首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corcoran MR 《Plant physiology》1966,41(8):1265-1267
Inhibitor C, one of the inhibitory fractions of the extract of Carob fruit, reduces the amount of α-amylase in the culture medium of endosperm halves of barley seed which have been treated with gibberellic acid as compared with seed halves treated with gibberellic acid alone. A similar reduction is found in the α-amylase produced by embryo halves of barley seed which have not been treated with gibberellic acid.  相似文献   

2.
Amylases from aleurone layers and starchy endosperm of barley seeds   总被引:3,自引:2,他引:1       下载免费PDF全文
Amylases from incubated aleurone layers or from starchy endosperm of barley seeds (Hordeum vulgare L. cv. Himalaya) were investigated using acrylamide gel electrophoresis and analytical gel filtration with Sephadex G-200. Electrophoresis of amylase from aleurone layers yields seven visually distinct isozymes with an estimated molecular weight of 43,000. Because each isozyme hydrolyzes β-limit dextrin azure and incorporates calcium-45, they are α-amylases. On Sephadex G-200, amylase from the aleurone layers is separated into seven fractions ranging in estimated molecular weights from 45,000 to 3,000. Little or no activity is observed when six fractions are subjected to electrophoresis. Electrophoresis of only the fraction with the estimated molecular weight of 45,000 gave the seven isozymes. The amylases are heat labile and cannot be stabilized by the presence of substrate or by the protease inhibitor, phenylmethylsulfonylfluoride. Electrophoresis of amylase from the starchy endosperm yields nine β-amylases. Four of these β-amylases are isozymes with an estimated molecular weight of 43,000. The other five forms of β-amylase represent molecular aggregates of the four basic β-amylase monomers. A dimer, a tetramer, and an octamer of β-amylase can be identified with estimated molecular weights of about 86,000, 180,000 and 400,000, respectively. These estimated molecular weights were confirmed on Sephadex G-200. There are five additional fractions of β-amylase with estimated molecular weights ranging from 30,000 to 4,000. These fractions are not observed electrophoretically.  相似文献   

3.
An endogenous alpha-amylase inhibitor in barley kernels   总被引:1,自引:0,他引:1       下载免费PDF全文
Barley (Hordeum distichum cv Klages) kernels were shown to contain a factor that converted malted barley α-amylase II to the α-amylase III form. After purification by ammonium sulfate fractionation, ion exchange chromatography on DEAE-Sephacel, and gel-filtration on Bio Gel P60, the factor gave a single band of protein on isoelectric focusing. The purified factor inhibited hydrolysis of soluble starch by α-amylase II from malted barley and germinated wheat (Triticum aestivum cv Neepawa). However, α-amylase I from these cereals was not affected. The inhibitor was not dialyzable and was retained by a PM 10 ultrafiltration membrane suggesting a molecular weight greater than 10,000 daltons. Heat treatment of the inhibitor at 70°C for 15 minutes at pH 5.5 and 8.0 resulted in considerable loss of inhibitory activity.  相似文献   

4.
The amylases of the second leaves of barley seedlings (Hordeum vulgare L. cv Betzes) were resolved into eight isozymes by isoelectric focusing, seven of which were β-amylase and the other, α-amylase. The α-amylase had the same isoelectric point as one of the gibberellin-induced α-amylase isozymes in the aleurone layer. This and other enzyme characteristics indicated that the leaf isozyme corresponded to the type A aleurone α-amylase (low pI group). Crossing experiments indicated that leaf and type A aleurone isozymes resulted from expression of the same genes.

In unwatered seedlings, leaf α-amylase increased as leaf water potential decreased and ABA increased. Water stress had no effect on β-amylase. α-Amylase occurred uniformly along the length of the leaf but β-amylase was concentrated in the basal half of the leaf. Cell fractionation studies indicated that none of the leaf α-amylase occurred inside chloroplasts.

Leaf radiolabeling experiments followed by extraction of α-amylase by affinity chromatography and immunoprecipitation showed that increase of α-amylase activity involved synthesis of the enzyme. However, water stress caused no major change in total protein synthesis. Hybridization of a radiolabeled α-amylase-related cDNA clone to size fractionated RNA showed that water-stressed leaves contained much more α-amylase mRNA than unstressed plants. The results of these and other studies indicate that regulation of gene expression may be a component in water-stress induced metabolic changes.

  相似文献   

5.
Posttranslational modifications that give rise to multiple forms of α-amylase (EC 3.2.1.1) in barley (Hordeum vulgare L. cv Himalaya) were studied. When analyzed by denaturing polyacrylamide gel electrophoresis, barley α-amylase has a molecular mass of 43 to 44 kilodaltons, but isoelectric focusing resolves the enzyme into a large number of isoforms. To precisely identify these isoforms, we propose a system of classification based on their isoelectric points (pl). α-Amylases with pls of approximately 5, previously referred to as low pl or Amy1 isoforms, have been designated HAMY1, and α-amylases with pls of approximately 6, referred to as high pl or Amy2, are designated HAMY2. Individual isoforms of HAMY1 and HAMY2 are identified by their pls. For example, the most acidic α-amylase synthesized and secreted by barley aleurone layers is designated HAMY1(4.56). Some of the diversity in the pls of barley α-amylases arises from posttranslational modifications of the enzyme. We report the isolation of a factor from barley aleurone layers and incubation media that can modify HAMY1 isoforms in vitro. This factor has a molecular mass between 30 and 50 kilodaltons, and it can catalyze the conversion of HAMY1(4.90) and HAMY1(4.64) to isoforms 4.72 and 4.56, respectively. The in vitro conversion of HAMY1 isoforms by the factor is favored by pH values of approximately 5 and is inhibited at approximately pH 7. The level of this factor in aleurone layers and incubation media is not affected by treatment of the tissue with gibberellic acid. The amylase-modifying activity from barley will also modify α-amylases isolated from human saliva and porcine pancreas. An activity that can modify HAMY1 isoforms in vitro has also been isolated from Onozuka R10 cellulase. Because the activity isolated from barley lowers the pl of α-amylase from barley, human saliva, and porcine pancreas, we speculate that it is a deamidase.  相似文献   

6.
Kernels of Klages barley (Hordeum vulgare L.) were germinated for 1 to 4 days on moist sand at 18°C. Representative kernels from each time period were dissected to give the following fractions: scutellum, subscutellar endosperm, aleurone-scutellum interface, remaining aleurone, subaleurone endosperm, and core endosperm. These tissues were analyzed for α-amylase components by isoelectric focusing and rocket-line immunoelectrophoresis. Although aleurone and scutellar tissues appeared to synthesize the same α-amylase components, enzyme was detected first in the scutellum. A larger proportion of scutellar α-amylase was excreted into the endosperm compared to aleurone synthesized α-amylase. Aleurone cells appeared to synthesize appreciably more α-amylase than did scutellar tissue.  相似文献   

7.
Glucoamylase and α-amylase are present in callus and suspension cultures of sugar beets (Beta vulgaris L.) as well as in mature roots. The subcellular localization of glucoamylase differed in callus and suspension-cultured cells: in callus, glucoamylase was present together with α-amylase in the soluble fraction of cells, but in suspension cultures, it was present predominantly in the extracellular fraction while most of the α-amylase activity remained in cells. Glucoamylase activity was considerably lower in callus protoplasts relative to the activities of α-mannosidase and α-galactosidase and the suspension of callus in Murashige-Skoog liquid medium or in mannitol by brief agitation resulted in the release of glucoamylase to the medium. These findings suggest that glucoamylase in callus may be present in a soluble form in the free space in the cell wall. Both mature roots and callus contained α-amylase and glucoamylase in the soluble fraction. Glucoamylases in the soluble fraction of callus and in the medium of suspension cultures were purified separately to homogeneity by the same four-step purification procedure, which included fractionation with ammonium sulfate, column chromatography on carboxymethyl cellulose, gel filtration on Bio-Gel P-150, and preparative disc electrophoresis. The identity of the glucoamylases from the two sources was confirmed by a comparison of chromatographic behavior during purification, mobility during gel electrophoresis, Mr (83,000 D by SDS PAGE), and enzymic and kinetic properties of the catalytic reaction, such as optimal pH and temperature, heat stability, and Km value for soluble starch. Glucoamylase from suspension cultures was one of the major proteins that were secreted into the medium. Dedifferentiation of leaves of young plants to callus was accompanied by induction of glucoamylase and repression of some α-amylases and the debranching enzyme.  相似文献   

8.
An inhibitor of malted barley (Hordeum vulgare cv Conquest) α-amylase II was purified 125-fold from a crude extract of barley kernels by (NH4)2SO4 fractionation, ion exchange chromatography on DEAE-Sephacel, and gel filtration on Bio-Gel P 60. The inhibitor was a protein with an approximate molecular weight of 20,000 daltons and an isoelectric point of 7.3. The protein was homogeneous, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino acid analysis indicated the presence of about 9 half-cystine residues per mole. The neutral isoelectric point of the inhibitor suggested that some of the apparently acidic residues (glutamic and aspartic) existed in the amide form. The first twenty N-terminal amino acids were sequenced. Some homology appeared to exist between the α-amylase II inhibitor and trypsin inhibitor from barley. Complex formation between α-amylase II and the inhibitor was detected by the appearance of a new molecular weight species after gel filtration on Bio-Gel P 100. Enzyme and inhibitor had to be preincubated for 5 min, prior to assaying for enzyme activity before maximum inhibition was attained. Inhibition increased at higher pH values. At pH 5.5, an approximately 1100 molar excess of inhibitor over α-amylase II produced 40% inhibition, whereas, at pH 8.0, a 1:1 molar ratio of inhibitor to enzyme produced the same degree of inhibition.  相似文献   

9.
The specific measurement of α-amylase activity in crude plant extracts is difficult because of the presence of β-amylases which directly interfere with most assay methods. Methods compared in this study include heat treatment at 70°C for 20 min, HgCl2 treatment, and the use of the α-amylase specific substrate starch azure. In comparing alfalfa (Medicago sativa L.), soybeans (Glycine max [L.] Merr.), and malted barley (Hordeum vulgare L.), the starch azure assay was the only satisfactory method for all tissues. While β-amylase can liberate no color alone, over 10 International units per milliliter β-amylase activity has a stimulatory effect on the rate of color release. This stimulation becomes constant (about 4-fold) at β-amylase activities over 1,000 International units per milliliter. Two starch azure procedures were developed to eliminate β-amylase interference: (a) the dilution procedure, the serial dilution of samples until β-amylase levels are below levels that interfere; (b) the β-amylase saturation procedure, addition of exogenous β-amylase to increase endogenous β-amylase activity to saturating levels. Both procedures yield linear calibrations up to 0.3 International units per milliliter. These two procedures produced statistically identical results with most tissues, but not for all tissues. Differences between the two methods with some plant tissues was attributed to inaccuracy with the dilution procedure in tissues high in β-amylase activity or inhibitory effects of the commercial β-amylase. The β-amylase saturation procedure was found to be preferable with most species. The heat treatment was satisfactory only for malted barley, as α-amylases in alfalfa and soybeans are heat labile. Whereas HgCl2 proved to be a potent inhibitor of β-amylase activity at concentrations of 10 to 100 micromolar, these concentrations also partially inhibited α-amylase in barley malt. The reported α-amylase activities in crude enzyme extracts from a number of plant species are apparently the first specific measurements reported for any plant tissues other than germinating cereals.  相似文献   

10.
The gibberellic acid (GA3)-induced α-amylases from the aleurone layers of Himalaya barley (Hordeum vulgare L. cv Himalaya) have been purified by cycloheptaamylose-Sepharose affinity chromatography and fractionated by DEAE-cellulose chromatography. Four fractions (α-amylases 1-4) were obtained which fell into two groups (A and B) on the basis of a number of characteristics. Major differences in serological characteristics and in proteolytic fingerprints were found between group A (α-amylases 1 and 2) and group B (α-amylases 3 and 4). Also, the lag time for appearance of group B enzyme activity was longer than for group A, and the appearance of group B required higher GA3 levels than group A. The components of each group behaved similarly, although differences in proteolytic fingerprints were detected.

These results together with those from other studies indicate that GA3 differentially controls the expression of two α-amylase genes or groups of genes giving rise to two groups of α-amylases with many different properties.

  相似文献   

11.
The wild ancestor of cultivated barley, Hordeum vulgare subsp. spontaneum (K. Koch) A. & Gr. (H. spontaneum), is a source of wide genetic diversity, including traits that are important for malting quality. A high β-amylase trait was previously identified in H. spontaneum strains from Israel, and transferred into the backcross progeny of a cross with the domesticated barley cv Adorra. We have used Southern-blot analysis and β-amy1 gene characterization to demonstrate that the high β-amylase trait in the backcross line is co-inherited with the β-amy1 gene from the H. spontaneum parent. We have analyzed the β-amy1 gene organization in various domesticated and wild-type barley strains and identified three distinct β-amy1 alleles. Two of these β-amy1 alleles were present in modern barley, one of which was specifically found in good malting barley cultivars. The third allele, linked with high grain β-amylase activity, was found only in a H. spontaneum strain from the Judean foothills in Israel. The sequences of three isolated β-amy1 alleles are compared. The involvement of specific intron III sequences, in particular a 126-bp palindromic insertion, in the allele-dependent expression of β-amylase activity in barley grain is proposed.  相似文献   

12.
Beta-Amylases from Alfalfa (Medicago sativa L.) Roots   总被引:8,自引:8,他引:0       下载免费PDF全文
Amylase was found in high activity (193 international units per milligram protein) in the tap root of alfalfa (Medicago sativa L. cv. Sonora). The activity was separated by gel filtration chromatography into two fractions with molecular weights of 65,700 (heavy amylase) and 41,700 (light amylase). Activity staining of electrophoretic gels indicated the presence of one isozyme in the heavy amylase fraction and two in the light amylase fraction. Three amylase isozymes with electrophoretic mobilities identical to those in the heavy and the light amylase fractions were the only amylases identified in crude root preparations. Both heavy and light amylases hydrolyzed amylopectin, soluble starch, and amylose but did not hydrolyze pullulan or β-limit dextrin. The ratio of viscosity change to reducing power production during starch hydrolysis was identical for both alfalfa amylase fractions and sweet potato β-amylase, while that of bacterial α-amylase was considerably higher. The identification of maltose and β-limit dextrin as hydrolytic end-products confirmed that these alfalfa root amylases are all β-amylases.  相似文献   

13.
In resting grains of Triumph barley (Hordeum vulgare L. cv Triumph) about 40% of the β-amylase could be extracted with a saline solution, the remaining 60% being in a bound form. During seedling growth (20°C), the bound form was released mainly between days 1 and 3. When a preparation containing bound β-amylase was incubated with an extract made of endosperms separated from germinating grains, release of bound β-amylase took place and could be studied in vitro. The release was almost completely prevented by leupeptin and antipain, specific inhibitors of a group of SH-proteinases, but it was not inhibited by pepstatin A or EDTA, which inhibit some other barley proteinases. It is thus very likely that in a whole grain, at least the bulk of the bound β-amylase is released by the proteolytic action of one or several SH-proteinases. When the bound β-amylase was released by papain, its molecular weight was about 5000 daltons smaller than that of β-amylase released by dithiothreitol. This indicates that the release is due to removal of a sequence of β-amylase itself. A similar decrease in size took place during seedling growth. Bound β-amylase showed some activity against native starch and it hydrolyzed maltotetraose at a rate that was about 70% of the rate the same amount of bound β-amylase gave after release. Bound β-amylase is thus not inactive and it is likely that the slower rate of hydrolysis is due to steric hindrances which prevent substrates from reaching the active site.  相似文献   

14.
Response of barley aleurone layers to abscisic Acid   总被引:3,自引:0,他引:3       下载免费PDF全文
Ho DT 《Plant physiology》1976,58(2):175-178
Cordycepin, an inhibitor of RNA synthesis in barley (Hordeum vulgare L.) aleurone cells, does not inhibit the gibberellic acid-enhanced α-amylase (EC 3.2.1.1.) synthesis in barley aleurone layers if it is added 12 hours or more after the addition of the hormone. However, the accumulation of α-amylase activity after 12 hours of gibberellic acid can be decreased by abscisic acid. The accumulation of α-amylase activity is sustained or quickly restored when cordycepin is added simultaneously or some time after abscisic acid, indicating that the response of aleurone layers to abscisic acid depends on the continuous synthesis of a short lived RNA. By analysis of the newly synthesized proteins by gel electrophoresis with sodium dodecylsulfate, we observed that the synthesis of α-amylase is decreased in the presence of abscisic acid while the synthesis of most of the other proteins remains unchanged. From the rate of resumption of α-amylase production in the presence of cordycepin and abscisic acid, it appears that abscisic acid does not have a measurable effect on the stability of α-amylase mRNA.  相似文献   

15.
The effect of temperature on α-amylase synthesis and secretion from barley (c.v. Himalaya) half-seeds and aleurone layers is reported. Barley half-seeds incubated at 15 C in gibberellic acid (GA) concentrations of 0.5 and 5 micromolar for 16 hours do not release α-amylase. Similarly, isolated aleurone layers of barley do not release α-amylase when incubated for 2 or 4 hours at temperatures of 15 C or below following 12 hours incubation at 25 C at GA concentrations from 50 nanomolar to 50 micromolar. There is an interaction between temperature and GA concentration for the process of α-amylase release from aleurone layers; thus, with increasing GA concentration, there is an increase in the Q10 of this process. A thermal gradient bar was used to resolve the temperature at which the rate of α-amylase release changes; thermal discontinuity was observed between 19 and 21 C. The time course of the response of aleurone tissue to temperature was determined using a continuous monitoring apparatus. Results show that the effect of low temperature is detectable within minutes, whereas recovery from exposure to low temperature is also rapid. Although temperature has a marked effect on the amount of α-amylase released from isolated aleurone layers, it does not significantly affect the accumulation of α-amylase within the tissue. At all GA concentrations above 0.5 nanomolar, the level of extractable α-amylase is unaffected by temperatures between 10 and 28 C. It is concluded that the effect of temperature on α-amylase production from barley aleurone layers is primarily on the process of enzyme secretion.  相似文献   

16.
17.
α-Amylase has been purified from de-embryonated seeds of barley (Hordeum vulgare L. cv. Betzes) which have been incubated on 10−6 m gibberellic acid (GA3) following 3 days of imbibition in buffer. Incubation of the half-seeds in up to 10−2 m 5-fluorouracil (5-FU) during the entire incubation period, including imbibition, had no effect on any of the following characteristics of purified α-amylase: thermal stability in the absence of calcium, molecular weight of the enzyme, isozyme composition, specific activity, or the amount of α-amylase synthesized by the aleurone tissue. The synthesis of rRNA and tRNA was strongly inhibited by 5-FU, indicating that the analog had entered the aleurone cells. These results are not in agreement with those of Carlson (Nature New Biology 237: 39-41 [1972]) who found that treatment of barley aleurone with 10−4 m 5-FU prior to the addition of GA3 resulted in decreased thermal stability of GA3-induced α-amylase and who interpreted this as evidence that the mRNA for α-amylase was synthesized during the imbibition of the aleurone tissue and independently of gibberellin action. Results of the present experiments indicate that the thermal stability of highly purified α-amylase is not altered by treatment of barley half-seeds with 5-FU, and that 5-FU cannot be used as a probe to examine the timing of α-amylase mRNA synthesis.  相似文献   

18.
Beers EP  Duke SH 《Plant physiology》1990,92(4):1154-1163
The most abundant α-amylase (EC 3.2.1.1) in shoots and cotyledons from pea (Pisum sativum L.) seedlings was purified 6700-and 850-fold, respectively, utilizing affinity (amylose and cycloheptaamylose) and gel filtration chromatography and ultrafiltration. This α-amylase contributed at least 79 and 15% of the total amylolytic activity in seedling cotyledons and shoots, respectively. The enzyme was identified as an α-amylase by polarimetry, substrate specificity, and end product analyses. The purified α-amylases from shoots and cotyledons appear identical. Both are 43.5 kilodalton monomers with pls of 4.5, broad pH activity optima from 5.5 to 6.5, and nearly identical substrate specificities. They produce identical one-dimensional peptide fingerprints following partial proteolysis in the presence of SDS. Calcium is required for activity and thermal stability of this amylase. The enzyme cannot attack maltodextrins with degrees of polymerization below that of maltotetraose, and hydrolysis of intact starch granules was detected only after prolonged incubation. It best utilizes soluble starch as substrate. Glucose and maltose are the major end products of the enzyme with amylose as substrate. This α-amylase appears to be secreted, in that it is at least partially localized in the apoplast of shoots. The native enzyme exhibits a high degree of resistance to degradation by proteinase K, trypsin/chymostrypsin, thermolysin, and Staphylococcus aureus V8 protease. It does not appear to be a high-mannose-type glycoprotein. Common cell wall constituents (e.g. β-glucan) are not substrates of the enzyme. A very low amount of this α-amylase appears to be associated with chloroplasts; however, it is unclear whether this activity is contamination or α-amylase which is integrally associated with the chloroplast.  相似文献   

19.
Sun Z  Henson CA 《Plant physiology》1990,94(1):320-327
The initial hydrolysis of native (unboiled) starch granules in germinating cereal kernels is considered to be due to α-amylases. We report that barley (Hordeum vulgare L.) seed α-glucosidases (EC 3.2.1.20) can hydrolyze native starch granules isolated from barley kernels and can do so at rates comparable to those of the predominant α-amylase isozymes. Two α-glucosidase charge isoforms were used individually and in combination with purified barley α-amylases to study in vitro starch digestion. Dramatic synergism, as much as 10.7-fold, of native starch granule hydrolysis, as determined by reducing sugar production, occurred when high pl α-glucosidase was combined with either high or low pl α-amylase. Synergism was also found when low pl α-glucosidase was combined with α-amylases. Scanning electron micrographs revealed that starch granule degradation by α-amylases alone occurred specifically at the equatorial grooves of lenticular granules. Granules hydrolyzed by combinations of α-glucosidases and α-amylases exhibited larger and more numerous holes on granule surfaces than did those granules attacked by α-amylase alone. As the presence of α-glucosidases resulted in more areas being susceptible to hydrolysis, we propose that this synergism is due, in part, to the ability of the α-glucosidases to hydrolyze glucosidic bonds other than α-1,4- and α-1,6- that are present at the granule surface, thereby eliminating bonds which were barriers to hydrolysis by α-amylases. Since both α-glucosidase and α-amylase are synthesized in aleurone cells during germination and secreted to the endosperm, the synergism documented here may function in vivo as well as in vitro.  相似文献   

20.
A β-amylase-overproducing mutant of Clostridium thermosulfurogenes was grown in continuous culture on soluble starch to produce thermostable β-amylase. Enzyme productivity was reasonably stable over periods of weeks to months. The pH and temperature optima for β-amylase production were pH 6.0 and 60°C, respectively. Enzyme concentration was maximized by increasing biomass concentration by using high substrate concentrations and by maintaining a low growth rate. β-Amylase concentration reached 90 U ml−1 at a dilution rate of 0.07 h−1 in a 3% starch medium. A further increase in enzyme activity levels was limited by acetic acid inhibition of growth and low β-amylase productivity at low growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号