首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasminogen activator inhibitor 1 (PAI-1), the principal physiological inhibitor of tissue plasminogen activator (tPA), is a protein of 379 amino acids and belongs to the SERPIN family of serine protease inhibitors. We have previously described methods to express [Sisk et al. (1990) Gene 96, 305-309] and purify [Reilly et al. (1990) J. Biol. Chem. 265, 9570-9574] a highly active form of the protein in substantial amounts, from Escherichia coli. Further analyses of this material showed the presence of small but significant amounts of latent rPAI-1. The present paper describes for the first time purification of latent and active forms of rPAI-1 from a single preparation, as well as the functional and structural characteristics of the two forms. Latent rPAI-1, which has properties similar to the latent forms described by other groups, was separated from active rPAI-1 by high-resolution ion-exchange chromatography or by affinity chromatography using immobilized anhydrotrypsin. It had low intrinsic activity (< 5% of active rPAI-1) and was partially reactivated by guanidine hydrochloride treatment or by incubation with vitronectin. Conversion of the active rPAI-1 to the latent form was influenced by temperature and additives including sucrose, EDTA, and arginine. Active and latent rPAI-1 did not show any obvious differences in their primary structures and displayed remarkably similar secondary structures as determined by circular dichroism spectral analyses. However, they did exhibit differences in tryptophan fluorescence, suggesting tertiary structural differences between the two forms.  相似文献   

2.
A recombinant form of plasminogen activator inhibitor-1 (rPAI-1) has been purified from lysates of pCE1200, a bacterial expression vector containing the full length PAI-1 gene, by utilizing sequential anion exchange and cation exchange chromatography on Q-Sepharose and S-Sepharose columns. Approximately 140 mg of rPAI-1, estimated at 98% purity on the basis of analytical high performance liquid chromatography, could be obtained from 200 g wet weight of cells. The purified protein exhibited a single Coomassie Blue-stainable band at the region of Mr = 42,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an NH2-terminal amino acid sequence consistent with the expected translation product of the pCE1200 PAI-1 insert. The rPAI-1 rapidly inhibited single- and two-chain tissue plasminogen activators, as well as urokinase, with apparent second order rate constants in the range of 2-5 x 10(7) M-1 s-1. A specific activity measurement of 250,000 units/mg was calculated for the rPAI-1 based on its ability to inhibit the enzymatic activity of a single-chain tissue plasminogen activator. Stability studies showed that the activity of the rPAI-1 was very stable when stored at temperatures of 25 degrees C or lower, but decayed within hours when stored at 37 degrees C. Sodium dodecyl sulfate treatment, which partially activates the latent form of natural PAI-1, inactivated rPAI-1. These results show that the purified rPAI-1 produced from pCE1200 displays many of the properties associated with the biologically active form of natural PAI-1.  相似文献   

3.
The DNA fragment coding for kringle 2 plus serine protease domains (K2S) of tissue plasminogen activator (tPA) was inserted into a phagemid vector, pComb3HSS. In the recombinant vector, pComb3H-K2S, the K2S gene was fused to gpIII of PhiM13 and linked to the OmpA signal sequence. The resulting gene, rK2S-gpIII, was inducibly expressed in Escherichia coli XL-1 Blue. The protein was presented on the phage particle. To stop the expression of gpIII, a stop codon between K2S and the gpIII gene was inserted by site-directed mutagenesis. This mutated vector, MpComb3H-K2S, was transformed in XL-1 Blue. After induction with IPTG (isopropyl-beta-D-thiogalactopyranoside), rK2S was found both in the periplasm as an inactive form of approximately 32% and in the culture supernatant as an active form of approximately 68%. The secreted form of rK2S was partially purified by ammonium sulfate (55%) precipitation. The periplasmic form was isolated from whole cells by chloroform extraction. The fibrin binding site of kringle 2 was demonstrated in all expressed versions (phage-bound, periplasmic, and secreted forms) using the monoclonal anti-kringle 2 antibody (16/B). Only the secreted form of rK2S revealed a fibrinogen-dependent amidolytic activity with the specific activity of 236 IU/microg. No amidolytic activity of rK2S was observed in either the periplasmic or the phage-bound form. The secretion of rK2S as an active enzyme offers a novel approach for the production of the active-domain deletion mutant tPA, rK2S, without any requirements for bacterial compartment preparation and in vitro refolding processes. This finding is an important technological advance in the development of large-scale, bacterium-based tPA production systems.  相似文献   

4.
W P Sisk  G L Davis  D Kingsley  A T Chiu  T M Reilly 《Gene》1990,96(2):305-309
Segments of a cDNA encoding human plasminogen activator inhibitor type 1 (PAI-1) were subcloned into a highly regulated and inducible Escherichia coli expression system. A plasmid encoding the mature form of human endothelial PAI-1 produced a functional recombinant molecule, as indicated by its ability to inhibit tissue plasminogen activator's enzymatic activity. In contrast to PAI-1 isolated from human fibrosarcoma cells, the biological activity of the recombinant PAI-1 was not dependent on pretreatment with denaturing agents. A construct encoding a polypeptide lacking the first 80 amino acids of PAI-1 also produced elevated levels of the truncated recombinant protein. However, this truncated product was functionally inactive, indicating that an intact N terminus is required for activity.  相似文献   

5.
Human plasminogen activator inhibitor-1 (PAI-1) was purified from the conditioned medium of endotoxin-stimulated umbilical vein endothelial cell cultures by combinations of zinc-chelate-Sepharose chromatography, gel filtration on Sephacryl S-300 and immunoadsorption on an insolubilized murine monoclonal antibody (MA-7D4). The final product was obtained with a recovery of approximately 20% from conditioned medium containing about 3 micrograms/ml PAI-1. The yield of PAI-1 was 15-100 micrograms/umbilical cord, depending on the culture and harvest conditions. SDS gel electrophoresis revealed a main band with Mr = 46,000 both under reducing and non-reducing conditions. On gel filtration on Sephacryl S-300, however, the material was separated in two fractions, one eluting at the void volume, which contains active PAI-1, and one with Mr = 46,000 containing inactive material that could be reactivated with 12 M urea. SDS gel electrophoresis of the isolated high-Mr fraction revealed several bands including a main 46,000-Mr component, which reacted with anti-(PAI-1) antibodies on immunoblotting and neutralized tissue-type plasminogen activator (t-PA). The active high-Mr fraction and the reactivated low-Mr fraction of PAI-1 inhibited t-PA very rapidly with an apparent second-order rate constant of (1.5-4) x 10(7) M-1 s-1. The cDNA of endothelial cell PAI-1 was cloned and expressed in Chinese hamster ovary cells. The translation product, purified from conditioned medium of transfected cells, also revealed a high-Mr and a low-Mr fraction on gel filtration, which were indistinguishable from the natural proteins by physicochemical, immunochemical and functional analysis. On reduced SDS gel electrophoresis, the high-Mr fraction was separated into the Mr-46,000 low-Mr PAI-1 and two other components with Mr 65,000 and one barely entering the gel. When reactivated low-Mr PAI-1 was added to plasma, PAI activity and PAI-1 antigen eluted with an apparent Mr greater than or equal to 300,000 on gel filtration, indicating that active PAI-1 complexes with one or more binding proteins in plasma.  相似文献   

6.
When eukaryotic proteins with multiple disulfide bonds are expressed at high levels in Escherichia coli, the efficiency of thiol oxidation and isomerization is typically not sufficient to yield soluble products with native structures. Even when such proteins are secreted into the oxidizing periplasm or expressed in the cytoplasm of cells carrying mutations in the major intracellular disulfide bond reduction systems (e.g., trxB gor mutants), correct folding can be problematic unless a folding modulator is simultaneously coexpressed. In the present study we explored whether the bacterial twin-arginine translocation (Tat) pathway could serve as an alternative expression system for obtaining appreciable levels of recombinant proteins which exhibit complex patterns of disulfide bond formation, such as full-length human tissue plasminogen activator (tPA) (17 disulfides) and a truncated but enzymatically active version of tPA containing nine disulfides (vtPA). Remarkably, targeting of both tPA and vtPA to the Tat pathway resulted in active protein in the periplasmic space. We show here that export by the Tat translocator is dependent upon oxidative protein folding in the cytoplasm of trxB gor cells prior to transport. Whereas previous efforts to produce high levels of active tPA or vtPA in E. coli required coexpression of the disulfide bond isomerase DsbC, we observed that Tat-targeted vtPA and tPA reach a native conformation without thiol-disulfide oxidoreductase coexpression. These results demonstrate that the Tat system may have inherent and unexpected benefits compared with existing expression strategies, making it a viable alternative for biotechnology applications that hinge on protein expression and secretion.  相似文献   

7.
Two nearly full-length cDNAs for placental plasminogen activator inhibitor (PAI) have been isolated from a human placenta lambda gt11 cDNA library. One positive (lambda PAI-75.1) expressed a protein that could adsorb and purify anti-PAI antibodies. The expressed protein inhibited the activity of human urokinase in a fibrin autography assay, and formed a 79-kDa (reduced) covalent complex with 125I-urokinase that could be immunoprecipitated with anti-PAI. The cDNA insert of the longer isolate (lambda PAI-75.15) consisted of 1909 base pairs, including a 5'-noncoding region of 55 base pairs, an open reading frame of 1245 base pairs, a stop codon, a 3'-noncoding region of 581 base pairs, and a poly(A) tail. The size of the mRNA was estimated to be 2.0 kilobases by Northern blot analysis. The translated amino acid sequence consisted of 415 amino acids, corresponding to a 46.6-kDa protein. The sequence was related to members of the serpin gene family, particularly ovalbumin and the chicken gene Y protein. Like these avian proteins, placental PAI appears to lack a cleavable NH2-terminal signal peptide. Residues 347-376 were identical to the partial sequence reported recently for a PAI isolated from the human monocytic U-937 cell line. Placental PAI mRNA was apparently expressed at low levels in human umbilical vein endothelial cells, but was not detectable in HepG2 hepatoma cells. It was present in U-937 cells and was inducible at least 10-fold by phorbol 12-myristate 13-acetate. Thus placental PAI is a unique member of the serpin gene family, distinct from endothelial-type PAI. It is probably identical to monocyte-macrophage PAI.  相似文献   

8.
Seeds of the legume Erythrina latissima contain a 20,000-dalton, single-chain protein that has been shown to inhibit the amidolytic activity of trypsin and tissue plasminogen activator. It had no comparable effect on urokinase. IC50 values of 1.1 X 10(-7) M for tissue plasminogen activator and 6.9 X 10(-10) M for trypsin were determined by titration. When coupled to agarose, the Erythrina inhibitor provided an effective reagent for affinity purification of tissue plasminogen activator from melanoma cell-conditioned tissue culture medium. Using this as a single-step procedure, 270-fold purified enzyme was reproducibly obtained with yields of 90% or greater. Both one- and two-chain forms of tissue plasminogen activator were purified. The enzyme migrated, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as a predominant 72,000-dalton doublet with lesser amounts of immunochemically similar, 115,000- and 68,000-dalton components.  相似文献   

9.
The effects of recombinant tissue-type plasminogen activator (rt-PA) and of an inactive mutant of rt-PA, obtained by mutagenesis of the active site Ser478 to Ala (rt-PA-Ala478), on the synthesis and secretion of plasminogen activator inhibitor-1 (PAI-1) by human umbilical vein endothelial cells (HUVEC) in culture were studied. Under base-line conditions, PAI-1 antigen secretion was 4.3 +/- 1.0 micrograms (mean +/- S.D., n = 8) per 10(6) cells in 24 h. This PAI-1 had a low specific activity (6,000 +/- 1,600 units/mg) and Mr of 50,000, which was not altered by addition of rt-PA. In HUVEC cultured with 2 micrograms/ml rt-PA-Ala478, PAI-1 antigen secretion was 2.1 +/- 0.8 micrograms (n = 5) per 10(6) cells in 24 h with a specific activity of 120,000 +/- 42,000 units/mg and Mr of 50,000. Addition of rt-PA to this conditioned medium resulted in generation of three main components: 16% migrated as an Mr 106,000 rt-PA.PAI-1 complex, 16% as an Mr 81,000 degraded rt-PA.PAI-1 complex and the remainder as an Mr 45,000 degradation product of PAI-1. HUVEC cultured with 2 micrograms/ml rt-PA secreted 3.9 +/- 0.6 micrograms (n = 8) PAI-1 antigen per 10(6) cells within 24 h, of which 20-50% occurred as intact or degraded complexes with t-PA (Mr 106,000 and 81,000) and the rest as an inactive Mr 45,000 degradation product of PAI-1. PAI-1 mRNA levels, determined by Northern blot analysis and expressed relative to beta-actin mRNA levels, were very similar for HUVEC cultured in the absence or the presence of rt-PA or rt-PA-Ala478. It is concluded that PAI-1 is secreted by HUVEC in culture in fully active form which spontaneously inactivates. PAI-1 can be stabilized by addition of rt-PA-Ala478 to the culture medium, resulting in a 20-fold increase in specific activity. Interaction of rt-PA with active PAI-1 produces both t-PA.PAI-1 complex and an inactive degradation product of PAI-1.  相似文献   

10.
Plasminogen activator inhibitor-1 (PAI-1) acts as the major inhibitor of fibrinolysis by inhibiting tissue-type and urokinase-type plasminogen activators. Although it shares a common tertiary structure with other serine protease inhibitors, PAI-1 is unique in its conformational lability, which allows conversion of the active form to the latent conformation under physiological conditions. Therefore, recombinant PAI-1 expressed in eukaryotic or prokaryotic cells almost always contains its inactive, latent form, with very low specific activity. In this study, we developed a simple and efficient method for purifying the active form of recombinant PAI-1 rather than the latent conformation from PAI-1 overexpressing Escherichia coli cells. The overall level of expression and the amount of PAI-1 found in inclusion bodies were found to increase with culture temperature and with time after induction. Refolding of unfolded PAI-1 from inclusion bodies and ion-exchange column chromatography were sufficient to purify PAI-1. The purified protein yielded a single, 43kDa protein band upon SDS-polyacrylamide gel electrophoresis, and it efficiently inhibited tissue-type and urokinase-type plasminogen activators similar to PAI-1 from natural sources. Activity measurements showed that PAI-1 purified from inclusion bodies exhibited a specific activity near the theoretical maximum, unlike PAI-1 prepared from cytosolic fractions. Conformational analysis by urea gel electrophoresis also indicated that the PAI-1 protein purified from inclusion bodies was indeed in its active conformation.  相似文献   

11.
Expression of human recombinant plasminogen activator inhibitor type-1 (PAI-1) in Escherichia coli has led to crystallization of ‘latent’ PAI-1. Cleavage with restriction endonucleases of a cDNA clone encoding PAI-1 yielded an 1127 base pair fragment encoding residues 2–376 of the 379 amino acid serpin. Synthetic DNA linkers were ligated to the 5′ and 3′ ends of the subclone to add an initiation codon and restore the full coding sequence, and the resulting semisynthetic gene was incorporated into an expression plasmid, pPAIST-7, under the control of the E. coli trp promoter. Transformation of E. coli GE81 with pPAIST-7 led to expression of unglycosylated PAI-1. Lysates of expression cultures contained PAI-1 activity and PAI-1 protein with the predicted Mr. Unglycosylated PAI-1 from E. coli exhibited characteristic properties of authentic PAI-1: (1) it was recovered in both active and inactive (latent) forms; (2) its activity declined during incubation at 37°C; (3) latent PAI-1 was activated by treatment with 4 M guanidine hydrochloride; (4) reactivated PAI-1 formed a detergent-stable complex with tissue plasminogen activator. Latent PAI-1 accounted for more than 85% of PAI-1 in cell lysates and was purified by ammonium sulfate fractionation, anion-exchange chromatography and hydrophobic interaction chromatography. The purified latent PAI-1 was crystallized.  相似文献   

12.
24 established melanoma cell cultures were screened for their secretion of plasminogen activators and plasminogen activator inhibitors into the culture medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by conventional and reverse fibrin autography. Among the cell lines investigated, 22 cell lines predominantly secreting tissue type plasminogen activator (t-PA) and four cell lines additionally secreting urokinase were found. The conditioned media of two cell lines (KRFM and MJZJ) were found to contain plasminogen activator inhibitor (PAI) activity at a Mr position of approximately 50,000. The PAI of one of the two melanoma cell (MJZJ)-conditioned media found to contain PAI activity was purified to apparent homogeneity employing concanavalin A-Sepharose chromatography, gel filtration on Sephadex G-150, chromatography on Affi-Gel blue, and affinity chromatography on a Sepharose 4B immobilized monoclonal anti-t-PA IgG column. The purified melanoma PAI was found to be a single chain protein, acid stable, immunologically related to the endothelial derived PAI. In contrast to endothelial PAI, melanoma PAI presented itself in the conditioned media of the melanoma cells and in the purified preparation to an appreciable extent in its active form.  相似文献   

13.
14.
Recombinant plasminogen activator inhibitor-1 (rPAI-1) purified from Escherichia coli, like its natural counterpart, can exist in either active or latent form. To elucidate the structural basis for these two forms, both active and latent rPAI-1 have been studied using ultra-violet (UV), circular dichroism (CD), and fluorescence spectroscopy. The secondary structures determined by CD show no significant differences and indicate that both the forms are predominantly alpha helical and random. The UV spectra are also very similar with absorption maxima around 278 nm. The structures of the two forms were further characterized by measuring tryptophan fluorescence emissions and their quenching with ionic (iodide) and neutral (acrylamide) quenchers. These data indicate clear differences in the tertiary structures of the two forms with the latent form being more compact and folded in comparison with the active form.  相似文献   

15.
Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (serpin) in which the reactive center loop (RCL) spontaneously inserts into a central beta-sheet, beta-sheet A, resulting in inactive inhibitor. Available x-ray crystallographic studies of PAI-1 in an active conformation relied on the use of stabilizing mutations. Recently it has become evident that these structural models do not adequately explain the behavior of wild-type PAI-1 (wtPAI-1) in solution. To probe the structure of native wtPAI-1, we used three conformationally sensitive ligands: the physiologic cofactor, vitronectin; a monoclonal antibody, 33B8, that binds preferentially to RCL-inserted forms of PAI-1; and RCL-mimicking peptides that insert into beta-sheet A. From patterns of interaction with wtPAI-1 and the stable mutant, 14-1B, we propose a model of the native conformation of wtPAI-1 in which the bottom of the central sheet is closed, whereas the top of the beta-sheet A is open to allow partial insertion of the RCL. Because the incorporation of RCL-mimicking peptides into wtPAI-1 is accelerated by vitronectin, we further propose that vitronectin alters the conformation of the RCL to allow increased accessibility to beta-sheet A, yielding a structural hypothesis that is contradictory to the current structural model of PAI-1 in solution and its interaction with vitronectin.  相似文献   

16.
The vascular fibrinolytic system is crucial for spontaneous lysis of blood clots. Plasminogen activator inhibitor 1 (PAI-1), the principal inhibitor of the key fibrinolytic enzyme tissue-type plasminogen activator (tPA), is present in platelets at high concentrations. However, the majority of PAI-1 stored in platelets has been considered to be inactive. Our recent finding (Brogren H, et al. Blood 2004) that PAI-1 de novo synthesized in platelets remained active for over 24 h, suggested that PAI-1 stored in the α-granules might be active to a larger extent than previously reported. To re-evaluate this issue, we performed experiments where the fraction of active PAI-1 was estimated by analyzing the tPA-PAI-1 complex formation. In these experiments platelets were lysed with Triton X-100 in the presence of serial dilutions of tPA and subsequently the tPA-PAI-1 complex was evaluated by Western blot. Also, using a non-immunologic assay, tPA was labeled with (125)I, and (125)I-tPA and (125)I-tPA-PAI-1 was quantified by scintigraphy. Interestingly, both methods demonstrated that the majority (>50%) of platelet PAI-1 is active. Further analyses suggested that pre-analytical procedures used in previous studies (sonication or freezing/thawing) may have substantially reduced the activity of platelet PAI-1, which has lead to an underestimation of the proportion of active PAI-1. Our in vitro results are more compatible with the role of PAI-1 in clot stabilization as demonstrated in physiological and pathophysiological studies.  相似文献   

17.
Summary An expression cassette containing a synonymous gene for human single-chain urokinase-type plasminogen activator (Rscu-PA) 5'-flanked by a trp promoter and the Shine-Dalgarno sequence of the xyl A operon of Bacillus subtilis and terminated by the terminators trp A and Tn10 was constructed and inserted into a pBR322 derivative to yield pBF160. When compared to pUK54 trp 207-1 containing the natural scu-PA gene without the Shine-Dalgarno sequence and terminator, the expression efficiency of pBF160 in Escherichia coli strains was improved by one order of magnitude. Replacement of the trp by the tac promoter (pBF171) did not affect expression. Inserting the Shine-Dalgarno sequence and Tn10 terminator into pUK54 trp 207-1 (pWH1320) slightly increased the expression level, whereas elimination of the Shine-Dalgarno sequence and the terminators from pBF160 with almost complete conservation of the synonymous structural gene (pBF191) significantly reduced the expression. Variation of the distance between the Shine-Dalgarno sequence and the start codon between 8 and 10 bp (pBF163) proved irrelevant. In conclusion, poor expression of mammalian genes in E. coli may result from both improperly designed regulatory elements and structural features of the coding region and therefore de-novo synthesis of the gene may be required to obtain satisfactory expression.  相似文献   

18.
A hydrogenase associated with dihydrogen uptake (HUP hydrogenase) was purified from an Escherichia coli mutant (strain SE1100) defective in utilization of molybdate and thus fermentative dihydrogen production. This protein had two subunits with apparent molecular weights of 59,000 and 28,000 (form 1). An immunologically cross-reactive hydrogenase was also purified from E. coli K10 grown in glucose-minimal medium and harvested at the mid-exponential phase of growth. Upon purification to homogeneity, this hydrogenase contained only one subunit with an apparent molecular weight of 59,000 (form 2). The two forms of the HUP hydrogenase exhibited similar kinetic characteristics. The electrophoretic properties of the enzyme and its response to pH suggest that this HUP hydrogenase is the HYD1 isoenzyme. The HYD1 isoenzyme was the only hydrogenase detectable during the stationary phase of growth in E. coli grown in Mo-deficient medium.  相似文献   

19.
To study its biological functions, tumor necrosis factor precursor (proTNF) with a molecular size of 26-KDa was obtained as a recombinant protein from Escherichia coli. The recombinant proTNF was successfully accumulated in the insoluble form, corresponding to about 10-15% of total E. coli proteins. Solubilization, gel filtration and anion exchange chromatography were performed under denatured conditions followed by dialysis in phosphate-buffered saline. These processes removed most of the contaminating bacterial proteins, yielding proTNF with a purity of about 70-80%. This recombinant proTNF is expected to be useful for functional studies on activated macrophages with membrane integrated proTNF.  相似文献   

20.
Expression of active human C1 inhibitor serpin domain in Escherichia coli.   总被引:1,自引:0,他引:1  
Human C1 inhibitor is a highly glycosylated serine protease inhibitor of the serpin family. The protein contains two disulfide bonds. In this study, an N-terminally truncated form of recombinant C1 inhibitor was overexpressed in Escherichia coli strains BL21(DE3) and AD494(DE3), the latter enabling the formation of disulfide bonds within the cytoplasm. With both strains, a major fraction of the recombinant protein produced appeared to be insoluble. However, the soluble fraction of lysates from strain AD494(DE3) inhibited the C1s target protease in functional assays. Recombinant C1 inhibitor produced in this strain also displayed the ability to complex with C1s in vitro. In contrast, lysates from strain BL21(DE3) displayed no C1 inhibitor activity. These data support the notion that glycosylation is not important, whereas disulfide bond formation appears to be essential for the production of an active recombinant C1 inhibitor. Thus, bacterial strains that permit the formation of disulfide bonds may represent a reliable system for the production of recombinant C1 inhibitor. However, a major obstacle to large-scale production will be to produce the protein in a soluble form. Attempts to increase the yield of soluble protein by coexpression of the GroEL/ES chaperonins resulted in an increase in solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号