首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Large mammalian herbivores are keystone species in different ecosystems. To mediate the effects of large mammalian herbivores on ecosystems, it is crucial to understand their habitat selection pattern. At finer scales, herbivore patch selection depends strongly on plant community traits and therefore its understanding is constrained by patch definition criteria. Our aim was to assess which criteria for patch definition best explained use of meadows by wild, free-ranging, red deer (Cervus elaphus) in a study area in Northeast Portugal. We used two clustering criteria types based on floristic composition and gross forage classes, respectively. For the floristic criteria, phytosociological approach was used to classify plant communities, and its objectivity evaluated with a mathematical clustering of the floristic relevés. Cover of dominant plant species was tested as a proxy for the phytosociological method. For the gross forage classes, the graminoids/forbs ratio and the percentage cover of legumes were used. For assessing deer relative use of meadows we used faecal accumulation rates. Patches clustered according to floristic classification better explained selection of patches by deer. Plant community classifications based on phytosociology, or proxies of this, used for characterizing meadow patches resulted useful to understand herbivore selection pattern at fine scales and thus potentially suitable to assist wildlife management decisions.  相似文献   

3.
Aim At macroecological scales, exotic species richness is frequently positively correlated with human population density. Such patterns are typically thought to arise because high human densities are associated with increased introduction effort and/or habitat modification and disturbance. Exotic and native species richness are also frequently positively correlated, although the causal mechanisms remain unclear. Energy availability frequently explains much of the variation in species richness and we test whether such species–energy relationships may influence the relationships of exotic species richness with human population density and native species richness. Location Great Britain. Methods We first investigate how spatial variation in the distributions of the 10 exotic bird species is related to energy availability. We then model exotic species richness using native avian species richness, human population density and energy availability as predictors. Species richness is modelled using two sets of models: one assumes independent errors and the other takes spatial correlation into account. Results The probability of each exotic species occurring, in a 10‐km quadrat, increases with energy availability. Exotic species richness is positively correlated with energy availability, human population density and native species richness in univariate tests. When taking energy availability into account, exotic species richness is negligibly influenced by human population density, but remains positively associated with native species richness. Main conclusions We provide one of the few demonstrations that energy availability exerts a strong positive influence on exotic species richness. Within our data, the positive relationship between exotic species richness and human population density probably arises because both variables increase with energy availability, and may be independent of the influence of human density on the probability of establishment. Positive correlations between exotic and native species richness remain when controlling for the influence of energy on species richness. The relevance of such a finding to the debate on the relationship between diversity and invasibility is discussed.  相似文献   

4.
Prey availability and predation risk are important determinants of habitat use, but their importance may vary across spatial scales. In many marine systems, predator and prey distributions covary at large spatial scales, but do no coincide at small spatial scales. We investigated the influences of prey abundance and tiger shark ( Galeocerdo cuvier ) predation risk on Indian Ocean bottlenose dolphin ( Tursiops aduncus ) habitat use across multiple spatial scales, in Shark Bay, Western Australia. Dolphins were distributed between deep and shallow habitats and across microhabitats within patches approximately proportional to prey density when shark abundance was low. When shark abundance was high, foraging dolphins greatly reduced their use of dangerous, but productive, shallow patches relative to safer deep ones. Also, dolphins reduced their use of interior portions of shallow patches relative to their edges, which have higher predator density but lower intrinsic risk (i.e. a higher probability of escape in an encounter situation). These results suggest that predation risk and prey availability influence dolphin habitat use at multiple spatial scales, but intrinsic habitat risk, and not just predator encounter rate, is important in shaping dolphin space use decisions. Therefore, studies of habitat use at multiple spatial scales can benefit from integrating data on prey availability and the subcomponents of predation risk.  相似文献   

5.
This study investigated the relationship between spatial variations in predation risk and abundance of northern redbelly dace Phoxinus eos at both macroscale (littoral v. pelagic zones) and microscale (structured v. open water habitats in the littoral zone) of Canadian Shield lakes. Minnow traps were placed in both structured and open water habitats in the littoral zone of 13 Canadian Shield lakes, and estimates of the relative predation risk of P. eos in both the pelagic and the littoral zones were obtained from tethering experiments. Results showed that (1) the mean abundance of P. eos in the littoral zone was positively correlated with the relative predation risk in the pelagic zone, (2) P. eos preferentially used structured over open water habitats in the littoral zone and (3) this preference was not related to the relative predation risk in the littoral zone but decreased as the relative predation risk increased in the pelagic zone. At the lake level, these results support the hypothesis that P. eos enter the littoral zone to avoid pelagic piscivores. At the littoral zone level, the results do not necessarily contradict the widely accepted view that P. eos preferentially use structured over open habitats to reduce their predation risk, but suggest that flexibility in antipredator tactics ( e.g. shelter use v. shoaling) could explain the spatial distribution of P. eos between structured and open water habitats.  相似文献   

6.
We tested if variations (i.e., breadth) in morphology and habitat use vary predictably among six aquatic gastropod species that were collected across Indiana and Illinois, USA. We predicted that interspecific morphological variation would positively covary with variation in habitat use among species. We used geometric morphometrics (Procrustes technique and relative warp analysis) to quantify morphology and multivariate analyses (PCA) to quantify habitat. Increased morphological breadth did not vary predictably with increased habitat breadth. However, we found that life history traits correspond with patterns in morphological and habitat breadth for these six aquatic gastropods. Pulmonate gastropods (use lungs for respiration) that lack an operculum cover exhibited decreased morphological breadth compared to coenogastropods (use gills for respiration). This pattern may ultimately be a function of behavioral adaptations in freshwater gastropods. Gastropods that are capable of breathing air or using other behavioral modifications such as burrowing to escape predators may not require high morphological breadth. Conversely, selection may favor higher morphological breadth in gastropods with gills that also do not move out of the water column to escape predators.  相似文献   

7.
Patterns of biodiversity provide insights into the processes that shape biological communities around the world. Variation in species diversity along biogeographical or ecological gradients, such as latitude or precipitation, can be attributed to variation in different components of biodiversity: changes in the total abundance (i.e., more‐individual effects) and changes in the regional species abundance distribution (SAD). Rarefaction curves can provide a tool to partition these sources of variation on diversity, but first must be converted to a common unit of measurement. Here, we partition species diversity gradients into components of the SAD and abundance using the effective number of species (ENS) transformation of the individual‐based rarefaction curve. Because the ENS curve is unconstrained by sample size, it can act as a standardized unit of measurement when comparing effect sizes among different components of biodiversity change. We illustrate the utility of the approach using two data sets spanning latitudinal diversity gradients in trees and marine reef fish and find contrasting results. Whereas the diversity gradient of fish was mostly associated with variation in abundance (86%), the tree diversity gradient was mostly associated with variation in the SAD (59%). These results suggest that local fish diversity may be limited by energy through the more‐individuals effect, while species pool effects are the larger determinant of tree diversity. We suggest that the framework of the ENS‐curve has the potential to quantify the underlying factors influencing most aspects of diversity change.  相似文献   

8.
It is widely believed that aposematic signals should be conspicuous, but in nature, they vary from highly conspicuous to near cryptic. Current theory, including the honest signal or trade‐off hypotheses of the toxicity–conspicuousness relationship, cannot explain why adequately toxic species vary substantially in their conspicuousness. Through a study of similarly toxic Danainae (Nymphalidae) butterflies and their mimics that vary remarkably in their conspicuousness, we show that the benefits of conspicuousness vary along a gradient of predation pressure. Highly conspicuous butterflies experienced lower avian attack rates when background predation pressure was low, but attack rates increased rapidly as background predation pressure increased. Conversely, the least conspicuous butterflies experienced higher attack rates at low predation pressures, but at high predation pressures, they appeared to benefit from crypsis. Attack rates of intermediately conspicuous butterflies remained moderate and constant along the predation pressure gradient. Mimics had a similar pattern but higher attack rates than their models and mimics tended to imitate the signal of less attacked model species along the predation pressure gradient. Predation pressure modulated signal fitness provides a possible mechanism for the maintenance of variation in conspicuousness of aposematic signals, as well as the initial survival of conspicuous signals in cryptic populations in the process of aposematic signal evolution, and an alternative explanation for the evolutionary gain and loss of mimicry.  相似文献   

9.
The mechanisms that structure plant diversity and generate long-range correlated spatial patterns have important implications for the conservation of fragmented landscapes. The ability to disperse and persist influences a plant species’ capacity for spatial organization, which can play a critical role in structuring plant diversity in metacommunities. This study examined the spatial patterns of species diversity within a network of patches in Cabo de Gata Natural Park, southeastern Spain. The objectives were to understand how the spatial heterogeneity of species composition (beta diversity) varies in a structured landscape, and how the long-range spatial autocorrelation of plant species is affected by the spatial configuration of patches.The mechanisms underlying the spatial distribution of plants acted at two scales. Between patches, spatial variation in species distributions was greater than that expected based on spatial randomization, which indicated that movement among patches was restricted. Within patches, diffusion processes reduced spatial variability in species distributions, and the effect was more prominent in large patches. Small patch size negatively influenced the long-range spatial autocorrelation of characteristic species, whereas inter-patch distance had a stronger effect on species frequency than it had on the disruption of spatial organized patterns.The long-range spatial autocorrelation was evaluated based on the dispersal abilities of the species. Among the 106 species evaluated, 39% of the woody species, 17% of the forbs, and 12% of the grasses exhibited disrupted long-range spatial autocorrelation where patches were small. The species that are more vulnerable to the effects of fragmentation tended to be those that have restricted dispersal, such as those that have short-range dispersal (atelechoric), e.g., Phlomis purpurea, Cistus albidus, Teucrium pseudochamaepytis, Brachypodium retusum, and the ballistic species, Genista spartioides. Helianthemum almeriense is another vulnerable species that has actively restricted dispersal (antitelechory), which is common in arid regions. Wind dispersers such as Launaea lanifera were less vulnerable to the effects of fragmentation. Long-distance dispersers whose persistence depends on facilitative interactions with other individuals, e.g., allogamous species such as Thymus hyemalis, Ballota hirsuta, and Anthyllis cytisoides, exhibit disrupted long-range spatial autocorrelation when patch size is reduced.  相似文献   

10.
Increased anthropogenic CO2 emissions in the last two centuries have lead to rising sea surface temperature and falling ocean pH, and it is predicted that current global trends will worsen over the next few decades. There is limited understanding of how genetic variation among individuals will influence the responses of populations and species to these changes. A microcosm system was set up to study the effects of predicted temperature and CO2 levels on the bryozoan Celleporella hyalina. In this marine species, colonies grow by the addition of male, female and feeding modular individuals (zooids) and can be physically subdivided to produce a clone of genetically identical colonies. We studied colony growth rate (the addition of zooids), reproductive investment (the ratio of sexual to feeding zooids) and sex ratio (male to female zooids) in four genetically distinct clonal lines. There was a significant effect of clone on growth rate, reproductive investment and sex ratio, with clones showing contrasting responses to the various temperature and pH combinations. Overall, decreasing pH and increasing temperature caused reduction of growth, and eventual cessation of growth was often observed at the highest temperature, especially during the latter half of the 15‐day trials. Reproductive investment increased with increasing temperature and decreasing pH, varying more widely with temperature at the lowest pH. The increased production of males, a general stress response of the bryozoan, was seen upon exposure to reduced pH, but was not expressed at the highest temperature tested, presumably due to the frequent cessation of growth. Further to the significant effect of pH on the measured whole‐colony parameters, observation by scanning electron microscopy revealed surface pitting of the calcified exoskeleton in colonies that were exposed to increased acidity. Studying ecologically relevant processes of growth and reproduction, we demonstrate the existence of relevant levels of variation among genetic individuals which may enable future adaptation via non‐mutational natural selection to falling pH and rising temperature.  相似文献   

11.
Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, indicating increased carbon allocation to belowground components. We then compared wood respiration to wood growth and rhizosphere respiration to fine root growth and found that forests with residence times <40 yrs had significantly lower maintenance respiration for both wood and fine roots than forests with residence times >40 yrs. A comparison of rhizosphere respiration to fine root growth showed that rhizosphere growth respiration was significantly greater at low fertility sites. Overall, we found that Amazonian forests produce biomass less efficiently in stands with residence times >40 yrs and in stands with lower fertility, but changes to long‐term mean annual temperatures do not impact CUE.  相似文献   

12.
We explored the relationship between soil processes, estimated through soil respiration (R soil ), and the spatial variation in forest structure, assessed through the distribution of tree size, in order to understand the determinism of spatial variations in R soil in a tropical forest. The influence of tree size was examined using an index (I c ) calculated for each tree as a function of (1) the trunk cross section area and (2) the distance from the measurement point. We investigated the relationships between I c and litterfall, root mass and R soil , respectively. Strong significant relationships were found between I c and both litterfall and root mass. R soil showed a large range of variations over the 1-ha experimental plot, from 1.5 to 12.6 gC m?2 d?1. The best relationship between I c and R soil only explained 17% of the spatial variation in R soil . These results support the assumption that local spatial patterns in litter production and root mass depend on tree distribution in tropical forests. Our study also emphasizes the modest contribution of tree size distribution–which is mainly influenced by the presence of the biggest trees (among the large range size of the inventoried trees greater than 10 cm diameter at 1.30 m above ground level or at 0.5 m above the buttresses)–in explaining spatial variations in R soil .  相似文献   

13.
Beckage B  Clark JS 《Oecologia》2005,143(3):458-469
Seed and seedling predation may differentially affect competitively superior tree species to increase the relative recruitment success of poor competitors and contribute to the coexistence of tree species. We examined the effect of seed and seedling predation on the seedling recruitment of three tree species, Acer rubrum (red maple), Liriodendron tulipifera (yellow poplar), and Quercus rubra (northern red oak), over three years by manipulating seed and seedling exposure to predators under contrasting microsite conditions of shrub cover, leaf litter, and overstory canopy. Species rankings of seedling emergence were constant across microsites, regardless of exposure to seed predators, but varied across years. A. rubrum had the highest emergence probabilities across microsites in 1997, but Q. rubra had the highest emergence probabilities in 1999. Predators decreased seedling survival uniformly across species, but did not affect relative growth rates (RGRs). Q. rubra had the highest seedling survivorship across microsites, while L. tulipifera had the highest RGRs. Our results suggest that annual variability in recruitment success contributes more to seedling diversity than differential predation across microsites. We synthesized our results from separate seedling emergence and survival experiments to project seedling bank composition. With equal fecundity assumed across species, Q. rubra dominated the seedling bank, capturing 90% of the regeneration sites on average, followed by A. rubrum (8% of sites) and L. tulipifera (2% of sites). When seed abundance was weighted by species-specific fecundity, seedling bank composition was more diverse; L. tulipifera captured 62% of the regeneration sites, followed by A. rubrum (21% of sites) and Q. rubra (17% of sites). Tradeoffs between seedling performance and fecundity may promote the diversity of seedling regeneration by increasing the probability of inferior competitors capturing regeneration sites.  相似文献   

14.
Autophagy (specifically macroautophagy) is an evolutionarily conserved catabolic process where the cytoplasmic contents of a cell are sequestered within double membrane vacuoles, called autophagosomes, and subsequently delivered to the lysosome for degradation. Autophagy can function as a survival mechanism in starving cells. At the same time, extensive autophagy is commonly observed in dying cells, leading to its classification as an alternative form of programmed cell death. The functional contribution of autophagy to cell death has been a subject of great controversy. However, several recent loss-of-function studies of autophagy (atg) genes have begun to address the roles of autophagy in both cell death and survival. Here, we review the emerging evidence in favor of and against autophagic cell death, discuss the possible roles that autophagic degradation might play in dying cells, and identify salient issues for future investigation.  相似文献   

15.
It is a common assumption that species' ranges are limited by their physiological tolerances to climatic factors, Biotic factors, such as competition, are rarely considered. We investigated the distributions of Ulex minor and U. gallii at three spatial scales from geographic ranges to individual heaths - to examine whether the species are negatively associated, as predicted by the hypothesis that the ranges of the species are limited by competition with each other. Distribution maps for the British Isles and France (100 400 km2 survey units) show the two species have largely separated, but slightly overlapping ranges. A region of range overlap on the heaths of Dorset, southern England was mapped using 4 ha survey squares. There was strong negative association between the species, and the heaths could be divided into zones where one species was dominant. There was some indication of edaphic differences between the U. minor -dominated zones and the U. gallii zones. The few heaths where the species co-occurred were surveyed using 4 m2 quadrats placed along transects. Usually one species was widespread over the heath, while the other occurred in patches. The species were strongly negatively associated in all transects. Therefore, the two species showed strong negative associations at three mapping scales. Apparent co-occurrences detected at one spatial scale largely disappeared when species were mapped at finer scales, emphasising the fractal nature of distributions. This provides evidence that the distributions of the two species are not independent and that they cannot coexist, and therefore that their ranges are limited by competition. Over their ranges, competitive superiority is probably determined by the climate. At the range boundaries in the region of overlap, climate is not important, but other physical factors such as edaphic conditions may determine the outcome of competition.  相似文献   

16.
Leonard AS  McNamara JO 《Neuron》2007,55(5):677-678
Alzheimer's disease is a devastating neurological disorder. The role of hyperexcitability in the disease's cognitive decline is not completely understood. In this issue of Neuron, Palop et al. report both limbic seizures and presumed homeostatic responses to seizures in an animal model of Alzheimer's.  相似文献   

17.
In the face of hybridization, species integrity can only be maintained through post-zygotic isolating barriers (PIBs). PIBs need not only be intrinsic (i.e. hybrid inviability and sterility caused by developmental incompatibilities), but also can be extrinsic due to the hybrid's intermediate phenotype falling between the parental niches. For example, in migratory species, hybrid fitness might be reduced as a result of intermediate migration pathways and reaching suboptimal wintering grounds. Here, we test this idea by comparing the juvenile to adult survival probabilities as well as the wintering grounds of pied flycatchers (Ficedula hypoleuca), collared flycatchers (Ficedula albicollis) and their hybrids using stable isotope ratios of carbon (delta13C) and nitrogen (delta15N) in feathers developed at the wintering site. Our result supports earlier observations of largely segregated wintering grounds of the two parental species. The isotope signature of hybrids clustered with that of pied flycatchers. We argue that this pattern can explain the high annual survival of hybrid flycatchers. Hence, dominant expression of the traits of one of the parental species in hybrids may substantially reduce the ecological costs of hybridization.  相似文献   

18.
Differential loss of heterozygous individuals that move to the periphery of mussel aggregations, where they are at greater risk for dislodgement, has been proposed as an explanation for observed heterozygote deficiencies in blue mussels. To test the dislodgement hypothesis, correlations between heterozygosity and mussel motility, as well as characteristics of byssogenesis and byssal thread attachment strengths, were determined in a wild and a farmed population of blue mussels (Mytilus edulis) from New Hampshire, USA. Although both populations exhibited a heterozygote deficit as measured by three microsatellite loci, no relationship was found between heterozygosity and increased motility in either population. Similarly, no relationship was found between heterozygosity and byssogenesis or attachment strength. Hence, differential dislodgement is highly unlikely as a possible contributor to the loss of heterozygous individuals.  相似文献   

19.
Individuals of free-living organisms are often infected simultaneously by a community of parasites. If the co-infecting parasites interact, then this can add significantly to the diversity of host genotypexparasite genotype interactions. However, interactions between parasite species are usually not examined considering potential variation in interactions between different strain combinations of co-infecting parasites. Here, we examined the importance of interactions between strains of fish eye flukes Diplostomum spathaceum and Diplostomum gasterostei on their infectivity in naive fish hosts. We assessed the infection success of strains of both species in single-strain exposures and in co-exposures with a random strain of the other species. Parasite infection success did not consistently increase or decrease in the co-exposure treatment, but depended on the combinations of co-infecting parasite strains. This disrupted the relative infectivity of D. spathaceum strains observed in single-strain exposures. The infection success of D. gasterostei strains was independent of exposure type. These results suggest that interactions among parasite species may be strain specific and potentially promote maintenance of genetic polymorphism in parasite populations.  相似文献   

20.
All else being equal, inversely density-dependent (IDD) mortality destabilizes population dynamics. However, stability has not been investigated for cases in which multiple types of density dependence act simultaneously. To determine whether IDD mortality can destabilize populations that are otherwise regulated by directly density-dependent (DDD) mortality, I used scale transition approximations to model populations with IDD mortality at smaller “aggregation” scales and DDD mortality at larger “landscape” scales, a pattern observed in some reef fish and insect populations. I evaluated dynamic stability for a range of demographic parameter values, including the degree of compensation in DDD mortality and the degree of spatial aggregation, which together determine the relative importance of DDD and IDD processes. When aggregation-scale survival was a monotonically increasing function of density (a “dilution” effect), dynamics were stable except for extremely high levels of aggregation combined with either undercompensatory landscape-scale density dependence or certain values of adult fecundity. When aggregation-scale survival was a unimodal function of density (representing both “dilution” and predator “detection” effects), instability occurred with lower levels of aggregation and also depended on the values of fecundity, survivorship, detection effect, and DDD compensation parameters. These results suggest that only in extreme circumstances will IDD mortality destabilize dynamics when DDD mortality is also present, so IDD processes may not affect the stability of many populations in which they are observed. Model results were evaluated in the context of reef fish, but a similar framework may be appropriate for a diverse range of species that experience opposing patterns of density dependence across spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号