首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of a multidrug resistance-adenosine deaminase fusion gene   总被引:9,自引:0,他引:9  
A novel fusion gene has been created in which the expression of a dominant selectable marker, the human multidrug resistance gene, is directly linked to the expression of human adenosine deaminase cDNA. The chimeric gene was inserted between the long terminal repeats of a Harvey murine sarcoma virus expression vector and used to transfect drug-sensitive human KB carcinoma cells. Transfectants were selected in increasing concentrations of colchicine and found to contain multiple copies of the intact fusion gene, which is stably and efficiently expressed. A membrane-associated 210-kDa human P-glycoprotein-adenosine deaminase fusion protein is synthesized which retains function of the multidrug transporter and also exhibits adenosine deaminase activity. The data indicate that the human multidrug resistance gene may be used as a dominant selectable marker to introduce other genes in the form of gene fusions into cultured cells.  相似文献   

2.
The human MDR1 gene encodes the multidrug transporter (P-glycoprotein), a multidrug efflux pump. The highly homologous MDR2 gene product does not appear to be a functional multidrug pump. We have constructed a chimeric protein in which the first intracytoplasmic loop and the third and fourth transmembrane domains of the MDR1 protein were replaced by the analogous region of MDR2. Substitution of the MDR2 sequences encompassing amino acid residues 140 to 229 resulted in 17 amino acid changes, 10 in the intracytoplasmic loop (amino acids 141-188) and 7 in the transmembrane regions. This chimeric protein was expressed on the surface of NIH 3T3 cells where it bound [3H]azidopine but did not confer drug resistance. When only 4 residues, 165, 166, 168, and 169, were changed back to MDR1 amino acids, a functional drug transporter was recovered. When residues 165, 166, 168, and 169 from MDR2 were substituted into a functional MDR1 cDNA, the resulting construction was not able to confer drug resistance. These results indicate that the major functional differences between MDR1 and MDR2 in this region of P-glycoprotein reside in a small segment of the first intracytoplasmic loop. We also independently analyzed the effect of replacing Asn183 of MDR1 with Ser which occurs in MDR2. Substitution of Ser at position 183 in combination with Val at position 185 in P-glycoprotein resulted in a relative increase in resistance to actinomycin D, vinblastine, and doxorubicin in transfected NIH 3T3 cells. These results emphasize the importance of the first intracytoplasmic loop in P-glycoprotein in determining function and relative drug specificity of the transporter.  相似文献   

3.
4.
Jeon YH  Bae SA  Lee YJ  Lee YL  Lee SW  Yoon GS  Ahn BC  Ha JH  Lee J 《Molecular imaging》2010,9(6):343-350
The reversal effect of multidrug resistance (MDR1) gene expression by adenoviral vector-mediated MDR1 ribonucleic acid interference was assessed in a human colon cancer animal model using bioluminescent imaging with Renilla luciferase (Rluc) gene and coelenterazine, a substrate for Rluc or MDR1 gene expression. A fluorescent microscopic examination demonstrated an increased green fluorescent protein signal in Ad-shMDR1- (recombinant adenovirus that coexpressed MDR1 small hairpin ribonucleic acid [shRNA] and green fluorescent protein) infected HCT-15/Rluc cells in a virus dose-dependent manner. Concurrently, with an increasing administered virus dose (0, 15, 30, 60, and 120 multiplicity of infection), Rluc activity was significantly increased in Ad-shMDR1-infected HCT-15/Rluc cells in a virus dose-dependent manner. In vivo bioluminescent imaging showed about 7.5-fold higher signal intensity in Ad-shMDR1-infected tumors than in control tumors (p < .05). Immunohistologic analysis demonstrated marked reduction of P-glycoprotein expression in infected tumor but not in control tumor. In conclusion, the reversal of MDR1 gene expression by MDR1 shRNA was successfully evaluated by bioluminescence imaging with Rluc activity using an in vivo animal model with a multidrug resistance cancer xenograft.  相似文献   

5.
To explore whether human umbilical cord blood hematopoietic progenitor cells transduced with human O6-methylguanine-DNA-methyltransferase (MGMT) and multidrug resistance gene (MDR1) increase resistance to 1,3-Bis(2-Chloroethy1)-1-Nitrosourea (BCNU) and P-glycoprotein effluxed drugs, the present authors obtained a full length cDNA fragment encoding MGMT from liver tissue of a patient with cholelithiasis by RT-PCR. A bicistronic retroviral vector G1Na-MGMT-IRES-MDR1 cDNA was constructed and transfected the packaging cell lines GP + E86 and PA317 by electric performation method, using the medium containing VCR and BCNU for cloning selection and ping-ponging supernatant infection between ecotropic producer clone and amphotropic producer clone, cord blood CD34+ cells were enriched with a high-gradient magnetic cell sorting system (MACS), and then transfected repeatedly with supernatant of retrovirus containing human MGMT and MDR1cDNA under stimulation of hemapoietic growth factors. PCR, RT-PCR, Southern blot, Northern blot, Western blot, FACS and MTT assay were used to evaluate the transfer and expression of the double genes in cord blood CD34+ cells. The cDNA encoding MGMT was verified by DNA sequencing and the bicistronic retroviral vector was confirmed by restriction endonuclease analysis. The purity of cord blood CD34+ cells was approximately 92% and recover rate was 75%, the highest titer of recombinant amphotropic retrovirus in the supernatant was up to 5.8 x 10(5) cfu/ml. The efficiency of gene transduction was 18% and 20% tested by colony formation and PCR, respectively. No helper virus was found by both nested PCR and rescue assay. The results showed that dual drug resistance genes have been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The MTT analysis showed a 4.5 to 7.8-fold increase of resistance of transducted cells to BCNU and P-glycoprotein effluxed drug as compared with the nontransduced cells. This study provided a foundation for ameliorating combination chemotherapy toxicity in tumor clinical trial.  相似文献   

6.
7.
The plasma membrane associated human multidrug resistance (MDR1) gene product, known as the 170-kDa P-glycoprotein or the multidrug transporter, acts as an ATP-dependent efflux pump for various cytotoxic agents. We expressed recombinant human multidrug transporter in a baculovirus expression system to obtain large quantities and further investigate its structure and mechanism of action. MDR1 cDNA was inserted into the genome of the Autographa californica nuclear polyhedrosis virus under the control of the polyhedrin promoter. Spodoptera frugiperda insect cells synthesized high levels of recombinant multidrug transporter 2-3 days after infection. The transporter was localized by immunocytochemical methods on the external surface of the plasma membranes, in the Golgi apparatus, and within the nuclear envelope. The human multidrug transporter expressed in insect cells is not susceptible to endoglycosidase F treatment and has a lower apparent molecular weight of 140,000, corresponding to the nonglycosylated precursor of its authentic counterpart expressed in multidrug-resistant cells. Labeling experiments showed that the recombinant multidrug transporter is phosphorylated and can be photoaffinity labeled by [3H]-azidopine, presumably at the same two sites as the native protein. Various drugs and reversing agents (e.g., daunomycin greater than verapamil greater than vinblastine approximately vincristine) compete with the [3H]azidopine binding reaction when added in excess, indicating that the recombinant human multidrug transporter expressed in insect cells is functionally similar to its authentic counterpart.  相似文献   

8.
罗雯  徐志凯等 《Virologica Sinica》2002,17(3):226-229,F003
将汉滩病毒囊膜糖蛋白G1与核蛋白 (NP)部分片段以不同方式拼接 ,构建G1S0 .7或S0 .7G1嵌合基因 ,分别插入杆状病毒表达载体 pFBD ,转化DH10Bac致敏菌 ,获得含有嵌合基因的重组穿梭质粒Bacmid ,用其转染Sf9细胞 ,快速筛选出含有G1S0 .7或S0 .7G1嵌合基因的重组杆状病毒 ,在昆虫细胞中表达外源融合蛋白。利用间接免疫荧光、ELISA和免疫印迹对表达产物进行检测。结果表明 ,含G1S0 .7嵌合基因之重组杆状病毒可在昆虫细胞中表达出融合蛋白 ,该蛋白可被抗汉滩病毒核蛋白及糖蛋白G1特异性单抗所识别 ,其分子量约 97kD ;含S0 .7G1嵌合基因之重组杆状病毒在昆虫细胞中表达的融合蛋白 ,只能被抗汉滩病毒核蛋白特异性单抗所识别 ,其分子量约 4 3kD。上述结果提示 ,G1S0 .7嵌合基因可能在昆虫细胞中表达出完整的具有生物学活性的融合蛋白 ,S0 .7G1嵌和基因的昆虫细胞表达产物不完整 ,且生物学活性不如G1S0 .7嵌合基因的表达产物  相似文献   

9.
A retroviral packaging system was used to generate a murine virus carrying sequences encoding human adenosine deaminase (ADA). To this end, human ADA cDNA was inserted into the retroviral shuttle vector pZIP-NeoSV(X)1. This vector provides all of the cis-acting sequences necessary for the efficient packaging and transmission of the viral genome as well as a selectable gene for G418 resistance. Transfection of this recombinant plasmid into cells that provide essential virus products (psi-2 cells) yielded cell lines that stably produced virions carrying the coding sequence of human ADA. We have used these virions to infect NIH3T3 cells, which after 48 h synthesized catalytically active human ADA. Furthermore, G418-resistant cell lines were obtained from the virus-infected NIH3T3 cells that stably produced the human ADA enzyme.  相似文献   

10.
Overexpression of P-glycoprotein (P-gp), the mdr1 gene product, confers multidrug resistance (MDR) to tumor cells and often limits the efficacy of chemotherapy. This study evaluated RNAi for specific silencing of the mdr1 gene and reversion of multidrug resistance. Three different short hairpin RNAs (shRNAs) were designed and constructed in a pSilencer 3.1-H1 neo plasmid. The shRNA recombinant plasmids were transfected into HT9 leukemia cells. The RNAi effect was evaluated by real-time PCR, Western blotting and cell cytotoxicity assay. In the cell, shRNAs can specifically down-regulate the expression of mdr1, mRNA and P-gp. Resistance against harringtonine, doxorubicin and curcumin was decreased. The study indicated that shRNA recombinant plasmids could modulate MDR in vitro.  相似文献   

11.
A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with35S-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170–180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.  相似文献   

12.
Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2   总被引:39,自引:0,他引:39  
  相似文献   

13.
14.
To explore whether human umbilical cord blood CD34+ cells transduced with human aldehyde dehydrogenase class-1 (ALDH1) and multidrug resistance gene (MDR1) increase resistance to 4-Hyaroxycyclophosphophamide (4-HC) and P-Glycoprotein Effluxed Drugs, a bicistronic Retroviral vector G1Na-ALDH1-IRES-MDR1 was constructed. The vector was transduced into the packaging cell lines GP + E86 and PA317 by LipofectAMINE. Using the medium containing VCR and 4-HC for cloning selection and pingponging supernatant infection between ecotropic producer clone and amphotropic producer clone, we obtained high titer amphotropic PA317 producer clone with the highest titer up to 5.6 x 10(5) CFU/ml. Cord blood CD34+ cells were transfectced repeatedly with supernatant of retrovirus containing human ALDH1 and MDR1cDNA under stimulation of hemopoietie growth factors. PCR, RT-PCR, Southern blot, Northern blot, FACS and MTT method analyses show that dual drug resistance genes have been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The transgenes recipient cells confered 4- to 7.2-folds stronger resistance to cyclophospsphamede and P-Glycoprotein Effluxes drug in comparison with the nontransduced cells. This study provided a foundation for the application of combination chemotherapy in tumor clinical trial.  相似文献   

15.
The multidrug resistance gene product P-glycoprotein confers drug resistance to tumor cells by acting as a transporter that blocks the entry into the cell of a great variety of drugs and hydrophobic peptides. In this study we find that in drug-resistant cells, the insertion of the influenza virus fusion protein (hemagglutinin-2) into the plasma membrane is blocked and that the fusion of the viral envelope with the plasma membrane of these cells is impaired. Multidrug-resistant cells display significant resistance to infection by envelope viruses that invade cells by fusion with the plasma membrane, but not to infection by pH-dependent viruses that penetrate cells by fusion with endocytic vesicles. These observations suggest that multidrug resistance phenomena may protect cells from infection by a large group of disease-causing viruses that includes human immunodeficiency virus, herpes simplex virus, and some cancer-inducing retroviruses.  相似文献   

16.
腺相关病毒 (adeno- associated virus,AAV)属细小病毒科 ,是一种最小的动物病毒 .具有其他病毒载体所没有的优点 ,在基因治疗中日益受到瞩目 .以 AAV的一种多克隆载体为基础 ,构建了携带 MDR1基因的重组腺相关病毒载体 (r AAV- MDR1 ) ,经 2 93细胞包装成重组病毒 .将重组质粒、重组病毒分别转染和感染 NIH3T3细胞 ,用 PCR和 MTT法检测了人 MDR1基因的转导及表达 .为 MDR1基因用于临床和腺相关病毒载体在基因治疗中的应用提供了依据  相似文献   

17.
The human multidrug resistance gene MDR1 encodes a membrane-bound protein, referred to as P-glycoprotein, that acts as a pump to extrude toxins from cells. The 3' untranslated region (3'UTR) of the human MDR1 mRNA is very AU-rich (70%) and contains AU-rich sequences similar to those shown to confer rapid decay on c-myc, c-fos, and lymphokine mRNAs. We tested the ability of the MDR1 3'UTR to act as an mRNA destabilizing element in the human hepatoma cell line HepG2. The MDR1 mRNA has an intermediate half-life of 8 h in HepG2 cells compared to a half-life of 30 min for c-myc mRNA. The MDR1 mRNA half-life was prolonged to >20 h upon treatment with the protein synthesis inhibitor cycloheximide. We constructed expression vectors containing the human beta-globin coding region with the 3'UTR from either MDR1 or c-myc. The c-myc 3'UTR increased the decay of the chimeric mRNA, but the MDR1 3'UTR had no effect. We tested the ability of MDR1 3'UTR sequences to compete for interaction with AU-binding proteins in cell extracts; MDR1 RNA probes had a fivefold lower affinity for AU-binding proteins that interact with the c-myc AU-rich 3'UTR. Overall, our data suggest that the MDR1 3'UTR does not behave as an active destabilizing element in HepG2 cells.  相似文献   

18.
Retroviral-mediated gene transfer has been used in an attempt to efficiently and stably express functional cell-surface molecules in lymphoid and myeloid cells. The human CD8 molecule is a T cell-specific surface receptor that is intimately involved in class I MHC-restricted Ag recognition and subsequent T cell activation. After infection with a recombinant, replication-defective retrovirus containing the human CD8 alpha cDNA, bone marrow cells were transplanted into lethally irradiated recipients. The majority of lymphoid and myeloid cells of reconstituted animals expressed high levels of human CD8 for at least 8 months after transplantation. Transfer of bone marrow and spleen cells from these recipients 100 days after transplantation into secondary recipients also resulted in long term expression of CD8 in lymphoid and myeloid cells. CD8 expressed in splenic T cells associated with the lymphoid-specific tyrosine protein kinase p56lck, participated in T cell activation and conferred an increased xenogeneic response to human MHC class I Ag. Thus, retroviral-mediated gene transfer allows the long term, functional expression of cell-surface molecules in normal murine lymphoid and myeloid cells.  相似文献   

19.
BACKGROUND: The objective of multidrug resistance-1 (MDR1) gene therapy is protection of the myeloid cell lineage. It is therefore important to examine the effect of retroviral transduction on myeloid maturation. Transfer of the human MDR1 gene can confer resistance to a variety of cytostatic drugs. For a safe application in humans it is paramount to follow-up the development of transduced cells. METHODS: We transduced human mobilized peripheral blood progenitor cells (PBPC) with a viral vector containing the human MDR1 cDNA and transplanted the transduced cells into non-obese diabetic severe combined immunodeficient (NOD/SCID) mice. The progeny of the transduced cells was analyzed in detail by flow cytometry. RESULTS: A detailed analysis by four-color flow cytometry showed that MDR1 transgene-expressing CD33+ myeloid cells were preferentially negative for the maturation-associated myeloid markers CD11b and CD10, while the untransduced CD33+ myeloid cells expressed significantly higher proportions of these Ag (P<0.01 each). There was no difference in the expression of B- or T-lymphoid Ag among the MDR1-transduced and untransduced lymphoid cells. DISCUSSION: These data indicate that retroviral MDR1 gene transfer results in preferential P-glycoprotein expression in myeloid progenitor cells, which is the target cell population for myelotoxicity of cytostatic drugs.  相似文献   

20.
RNA helicase A (RHA) is a member of the DEAD/H family of RNA helicases and unwinds duplex RNA and DNA. Recent studies have shown that RHA regulates the activity of gene promoters. However, little information is available about the in vivo relevance of RHA in the regulation of natural genes. We previously characterized a nuclear protein (MEF1) that binds to the proximal promoter of the multidrug resistance gene (MDR1) and up-regulates the promoter activity. In the present study, we isolated and identified RHA as a component of the MEF1 complex by using DNA-affinity chromatography and mass spectrometry. The antibody against RHA specifically disrupted the complex formation in electrophoretic mobility shift assay, confirming the identity of RHA. Western blotting showed that RHA in drug-resistant cells had a higher molecular weight than that in drug-sensitive cells. Similar results were obtained when FLAG-tagged RHA was overexpressed in these cells. This size difference probably reflects posttranslational modification(s) of RHA in drug-resistant cells. Chromatin immunoprecipitation revealed that RHA occupies the MDR1 promoter in vivo. Overexpression of RHA enhanced expression of the MDR1 promoter/reporter construct and endogenous P-glycoprotein (P-gp), the MDR1 gene product, and increased drug resistance of drug-resistant cells but not the drug-sensitive counterpart. Introduction of short interfering RNA targeting the RHA gene sequence selectively knocked-down RHA expression and concomitantly reduced P-gp level. Thus, our study demonstrates, for the first time, the involvement of RHA in up-regulation of the MDR1 gene. Interactions of RHA with other protein factors in the MEF1 complex bound to the promoter element may contribute to P-gp overexpression and multidrug resistance phenotype in drug-resistant cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号