首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the identification and characterization of a family of repeated restriction fragments whose molecular organization is apparently specific to the human X chromosome. This fragment, identified as an ethidium bromide-staining 2.0 kilobase (kb) band in BamHI-digested DNA from a Chinese hamster-human somatic cell hybrid containing a human X chromosome, has been cloned into pBR325 and characterized. The 2.0 kb repeated family has been assigned to the Xp11 leads to Xq12 region on the X by Southern blot analysis of somatic cell hybrids and is predominantly arranged in tandem clusters of up to seven 2.0 kb monomers. Homologous DNA sequences, not organized as 2.0 kb BamHI fragments, are found elsewhere on the X chromosome and on at least some autosomes, but are not found on the Y chromosome. From a dosing experiment using various amounts of the cloned repeat, we estimate that there are 5,000-7,500 copies of the 2.0 kb BamHI repeat per haploid genome. Since the vast majority, if not all, of these are confined to the X chromosome, this repeated DNA family must account for 5-10% of all X chromosome DNA and must constitute the major sequence component of the pericentromeric region of the X.  相似文献   

2.
Fragments of guinea pig cytomegalovirus (GPCMV) DNA produced by HindIII or EcoRI restriction endonuclease digestion were cloned into vectors pBR322 and pACYC184, and recombinant fragments representing ca. 97% of the genome were constructed. Hybridization of 32P-labeled cloned and gel-purified HindIII, EcoRI, and XbaI fragments to Southern blots of HindIII-, EcoRI-, and XbaI-cleaved GPCMV DNA verified the viral origin of cloned fragments and allowed construction of HindIII, EcoRI, and XbaI restriction maps. On the basis of the cloning and mapping experiments, the size of GPCMV DNA was calculated to include 239 kilobase pairs, corresponding to a molecular weight of 158 X 10(6). No cross-hybridization between any internal fragments was seen. We conclude that the GPCMV genome consists of a long unique sequence with terminal repeat sequences but without internal repeat regions. In addition, GPCMV DNA molecules exist in two forms. In the predominant form, the molecules demonstrate sequence homology between the terminal fragments; in the minor population, one terminal fragment is smaller by 0.7 X 10(6) daltons and is not homologous with the fragment at the other end of the physical map. The structural organization of GPCMV DNA is unique for a herpesvirus DNA, similar in its simplicity to the structure reported for murine cytomegalovirus DNA and quite dissimilar from that of human cytomegalovirus DNA.  相似文献   

3.
The pericentromeric region of the human X chromosome is characterized by a tandemly repeated family of 2.0 kilobasepair (kb) DNA fragments, initially revealed by cleavage of human DNA with the restriction enzyme BamHI. We report here the complete nucleotide sequence of a cloned member of the repeat family and establish that this X-linked DNA family consists entirely of alpha satellite DNA. Our data indicate that the 2.0 kb repeat consists of twelve alpha satellite monomers arranged in imperfect, direct repeats. Each of the alpha X monomers is approximately 171 basepairs (bp) in length and is 60-75% identical in sequence to previously described primate alpha satellite DNAs. The twelve alpha X monomers are 65-85% identical in sequence to each other and are organized as two adjacent, related blocks of five monomers, plus an additional two monomers also related to monomers within the pentamer blocks. Partial nucleotide sequence of a second, independent copy of the 2.0 kb BamHI fragment established that the 2.0 kb repeat is, in fact, the unit of amplification on the X. Comparison of the sequences of the twelve alpha X monomers allowed derivation of a 171 bp consensus sequence for alpha satellite DNA on the human X chromosome. These sequence data, combined with the results of filter hybridization experiments of total human DNA and X chromosome DNA, using subregions within the 2.0 kb repeat as probes, provide strong support for the hypothesis that individual human chromosomes are characterized by different alpha satellite families, defined both by restriction enzyme periodicity and by chromosome-specific primary sequence.  相似文献   

4.
The distribution of methyl groups in rRNA from Xenopus laevis was analyzed by hybridization of rRNA to subfragments of either of two cloned rDNA fragments, X1r11 and X1r12, which together constitute a complete rDNA repeat unit. Using a mixture of 3H-methyl plus 32P-labelled rRNA as probe, the molar yield of methyl groups per rRNA region in hybrid could be calculated. For this calculation the length of the rRNA coding region in each DNA subfragment is needed, which was determined for X1r11 subfragments by the nuclease S1 mapping method of Berk and Sharp. The results show that both in 18S and 28S rRNA the methyl groups are nonrandomly distributed. For 18S rRNA, clustering was found within a 3' terminal fragment of 310 nucleotides. For 28S rRNA, clustering of methyl groups was found within a region of 750 nucleotides in length, which ends 500 nucleotides from the 3' end. In contrast, the 28S rRNA 5' terminal region of 900 nucleotides is clearly undermethylated. The general position of methyl groups in 28S rRNA correlates with the location of evolutionarily conserved sequences in this molecule, as recently determined in our laboratory.  相似文献   

5.
The alphoid repeat DNA on chimpanzee chromosome 22 was compared with alphoid repeat DNA on its human homologue, chromosome 21. Hybridization of different alphoid probes under various conditions of stringency show that the alphoid repeats of chimpanzee chromosome 22 are not closely related to those of human chromosome 21. Sequence analysis of cloned dimer and tetramer EcoRI fragments from chimpanzee chromosome 22 confirm the low overall level of homology, but reveal the presence of several nucleotide changes which are exclusive to the chromosome 21 subfamily of human alphoid DNA. Southern blot analysis of alphoid repeat DNA on the chimpanzee X chromosome suggests this subfamily has been strongly conserved during and since the separation of chimpanzee and man although the two subfamilies can be distinguished on the basis of Taq I restriction fragments.  相似文献   

6.
R C Peterson  J L Doering  D D Brown 《Cell》1980,20(1):131-141
The somatic 5S DNA from X. borealis (Xbs 5S DNA) and X. laevis (Xis 5S DNA) and a minor oocyte-specific 5S DNA from X. laevis (Xit 5S DNA) have been purified, and individual repeating units have been cloned and sequenced. The two somatic 5S DNAs differ from the major oocyte 5S DNAs in having GC-rich spacers, homogeneous repeat lengths and no "pseudogenes." The somatic 5S DNAs from the two species have similar spacer sequences with differences due to single base changes and insertions/deletions. The spacer of the minor oocyte-specific 5S DNA (Xit) has the AT-rich sequence characteristic of the major oocyte 5S DNAs from X. laevis and X. borealis, and contains one duplication that has diverged approximately 40%. Like the somatic 5S DNAs, Xit 5S DNA has a homogeneous length repeat and a unique nucleotide sequence in its spacer. The presence of variable-length spacer regions in a multigene family correlates with variables numbers of a simple sequence in the spacer regions.  相似文献   

7.
8.
The organization and chromosomal distribution of the repetitive DNA component IB from Muntiacus muntjak vaginalis (MMV) was investigated. DNA fragments of component IB were cloned in cosmids and their structure analysed using restriction nucleases and blot-hybridization experiments. Two cosmids were found to be practically identical by restriction enzyme mapping. The repeat unit of component IB DNA is more than 40 kb and contains the 11 and 18 kb Bam HI fragments, which have previously been shown to cross-hybridize with MMV satellite IA. In addition, the repeat unit contains long stretches of DNA sequences which are unique to component IB. In situ hybridization experiments showed that component IB has the properties characteristic of long interspersed repetitive DNA rather than tandemly repeated satellite DNA. Consistent with this conclusion, only a minor fraction of component IB is located on the X chromosome as demonstrated by the analysis of somatic cell hybrids. This is in marked contrast to satellite IA that is specific for the X chromosome. These results have interesting implications for the evolution of the component I DNA family of the MMV genome.  相似文献   

9.
R L Neve  G A Bruns  T P Dryja  D M Kurnit 《Gene》1983,23(3):343-354
Human Alu repeat ("BLUR") sequences have been cloned into the mini-plasmid vector piVX. The resulting piBLUR clones have been used to rescue selectively, by recombination, bacteriophage carrying human DNA sequences from genomic libraries constructed using DNA from rodent-human somatic cell hybrids. piBLUR clones are able to retrieve human clones from such libraries because at least one Alu family repeat is present on most 15 to 20 kb fragments of human DNA and because of the relative species-specificity of the sequences comprising the Alu family. The rapid, selective plaque purification achieved results in the construction of a collection of recombinant phage carrying diverse human DNA inserts from a specific subset of the human karyotype. Subfragments of two recombinants rescued from a mouse-human somatic cell hybrid containing human chromosomes X, 10, 13, and 22 were mapped to human chromosomes X and 13, respectively, demonstrating the utility of this protocol for the isolation of human chromosome-specific DNA sequences from appropriate somatic cell hybrids.  相似文献   

10.
To understand evolutionary events in the formation of higher-order repeat units in alpha satellite DNA, we have examined gorilla sequences homologous to human X chromosome alpha satellite. In humans, alpha satellite on the X chromosome is organized as a tandemly repeated, 2.0 x 10(3) base-pairs (bp) higher-order repeat unit, operationally defined by the restriction enzyme BamHI. Each higher-order repeat unit is composed of 12 tandem approximately 171 base-pair monomer units that have been classified into five distinct sequence homology groups. BamHI-digested gorilla genomic DNA hybridized with the cloned human 2 x 10(3) bp X alpha satellite repeat reveals three bands of sizes approximately 3.2 x 10(3), 2.7 x 10(3) and 2 x 10(3) bp. Multiple copies of all three repeat lengths have been isolated and mapped to the centromeric region of the gorilla X chromosome by fluorescence in situ hybridization. Long-range restriction mapping using pulsed-field gel electrophoresis shows that the 2.7 x 10(3) and 3.2 x 10(3) bp repeat arrays exist as separate but likely neighboring arrays on the gorilla X, each ranging in size from approximately 200 x 10(3) to 500 x 10(3) bp, considerably smaller than the approximately 2000 x 10(3) to 4000 x 10(3) bp array found on human X chromosomes. Nucleotide sequence analysis has revealed that monomers within all three gorilla repeat units can be classified into the same five sequence homology groups as monomers located within the higher-order repeat unit on the human X chromosome, suggesting that the formation of the five distinct monomer types predates the divergence of the lineages of contemporary humans and gorillas. The order of 12 monomers within the 2 x 10(3) and 2.7 x 10(3) bp repeat units from the gorilla X chromosome is identical with that of the 2 x 10(3) bp repeat unit from the human X chromosome, suggesting an ancestral linear arrangement and supporting hypotheses about events largely restricted to single chromosome types in the formation of alpha satellite higher-order repeat units.  相似文献   

11.
甲基化特异性PCR检测FMR1 和XIST基因甲基化实验方法的建立   总被引:1,自引:0,他引:1  
建立一种快速、灵敏的检测脆性X智障基因(Fragile X mental retardation, FMR1)和X染色体失活基因(X chromosome inactivation,XIST)甲基化的方法,用亚硫酸氢钠和对苯二酚对基因组DNA进行脱氨基修饰。以修饰后的DNA为模板,用两套不同的引物对:1对甲基化特异性引物和1对非甲基化特异性引物扩增FMR1基因(CGG)n重复序列区、FMR1 和XIST 基因的启动子区。PCR产物进一步克隆、测序。以亚硫酸氢钠和对苯二酚脱氨基修饰后的DNA为模板,进行PCR扩增后的产物与预期基因目的基因片段大小相符合,无非特异性扩增产物。测序结果表明,FMR1、XIST基因中的非甲基化的C碱基转变为U碱基,而CpG岛被甲基化的C碱基不改变。成功地建立了检测FMR1、XIST甲基化的方法,为实验室诊断脆性X综合征提供了新的方法。  相似文献   

12.
Molecular heterogeneity of the fragile X syndrome.   总被引:26,自引:1,他引:25       下载免费PDF全文
The fragile X syndrome is an X-linked disorder which has been shown to be associated with the length variation of a DNA fragment containing a CGG trinucleotide repeat element at or close to the fragile site. Phenotypically normal carriers of the disorder generally have a smaller length variation than affected individuals. We have cloned the region in cosmids and defined the area containing the amplified sequence. We have used probes from the region to analyse the mutation in families. We show that the mutation evolves in different ways in different individuals of the same family. In addition we show that not all fragile X positive individuals show this amplification of DNA sequence even though they show expression of the fragile site at levels greater than 25%. One patient has alterations in the region adjacent to the CGG repeat elements. Three patients in fragile X families have the normal fragment with amplification in a small population of their cells. These observations indicate that there is molecular heterogeneity in the fragile X syndrome and that the DNA fragment length variation is not the only sequence responsible for the expression of the fragile site or the disease phenotype.  相似文献   

13.
The tsBN462 cell line, a temperature-sensitive (ts) mutant isolated from the hamster cell line, BHK21/13 has a ts defect in G1 progression and belongs to the same complementation group as the ts13 cell line. We cloned human cDNA which can complement both tsBN462 and ts13 mutations, from the cDNA library of the secondary ts+ transformant (K-1-1) of tsBN462 cells using, as a probe, the isolated human X chromosomal genomic DNA. The cloned DNA is 5.3 kb long and has an open reading frame of 4662 bp, encoding a protein of 178,768 daltons. The putative protein is hydrophilic with a tandem repeat of 120 amino acids in the C-terminal region. An amino acid sequence (PPKKKRRV), similar to the consensus sequence for the nuclear translocation signal, is located immediately before the tandem repeat of amino acids.  相似文献   

14.
The nuclease reactivity and specificity of a cloned tract of poly X (dA-dT) X poly(dA-dT) has been explored. Digestion with DNAse I, Mung Bean nuclease, S1 nuclease, DNAse II, and copper (1,10-phenanthroline)2 on a 256 base pair restriction fragment containing d(AT)14A revealed a dinucleotide repeat structure for the alternating sequence. Furthermore, conditions which wind or unwind the linear DNA had little effect on the reactivity of the AT insert. These preferred cleavages offer insights to structural alterations within the DNA helix which differ from A, B, or Z-DNA. Nucleation into flanking sequences by this structural alteration was not observed.  相似文献   

15.
Alpha satellite DNA, a diverse family of tandemly repeated DNA sequences located at the centromeric region of each human chromosome, is organized in a highly chromosome-specific manner and is characterized by a high frequency of restriction-fragment-length polymorphism. To examine events underlying the formation and spread of these polymorphisms within a tandem array, we have cloned and sequenced a representative copy of a polymorphic array from the X chromosome and compared this polymorphic copy with the predominant higher-order repeat form of X-linked alpha satellite. Sequence data indicate that the polymorphism arose by a single base mutation that created a new restriction site (for HindIII) in the sequence of the predominant repeat unit. This variant repeat unit, marked by the new HindIII site, was subsequently amplified in copy number to create a polymorphic domain consisting of approximately 500 copies of the variant repeat unit within the X-linked array of alpha satellite. We propose that a series of intrachromosomal recombination events between misaligned tandem arrays, involving multiple rounds of either unequal crossing-over or sequence conversion, facilitated the spread and fixation of this variant HindIII repeat unit.  相似文献   

16.
Tandemly repeated DNA can comprise several percent of total genomic DNA in complex organisms and, in some instances, may play a role in chromosome structure or function. Alpha satellite DNA is the major family of tandemly repeated DNA found at the centromeres of all human and primate chromosomes. Each centromere is characterized by a large contiguous array of up to several thousand kb which can contain several thousand highly homogeneous repeat units. By using a novel application of the polymerase chain reaction (repPCR), we are able to amplify a representative sampling of multiple repetitive units simultaneously, allowing rapid analysis of chromosomal subsets. Direct sequence analysis of repPCR amplified alpha satellite from chromosomes 17 and X reveals positions of sequence heterogeneity as two bands at a single nucleotide position on a sequencing ladder. The use of TdT in the sequencing reactions greatly reduces the background associated with polymerase pauses and stops, allowing visualization of heterogeneous bases found in as little as 10% of the repeat units. Confirmation of these heterogeneous positions was obtained by comparison to the sequence of multiple individual cloned copies obtained both by PCR and non-PCR based methods. PCR amplification of alpha satellite can also reveal multiple repeat units which differ in size. Analysis of repPCR products from chromosome 17 and X allows rapid determination of the molecular basis of these repeat unit length variants, which appear to be a result of unequal crossing-over. The application of repPCR to the study of tandemly repeated DNA should allow in-depth analysis of intra- and interchromosomal variation and unequal crossing-over, thus providing insight into the biology and genetics of these large families of DNA.  相似文献   

17.
A Paracentrotus lividus genomic library was constructed using sperm DNA prepared from a single animal. The DNA was fragmented by partial digestion with DNase II, sized on a preparative agarose gel and inserted in the Pst I site of pBR 322 by the dG X dC tailing method. Recombinant plasmids containing ribosomal DNA were isolated, a restriction map of the gene was determined and the 18S and 26S transcribed sequences were located by S1 protection mapping. The organization of the ribosomal genes in genomic DNA of individual animals and of a pool of animals was studied by blot-hybridization of the restriction fragments, using as probes nick-translated 32P-labelled cloned ribosomal DNA fragments or 18S and 26S sea-urchin ribosomal RNA. The repeat length of the ribosomal unit was about 10.5 X 10(3) bases. A comparison of the restriction patterns of DNA from different animals showed a marked sequence heterogeneity in the spacer region of these genes. Variations of about 200 base pairs were detectable in the length of the spacer of some individuals.  相似文献   

18.
19.
The two species of covalently closed circular DNA molecules of bovine leukemia virus were cloned in the lambda phage vector lambda gtWES X lambda B. Of the nine independent recombinant lambda-bovine leukemia virus clones that were analyzed, three were derived from the small and six were derived from the large circular molecules carrying, respectively, one and two copies of the long terminal repeat sequences. Comprehensive restriction endonuclease mapping of the unintegrated bovine leukemia virus and the cloned DNA molecules showed that eight of the nine clones carried viral information without any detectable deletions or insertions of more than ca. 50 base pairs. One of the nine clones, which carries a retroviral insert with one copy of the long terminal repeat, had a deletion of ca. 150 base pairs.  相似文献   

20.
Repetitive sequence transcripts in the mature sea urchin oocyte   总被引:7,自引:0,他引:7  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号