首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vitro synthesis of T4 proteins   总被引:1,自引:0,他引:1  
  相似文献   

2.
In vitro synthesis of barley storage proteins   总被引:1,自引:0,他引:1  
Membrane-bound polysomes were isolated from developing endosperms of barley (Hordeum vulgare L.) and shown to support the synthesis of trichloroacetic acid-insoluble material by an in vitro wheat germ protein synthesis system. The mRNA associated with the polysomes was separated from the ribosomes by affinity chromatography on oligo-dT cellulose and was also shown to support in vitro protein synthesis. The poly-A+ RNA isolated contained material of between 0.55 and 2.55 kilobases in length with about 6% poly A. The products of in vitro protein synthesis resembled hordeins (the prolamin storage proteins of the barley endosperm) in that they were predominantly soluble in 55% propan-2-ol, contained a low proportion of lysine as compared with leucine and had similar, but not identical, electrophoretic properties. The differences in the electrophoretic behaviour between the products of poly-A+ RNA translation and authentic hordeins is suggested to be due to the presence of an extra (leader?) sequence on the former.  相似文献   

3.
A crude P-100 fraction prepared from Bacillus subtilis 21 min after infection with wild-type phage phi 29 supported the in vitro synthesis of late phi 29 RNA by added RNA polymerase. Synthesis of late RNA was also detected when purified phi 29 DNA was transcribed by RNA polymerase in the presence of an S-150 fraction obtained by lysis of phi 29-infected cells in the presence of 1 M NaCl. Late phi 29 RNA was not synthesized when either the P-100 or the S-150 fraction was prepared from cultures infected with phi 29 having a mutation in gene 4.  相似文献   

4.
5.
6.
The bacteriophage PRD1 DNA polymerase gene (gene I) has been cloned into the expression vector pPLH101 under the control of the lambda pL promoter. Tailoring of an efficient ribosome binding site in front of the gene by polymerase chain reaction led to a high level heat-inducible expression of the corresponding gene product (P1) in Escherichia coli cells. Expression was confirmed in vivo by complementation of phage PRD1 DNA polymerase gene mutants and in vitro by formation of the genome terminal protein P8-dGMP replication initiation complex. Expressed PRD1 DNA polymerase was purified to apparent homogeneity in an active form. DNA polymerase, 3'-5'-exonuclease, and P8-dGMP replication initiation complex formation activities cosedimented in glycerol gradient with a protein of 65 kDa, the size expected for PRD1 DNA polymerase. The DNA polymerase was active on DNase I-activated calf thymus DNA, poly(dA).oligo(dT) and poly(dA-dT) primer/templates as well as on native phage PRD1 genome. The 3'-5'-exonuclease activity was specific for single-stranded DNA and released mononucleotides. No 5'-3'-exonuclease activity was detected. The inhibitor/activator spectrum of the PRD1 DNA polymerase was also studied. An in vitro replication system with purified components for bacteriophage PRD1 was established. Formation of the P8-dGMP replication initiation complex was a prerequisite for phage DNA replication, which proceeded from the initiation complex and yielded genome length replication products.  相似文献   

7.
8.
In vitro packaging of bacteriophage SPP1 DNA into procapsids is described and the requirements of this process were determined. Combination of proheads with an extract supplying terminase, DNA and phage tails yielded up to 10(7 )viable phages per milliliter of in vitro reaction under optimized conditions. The presence of neutral polymers and polyamines had a concentration and type dependent effect in the packaging reaction. The terminase donor extract lost rapidly activity at 30 degrees C in contrast to the stability of the prohead donor extract. Maturation to infective virions was observed using both procapsids assembled in SPP1 infected cells and procapsid-like structures assembled in Escherichia coli that overexpressed the SPP1 prohead gene clusters. Neither a majority of aberrant capsid-related structures present in the latter material nor procapsids lacking the portal protein inhibited DNA packaging. Addition of purified portal protein reduced DNA packaging activity in vitro only at concentrations 20-fold higher than those found in the SPP1 infected cell. The SPP1 DNA packaged in vitro originated exclusively from the terminase donor extract. This packaging selectivity was not observed in vivo during mixed infections. The data are compatible with a model for processive headful DNA packaging in which terminase and DNA co-produced in the same cell are tightly associated and can effectively discriminate the portal vertex of DNA packaging-proficient proheads from aberrant structures, from portal-less procapsids, and from isolated portal protein.  相似文献   

9.
10.
We have investigated the binding of the f1 single-stranded DNA-binding protein (gene V protein) to DNA oligonucleotides and RNA synthesized in vitro. The first 16 nucleotides of the f1 gene II mRNA leader sequence were previously identified as the gene II RNA-operator; the target to which the gene V protein binds to repress gene II translation. Using a gel retardation assay, we find that the preferential binding of gene V protein to an RNA carrying the gene II RNA-operator sequence is affected by mutations which abolish gene II translational repression in vivo. In vitro, gene V protein also binds preferentially to a DNA oligonucleotide whose sequence is the DNA analog of the wild-type gene II RNA-operator. Therefore, the gene V protein recognizes the gene II mRNA operator sequence when present in either an RNA or DNA context.  相似文献   

11.
Viral and complementary strand circular DNA molecules were isolated from intracellular bacteriophage f1 replicative-form DNA. Soluble protein extracts of Escherichia coli were used to examine the initiation of DNA synthesis on these DNA templates. The initiation of DNA synthesis on f1 viral strand DNA was catalyzed by E. coli DNA-dependent RNA polymerase, as was initiation of f1 viral strand DNA isolated from mature phage particles. The site of initiation was the same as that used in vivo. In contrast, no de novo initiation of DNA synthesis was detected on f1 complementary strand DNA. Control experiments demonstrated that the E. coli dnaB, dnaC, and dnaG initiation proteins were active under the conditions employed. The results suggest that the viral strand of the f1 replicative-form DNA molecule carries the same DNA synthesis initiation site as the viral strand packaged in mature phage, whereas the complementary strand of the replicative-form DNA molecule carries no site for de novo primer synthesis. These in vitro observations are consistent with the simple rolling circle model for f1 DNA replication in vivo proposed by Horiuchi and Zinder.  相似文献   

12.
The synthesis and assembly of photosystem II (PS II) proteins of spinach chloroplasts were investigated in three different in vitro systems, i.e., protein synthesis in isolated chloroplasts (in organello translation), read-out translation of thylakoid-bound ribosomes, and transport of translation products from spinach leaf polyadenylated RNA into isolated chloroplasts. Polyacrylamide gel electrophoresis of labeled thylakoid polypeptides in the presence of sodium dodecyl sulfate revealed that the first two systems were capable of synthesizing the reaction center proteins of PS II (47 and 43 kDa), the herbicide-binding protein, and cytochrome b559. The reaction center proteins synthesized in organello were shown to bind chlorophyll and to assemble properly into the PS II core complex. One of the reaction center proteins translated by the thylakoid-bound ribosomes (47 kDa) was also found to be integrated in situ into the complex but was lacking bound chlorophyll. Incorporation of radioactivity into the three extrinsic proteins of the oxygen-evolution system (33, 24, and 18 kDa) was detected only when intact chloroplasts were incubated with the translation products from polyadenylated RNA, showing that these proteins are coded for by nuclear DNA. The occurrence of a precursor polypeptide 6 kDa larger than the 33-kDa protein was immunochemically detected in the translation products.  相似文献   

13.
The gene II region of bacteriophage f1 DNA codes for two proteins, the 46 kd gene II protein and the 13 kd gene X protein, which results from an in-phase start at codon 300 of gene II. Using antigens II protein IgG, we show that the intracellular concentration of both proteins is controlled by the phage gene V protein. In wild-type f1-infected cells, the amount of gene II protein reaches a plateau of about 1500 molecules per cell at 20 min after infection, as measured by blot immunoassay. Similarly, the amount of gene X protein reaches a peak of about 500 molecules per cell around 10 min after infection. In contrast, when the gene V protein is inactive, both gene II and gene X proteins continue to accumulate at a high rate for at least 40 min after infection. This difference is caused by decreased synthesis of gene II and gene X proteins in the presence of gene V protein, which represses the translation of these two proteins.  相似文献   

14.
Nucleotide sequence of bacteriophage f1 DNA.   总被引:30,自引:2,他引:28       下载免费PDF全文
The nucleotide sequence of the DNA of the filamentous coliphage f1 has been determined. In agreement with earlier conclusions, the genome was found to comprise 6,407 nucleotides, 1 less than that of the related phage fd. Phage f1 DNA differs from that of phage M13 by 52 nucleotide changes, which lead to 5 amino acid substitutions in the corresponding proteins of the two phages, and from phage fd DNA by 186 nucleotide changes (including the single-nucleotide deletion), which lead to 12 amino acid differences between the proteins of phages f1 and fd. More than one-half of the nucleotide changes in each case are found in the sequence of 1,786 nucleotides comprising gene IV and the major intergenic region between gene IV and gene II. The sequence of this intergenic region (nucleotides 5501 to 6005) of phage f1 differs from the sequence reported by others through the inclusion of additional single nucleotides in eight positions and of a run of 13 nucleotides between positions 5885 and 5897, a point of uncertainty in the earlier published sequence. The differences between the sequence of bacteriophage f1 DNA now presented and a complete sequence for the DNA previously published by others are discussed, and the f1 DNA sequence is compared with those of bacteriophages M13 and fd.  相似文献   

15.
In vitro synthesis of vertebrate U1 snRNA.   总被引:17,自引:1,他引:16       下载免费PDF全文
  相似文献   

16.
The objective of this study was to identify, characterize, and examine oviductal secretory proteins (OSP) synthesized de novo by whole oviduct (WO), ampulla (A), and isthmic (I) tissue from ovariectomized (OVX), corn oil (CO)-, estrogen (E)-, progesterone (P)-, and E + P-treated gilts. Oviducts were collected from OVX gilts after CO, E, P, or E + P treatment for 11 consecutive days and tissue was incubated with 3H-leucine (3H-leu). Rates of 3H-leu incorporation into nondialyzable macromolecules by WO explants were greater (P less than 0.01) with E- compared to CO-, P-, or E + P-treated gilts and greater (P less than 0.05) by A explants with E- compared to CO-, P-, or E + P-treated gilts. An effect of location was noted, with A having a greater (P less than 0.01) rate of incorporation than WO or I. Conditioned culture medium was analyzed by one (1D)- and two-dimensional (2D) sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) and fluorography. Analyses by 1D-SDS-PAGE revealed three major E-dependent bands (335,000, 100,000, and 80,000 M(r)) in WO and A, and one (335,000 M(r)) in the I. A 20,000 M(r) band found in A was inhibited by E, while a 60,000 M(r) band found in the A was induced by P. Analyses by 2D-SDS-PAGE resolved major E-dependent bands 2 (100,000 M(r)) and 3 (80,000 M(r)) into basic and acidic 100,000 M(r) proteins and a 75,000-85,000 M(r) protein (pI less than 4), respectively, found in WO and A, but not in I. A basic 20,000 M(r) protein and an acidic 45,000 M(r) complex, both found in A, were inhibited by E. Gel filtration of culture medium revealed a high M(r) fraction (greater than 2 x 10(6)) that was induced by E and was 6.8-fold greater in medium from A than from I. This study clearly demonstrates that 1) WO and A tissue from E-treated gilts de novo synthesize and secrete three major proteins (basic 100,000, acidic 100,000, and 75,000-85,000 M(r)); 2) these E-dependent proteins are not found in I or with other treatment; 3) several protein complexes synthesized by A are inhibited by E treatment; and 4) a high M(r) fraction, produced primarily in the A, is induced or amplified by E.  相似文献   

17.
18.
In vivo selections were used to isolate 43 temperature-sensitive gene V mutants of the bacteriophage f1 from a collection of mutants constructed by saturation mutagenesis of the gene. The sites of temperature-sensitive substitutions are found in both the beta-sheets and the turns of the protein, and some sites are exposed to the solvent while others are not. Thirteen of the variant proteins were purified and characterized to evaluate their free energy changes upon unfolding and their affinities for single-stranded DNA, and eight were tested for their tendencies to aggregate at 42 degrees C. Each of the three temperature-sensitive mutants at buried sites and six of ten at surface sites had free energy changes of unfolding substantially lower (less stabilizing) than the wild-type at 25 degrees C. A seventh mutant at a surface site had a substantially altered unfolding transition and its free energy of unfolding was not estimated. The affinities of the mutant proteins for single-stranded DNA varied considerably, but two mutants at a surface site, Lys69, had much weaker binding to single-stranded DNA than any of the other mutants, while two mutants at another surface site, Glu30, had the highest DNA-binding affinities. The wild-type gene V protein is stable at 42 degrees C, but six of the eight mutants tested aggregated within a few minutes and the remaining two aggregated within 30 minutes at this temperature. Overall, each of the temperature-sensitive proteins tested had a tendency to aggregate at 42 degrees C, and most also had either a low free energy of unfolding (at 25 degrees C), or weak DNA binding. We suggest that any of these properties can lead to a temperature-sensitive gene V phenotype.  相似文献   

19.
Formation of complex I between phage f2 RNA and coat protein, leading to repression of phage RNA polymerase synthesis, depends nonlinearly upon the concentration of the coat protein. Maximum formation of complex I was observed when six molecules of coat protein were bound to one molecule of RNA. RNase digestion of a glutaraldehyde-fixed complex left, as the products, coat protein oligomers. The heaviest, hexamers, predominated in the mixture. It was also shown that, in an ionic environment required for phage protein synthesis, coat protein at a concentration optimum for complex I formation exists in solution as a dimer. The results indicate that the translational repression of the RNA polymerase cistron is due to a cooperative attachment to phage template of three dimers of coat protein, forming a hexameric cluster on an RNA strand.  相似文献   

20.
A method is described for the determination of nucleotide sequences in DNA by using specific oligonucleotides as primers for copying specific regions by DNA polymerase. The method was applied to bacteriophage f1 DNA using the synthetic octanucleotide A-C-C-A-T-C-C-A as primer and a sequence (sequence A) of 81 nueleotides was determined. Synthesis was carried out in the presence of manganese and with one of the deoxyribotriphosphates (dCTP or dGTP) replaced by the corresponding ribotriphosphate so that mixed oligonucleotides were found which could be specifically split at the ribonucleotide residues by the appropriate ribonuclease or by alkali. The relative order of the digestion products was determined by fractionating the undigested oligonucleotides according to size on a two-dimensional system and digesting the isolated products. In the presence of rGTP the octanucleotide appeared to prime at a second site giving rise to a second sequence (B) besides sequence A. The complementary sequence to sequence A, which corresponds to the plus strand of f1 DNA and to the messenger RNA, contains five nonsense codons, four of which are in the same phase, and two possible initiation codons. It also contains a repetitive sequence which suggests its evolutionary origin by duplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号