (0 < or = PF < or = 1). It is proposed that clinically relevant parameters of RBC aggregation should express both RBC aggregate size distribution and aggregate resistance to disaggregation and distinguish between plasmatic and cellular factors. 相似文献
17.
Aggregation of human red blood cells (RBCs) induced by dextrans of various molecular weight has been studied by using a new ultrasonic interferometry method. This method, based on A-mode echography, allowed for the measurement of the accumulation rate of particles on a solid plate which is related to their sedimentation rate (i.e., to their mean size). The initial aggregation process, the mean and the maximum sedimentation rate of aggregates and the packing of the sedimented RBCs have been investigated. Effects of hematocrit, molecular weight of dextrans and inhibition by dextran 40 on the RBC aggregation induced by dextran of higher molecular weight have been determined by analysing variations of the aggregate size. Results obtained confirm the aggregation effect of dextrans of molecular weights equal or higher than 70,000 dalton and disaggregation effect of dextran 40,000 dalton on aggregation by dextrans of higher molecular weight. 相似文献
18.
Yalcin O Aydin F Ulker P Uyuklu M Gungor F Armstrong JK Meiselman HJ Baskurt OK 《American journal of physiology. Heart and circulatory physiology》2006,290(2):H765-H771
The normal transmyocardial tissue hematocrit distribution (i.e., subepicardial greater than subendocardial) is known to be affected by red blood cell (RBC) aggregation. Prior studies employing the use of infused large macromolecules to increase erythrocyte aggregation are complicated by both increased plasma viscosity and dilution of plasma. Using a new technique to specifically alter the aggregation behavior by covalent attachment of Pluronic F-98 to the surface of the RBC, we have determined the effects of only enhanced aggregation (i.e., Pluronic F-98-coated RBCs) versus enhanced aggregation with increased plasma viscosity (i.e., an addition of 500 kDa dextran) on myocardial tissue hematocrit in rapidly frozen guinea pig hearts. Although both approaches equally increased aggregation, tissue hematocrit profiles differed markedly: 1) when Pluronic F-98-coated cells were used, the normal transmyocardial gradient was abolished, and 2) when dextran was added, the hematocrit remained at subepicardial levels for about one-half the thickness of the myocardium and then rapidly decreased to the control level in the subendocardial layer. Our results indicate that myocardial hematocrit profiles are sensitive to both RBC aggregation and to changes of plasma viscosity associated with increased RBC aggregation. Furthermore, they suggest the need for additional studies to explore the mechanisms affecting RBC distribution in three-dimensional vascular beds. 相似文献
19.
Baskurt OK Yalcin O Ozdem S Armstrong JK Meiselman HJ 《American journal of physiology. Heart and circulatory physiology》2004,286(1):H222-H229
The effects of enhanced red blood cell (RBC) aggregation on nitric oxide (NO)-dependent vascular control mechanisms have been investigated in a rat exchange transfusion model. RBC aggregation for cells in native plasma was increased via a novel method using RBCs covalently coated with a 13-kDa poloxamer copolymer (Pluronic F-98); control experiments used RBCs coated with a nonaggregating 8.4-kDa poloxamer (Pluronic F-68). Rats exchange transfused with aggregating RBC suspensions demonstrated significantly enhanced RBC aggregation throughout the 5-day follow-up period, with mean arterial blood pressure increasing gradually over this period. Arterial segments ( approximately 300 microm in diameter) were isolated from gracilis muscle on the fifth day and mounted between two glass micropipettes in a special chamber equipped with pressure servo-control system. Dose-dependent dilation by ACh and flow-mediated dilation of arterial segments pressurized to 30 mmHg and preconstricted to 45-55% of the original diameter by phenylephrine were significantly blunted in rats with enhanced RBC aggregation. Both responses were totally abolished by nonspecific NO synthase (NOS) inhibitor (Nomega-nitro-l-arginine methyl ester) treatment of arterial segments, indicating that the responses were NO related. Additionally, expression of endothelial NOS protein was found to be decreased in muscle samples obtained from rats exchanged with aggregating cell suspensions. These results imply that enhanced RBC aggregation results in suppressed expression of NO synthesizing mechanisms, thereby leading to altered vasomotor tonus; the mechanisms involved most likely relate to decreased wall shear stresses due to decreased blood flow and/or increased axial accumulation of RBCs. 相似文献
20.
The effects of nonionic polymers on human red blood cell (RBC) aggregation were investigated. The hydrodynamic radius (Rh) of individual samples of dextran, polyvinylpyrrolidone, and polyoxyethylene over a range of molecular weights (1,500-2,000,000) were calculated from their intrinsic viscosities using the Einstein viscosity relation and directly measured by quasi-elastic light scattering, and the effect of each polymer sample on RBC aggregation was studied by nephelometry and low-shear viscometry. For all three polymers, despite their different structures, samples with Rh <4 nm were found to inhibit aggregation, whereas those with Rh >4 nm enhanced aggregation. Inhibition increased with Rh and was maximal at approximately 3 nm; above 4 nm the pro-aggregant effect increased with Rh. For comparison, the Rh of 12 plasma proteins were calculated from literature values of intrinsic viscosity or diffusion coefficient. Each protein known to promote RBC aggregation had Rh >4 nm, whereas those with Rh <4 nm either inhibited or had no effect on aggregation. These results suggest that the influence of a nonionic polymer or plasma protein on RBC aggregation is simply a consequence of its size in an aqueous environment, and that the specific type of macromolecule is of minor importance. 相似文献