首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein encoded by chimeric BCR-ABL mRNA causes chronic myelogenous leukemia (CML). We showed previously that a novel allosterically controllable ribozyme, of the type known as a maxizyme, can cleave this mRNA, with high specificity and high-level activity in vivo. In order to probe the putative conformational changes, we used a weakly alkaline solution to hydrolyze differentially phosphodiester bonds that were located in different environments. As indicated by earlier data obtained in vivo, our results demonstrated that the active conformation was achieved only in the presence of the junction within the chimeric BCR-ABL mRNA.  相似文献   

2.
Chronic myelogenous leukemia (CML) is associated with the presence of the Philadelphia chromosome, which is generated by the reciprocal translocation of chromosomes 9 and 22. In the case of L6 (b2a2) mRNA, it is difficult to cleave the abnormal mRNA specifically because the mRNA includes no sequences that can be cleaved efficiently by conventional hammerhead ribozymes near the BCR-ABL junction. We recently succeeded in designing a novel maxizyme, which specifically cleaves BCR-ABL fusion mRNA, as a result of the formation of a dimeric structure. As an extension of our molecular engineering of maxizymes, as well as to improve their potential utility, we examined whether an analogous conformational change could be induced within a single molecule when two maxizymes were connected via a linker sequence. An active conformation was achieved by binding of the construct to the BCR-ABL junction in trans, with part of the linker sequence then acting as an antisense modulator in cis (within the complex) to adjust the overall structure. Results of studies in vitro in the presence of cetyltrimethylammonium bromide (CTAB) (but not in its absence) suggested that a certain kind of connected maxizyme (cMzB) might be able to undergo a desired conformational change and, indeed, studies in vivo confirmed this prediction. Therefore, we successfully created a fully functional, connected maxizyme and, moreover, we found that the activity and specificity of catalytic RNAs in vivo might be better estimated if their reactions are monitored in vitro in the presence of CTAB.  相似文献   

3.
With the eventual goal of developing a treatment for chronic myelogenous leukemia (CML), attempts have been made to design hammerhead ribozymes that can specifically cleave BCR-ABL fusion mRNA. In the case of L6 BCR-ABL fusion mRNA (b2a2 type; BCR exon 2 is fused to ABL exon 2), which has no effective cleavage sites for conventional hammerhead ribozymes near the BCR-ABL junction, it has proved very difficult to cleave the chimeric mRNA specifically. Several hammerhead ribozymes with relatively long junction-recognition sequences have poor substrate-specificity. Therefore, we explored the possibility of using newly selected DNA enzymes that can cleave RNA molecules with high activity to cleave L6 BCR-ABL fusion (b2a2) mRNA. In contrast to the results with the conventional ribozymes, the newly designed DNA enzymes, having higher flexibility for selection of cleavage sites, were able to cleave this chimeric RNA molecule specifically at sites close to the junction. Cleavage occurred only within the abnormal BCR-ABL mRNA, without any cleavage of the normal ABL or BCR mRNA. Thus, these chemically synthesized DNA enzymes seem to be potentially useful for application in vivo , especially for the treatment of CML, if we can develop exogenous delivery strategies.  相似文献   

4.
To overcome obstacles to target site selection, we recently created a novel hybrid ribozyme that could access any chosen site by the recruitment of intracellular RNA helicases [Warashina et al. (2001) Proc. Natl. Acad. Sci. USA 98, 5572-5577; Kawasaki et al. (2002) Nat. Biotech. 20, 376-380]. We also demonstrated previously that pol III-driven maxizymes with two substrate-binding arms that were directed against two different sites within a target mRNA formed very active heterodimers in vivo [Kuwabara, et al. (2000) Trends Biotechnol. 18, 462-468; Tanabe et al. (2001) Nature 406, 473-474]. Despite the complicated dimerization process, all the maxizymes that we tested in cultured cells had greater catalytic activity than the parental ribozymes. To investigate the action of maxizymes in cells, we designed a specific maxizyme with two substrate-binding arms that was directed against endogenously expressed LTR-luciferase chimeric mRNA, where LTR refers to the long terminal repeat of HIV-1. One substrate-binding arm of the maxizyme was designed to bind to a site within HIV-1 TAR RNA that is known to form a stable stem structure that normally prevents binding of a ribozyme. The other substrate-binding arm was directed against a relatively accessible site within the luciferase gene. As expected, the conventional ribozyme failed to cleave the TAR region in vivo because of the latter's stable secondary structure. However, to our surprise, the maxizyme cleaved the TAR region within the stem with high efficiency in vivo. The enhanced cleavage in vivo by the maxizyme might have resulted from an entropically favorable, intramolecular, second binding process that occurred during the breathing of the stem structure of the target mRNA. Importantly, our data suggest that this maxizyme technology might be used as an alternative approach to the recruitment of RNA helicases in cleaving sites previously found to be inaccessible.  相似文献   

5.
We demonstrated previously that shortened forms of (stem II-deleted) hammerhead ribozymes with low intrinsic activity form very active dimers with a common stem II (very active short ribozymes capable of forming dimers were designated maxizymes). As a result of such a dimeric structure, heterodimeric maxizymes are potentially capable of cleaving a substrate at two different sites simultaneously. In this case, active heterodimers are in equilibrium with inactive homodimers. Longer forms of common stem II can lead to enrichment of the active heterodimers in vitro. In this study, we investigated whether the cationic detergent CTAB, which is known to enhance strand displacement of nucleic acids, might inhibit the dimerization of maxizymes. Significantly, under all conditions examined, CTAB instead enhanced the activity of a variety of maxizymes, with the extent of enhancement depending on the conditions. The activity of our least stable, least active maxizyme was enhanced 100-fold by CTAB. The strand displacement activity of CTAB thus appears to enhance the conversion of alternative conformations of inactive maxizymes, with intra- and inter-molecular hydrogen bonds, to active forms. Thus, our smallest maxizyme can also be considered a potential candidate for a gene-inactivating agent in vivo, in view of the fact that various facilitators of strand displacement reactions are known to exist in vivo (indeed, a separate experiment in cell culture supported the conclusion that our smallest maxizyme is a good gene-inactivating agent). Although activities of ribozymes in vitro do not necessarily reflect their activities in vivo, our findings suggest that the activity of ribozymes in vivo can be better estimated by running ribozyme kinetics in the presence of CTAB in vitro.  相似文献   

6.
Alkaline phosphatase (EC 3.1.3.1) bound to trophoblastic cells in rat placenta is activated by Mg2+ and inhibited by Zn2+ in the same way as is found with partially purified soluble alkaline phosphatase in the same tissue (PetitClerc, C., Delisle, M., Martel, M., Fecteau, C. & Brière, N. (1975) Can. J. Biochem. 53, 1089-1100). In studies done with tissue sections (6-10 micron), it is shown that alkaline phosphatase activity and labelling of active sites by orthophosphate are lost during incubation with ethanolamine at pH 9.0. Addition of Mg2+ causes total recovery of catalytic activity and active sites labelling. Zn2+ displaces and replaces at the Mg2+ binding sites. The affinity for both ions is similar, and dissociation of Zn2+ from the enzyme is a very slow process, even in the presence of Mg2+. The Zn2+-alkaline phosphatase and Mg2+-alkaline phosphatase, which only differ by the ion bound to an apparent modulator site, have the same catalytic activity at pH less than 7.0, but the Zn2+ species has little activity at alkaline pH. Phosphorylation of the enzyme by orthophosphate indicates that with both enzyme species phosphoryl intermediate does not accumulate at alkaline pH. These results suggest that with orthophosphate, the phosphorylation step is rate determining for both enzymes, and that Zn2+ affects this step to a much greater extent. It is proposed that Zn2+ and Mg2+ regulate alkaline phosphatase in rat placenta. The concentration of both ions in maternal serum and placenta suggest that such a mechanism could exist in vivo.  相似文献   

7.
Several chimeric ribo/2'- O -methylribo oligonucleotides were synthesized and their hydrolytic cleavage studied in the presence of Mg2+, Zn2+, Pb2+and the 1,4,9-triaza-cyclododecane chelate of Zn2+(Zn2+[12]aneN3) to evaluate the importance of RNA secondary structure as a factor determining the reactivity of phosphodiester bonds. In all the cases studied, a phosphodiester bond within a 4-7 nt loop was hydrolytically more stable than a similar bond within a linear single strand, but markedly less stable than that in a double helix. With Zn2+and Zn2+[12]aneN3, the hydrolytic stability of a phosphodiester bond within a hairpin loop gradually decreased on increasing the distance from the stem. A similar but less systematic trend was observed with Pb2+. Zn2+- and Pb2+-promoted cleavage was observed to be considerably more sensitive to the secondary structure of the chain than that induced by Zn2+[12]aneN3. This difference in behaviour may be attributed to bidentate binding of uncomplexed aquo ions to two different phosphodiester bonds. Mg2+was observed to be catalytically virtually inactive compared with the other cleaving agents studied.  相似文献   

8.
Rat placental alkaline phosphatase (EC 3.1.3.1), a dimer of 135,000 daltons, is strongly activated by Mg2+. However, Zn2+ has to be present on the apoenzyme to obtain this activation. Mg2+ alone is unable to reconstitute functional active sites. Excess Zn2+ which competes for the Mg2+ site leads to a phosphatase with little catalytic activity at alkaline pH but with normal active sites at acidic pH as shown by covalent incorporation of ortho-[32P]phosphate. Two enzyme species with identical functional active sites have been reconstituted that only differ by the presence of Zn2+ or Mg2+ at the effector site. A mechanism is presented by which alkaline phosphatase activity of rat placenta would be controlled by a molecular process involving the interaction of Mg2+ and Zn2+ with the dimeric enzyme molecule.  相似文献   

9.
Demenis MA  Leone FA 《IUBMB life》2000,49(2):113-119
Polidocanol-solubilized alkaline phosphatase was purified to homogeneity with a specific activity of 822.3 U/mg. In the absence of Mg2+ and Ca2+ ions and at pH 9.4, the enzyme hydrolyzed ATP in a manner that could be represented by biphasic curves with V = 94.3 U/mg, K0.5 = 17.2 microM, and n = 1.8 and V = 430.3 U/mg, K0.5 = 3.2 mM, and n = 3.2 for high- and low-affinity sites, respectively. In the presence of saturating concentrations of Mg2+ or Ca2+ ions, the hydrolysis of ATP also followed biphasic curves. However, the specific activity increased to as much as 1,000 U/mg, whereas the K0.5 and n values remained almost unchanged. In the presence of nonsaturating concentrations of metal ions, the hydrolysis of ATP was similar to that observed in the absence of these ions, but with a marked decrease in K0.5 values. At pH 7.5, the enzyme also hydrolyzed ATP with K0.5 = 8.1 microM and V = 719.8 U/mg. Apparently, alkaline phosphatase was able to hydrolyze ATP in vivo, either at pH 7.5 or pH 9.4. These data contribute to the knowledge of the biological properties of skeletal alkaline phosphatase and suggest that this enzyme may have a high-affinity binding site for ATP at alkaline pH.  相似文献   

10.
Lead cleavage sites in the core structure of group I intron-RNA.   总被引:5,自引:4,他引:1       下载免费PDF全文
Self-splicing of group I introns requires divalent metal ions to promote catalysis as well as for the correct folding of the RNA. Lead cleavage has been used to probe the intron RNA for divalent metal ion binding sites. In the conserved core of the intron, only two sites of Pb2+ cleavage have been detected, which are located close to the substrate binding sites in the junction J8/7 and at the bulged nucleotide in the P7 stem. Both lead cleavages can be inhibited by high concentrations of Mg2+ and Mn2+ ions, suggesting that they displace Pb2+ ions from the binding sites. The RNA is protected from lead cleavage by 2'-deoxyGTP, a competitive inhibitor of splicing. The two major lead induced cleavages are both located in the conserved core of the intron and at phosphates, which had independently been demonstrated to interact with magnesium ions and to be essential for splicing. Thus, we suggest that the conditions required for lead cleavage occur mainly at those sites, where divalent ions bind that are functionally involved in catalysis. We propose lead cleavage analysis of functional RNA to be a useful tool for mapping functional magnesium ion binding sites.  相似文献   

11.
Doan L  Handa B  Roberts NA  Klumpp K 《Biochemistry》1999,38(17):5612-5619
The influenza virus RNA-dependent RNA polymerase protein complex contains an associated RNA endonuclease activity, which cleaves host mRNA precursors in the cell nucleus at defined positions 9-15 nucleotides downstream of the cap structure. This reaction provides capped oligoribonucleotides, which function as primers for the initiation of viral mRNA synthesis. The endonuclease reaction is dependent on the presence of divalent metal ions. We have used a number of divalent and trivalent metal ions alone and in combination to probe the mechanism of RNA cleavage by the influenza virus endonuclease. Virus-specific cleavage was observed with various metal ions, and maximum cleavage activity was obtained with 100 microM Mn2+ or 100 microM Co2+. This activity was about 2-fold higher than that observed with Mg2+ at the optimal concentration of 1 mM. Activity dependence on metal ion concentration was cooperative with Hill coefficients close to or larger than 2. Synergistic activation of cleavage activity was observed with combinations of different metal ions at varying concentrations. These results support a two-metal ion mechanism of RNA cleavage for the influenza virus cap-dependent endonuclease. The findings are also consistent with a structural model of the polymerase, in which the specific endonuclease active site is spatially separated from the nucleotidyl transferase active site of the polymerase module.  相似文献   

12.
1. To identify the functional groups that are involved in the conversion of beta-glycerophosphate by alkaline phosphatase (EC 3.1.3.1) from pig kidney, the kinetics of alkaline phosphatase were investigated in the pH range 6.6-10.3 at substrate concentrations of 3 muM-30 mM. From the plots of log VH+ against pH and log VH+/KH+m against pH one functional group with pK = 7.0 and two functional groups with pK = 9.1 were identified. These groups are involved in substrate binding. Another group with pK = 8.8 was found, which in its unprotonated form catalyses substrate conversion. 2. GSH inhibits the alkaline phosphatase reversibly and non-competitively by attacking the bound Zn(II). 3. The influence of the H+ concentration on the activation by Mg2+ ions of alkaline pig kidney phosphate was investigated between pH 8.4 and 10.0. The binding of substrate and activating Mg2+ ions occurs independently at all pH values between 8.4 and 10.0. The activation mechanism is not affected by the H+ concentration. The Mg2+ ions are bound by a functional group with a pK of 10.15. 4. A scheme is proposed for the reaction between enzyme, substrate, Mg2+ and H+ and the overall rate equation is derived. 5. The mechanism of substrate binding and splitting by the functional groups of the active centre is discussed on the basis of a model. Mg2+ seems to play a role as an autosteric effector.  相似文献   

13.
Ca2+- and Mg2+-dependent endonucleases have been implicated in DNA fragmentation during apoptosis. We have demonstrated that particular nucleases of this type are inhibited by poly(ADP-ribosyl)ation and suggested that subsequent cleavage of PARP by caspase-3 might release these nucleases from poly(ADP-ribosyl)ation-induced inhibition. Hence, we purified and partially sequenced such a nuclease isolated from bovine seminal plasma and identified human, rat and mouse homologs of this enzyme. The extent of sequence homology among these nucleases indicates that these four proteins are orthologous members of the family of DNase I-related enzymes. We demonstrate that the activation of the human homolog previously specified as DNAS1L3 can induce Ca2+- and Mg2+-dependent DNA fragmentation in vitro and in vivo. RT-PCR analysis failed to detect DNAS1L3 mRNA in HeLa cells and nuclei isolated from these cells did not exhibit internucleosomal DNA fragmentation when incubated in the presence of Ca2+and Mg2+. However, nuclei isolated from HeLa cells that had been stably transfected with DNAS1L3 cDNA underwent such DNA fragmentation in the presence of both ions. The Ca2+ionophore ionomycin also induced internucleosomal DNA degradation in transfected but not in control HeLa cells. Transverse alternating field electrophoresis revealed that in nuclei from transfected HeLa cells, but not in those from control cells, DNA was cleaved into fragments of >1000 kb in the presence of Mg2+; addition of Ca2+in the presence of Mg2+resulted in processing of the >1000 kb fragments into 50 kb and oligonucleosomal fragments. These results demonstrate that DNAS1L3 is necessary for Ca2+- and Mg2+-dependent cleavage of DNA into both oligonucleosomal and high molecular mass fragments in specific cell types.  相似文献   

14.
Recently, it was reported that Mg2+greatly facilitates cruciform extrusion in the short palindromes of supercoiled DNA, thereby allowing the formation of cruciform structures in vivo. Because of the potential biological importance of this phenomenon, we undertook a broader study of the effect of Mg2+on a cruciform extrusion in supercoiled DNA. The method of two-dimensional gel electrophoresis was used to detect the cruciform extrusion both in the absence and in the presence of these ions. Our results show that Mg2+shifts the cruciform extrusion in the d(CCC(AT)16GGG) palindrome to a higher, rather than to a lower level of supercoiling. In order to study possible sequence-specific properties of the short palindromes for which the unusual cruciform extrusion in the presence Mg2+was reported, we constructed a plasmid with a longer palindromic region. This region bears the same sequences in the hairpin loops and four-arm junction as the short palindrome, except that the short stems of the hairpins are extended. The extension allowed us to overcome the limitation of our experimental approach which cannot be used for very short palindromes. Our results show that Mg2+also shifts the cruciform extrusion in this palindrome to a higher level of supercoiling. These data suggest that cruciform extrusion in the short palindromes at low supercoiling is highly improbable. We performed a thermodynamic analysis of the effect of Mg2+on cruciform extrusion. The treatment accounted for the effect of Mg2+on both free energy of supercoiling and the free energy of cruciform structure per se. Our analysis showed that although the level of supercoiling required for the cruciform extrusion is not reduced by Mg2+, the ions reduce the free energy of the cruciform structure.  相似文献   

15.
The conformation in solution of a small bipartite I-III hammerhead ribozyme has been deduced from the photo-crosslinks formed between cleavable ribo-deoxysubstrates appropriately substituted with the probe deoxy-4-thiouridine and ribozyme residues. The ribozyme-substrate complex is able to adopt a Y-like structure with stems I and II in close proximity in the presence of 400 mM Na+ only. Indeed, a cross-link joining stem I (1.6) to loop II (AL2.4) forms in significant amount under these conditions. This cross-linked complex furthermore elicits, upon Mg2+ addition, a catalytic activity similar to that exhibited by the complexes cross-linked at the distal ends of either stem I or stem III or of the non-substituted bipartite complex. This shows that the reaction mechanism is fully compatible with a strong structural constraint between stems I and II and that sodium ions at high concentration (400 mM) are able to promote a proper folding of hammerhead ribozymes. None of the multiple cross-links formed within the ribozyme core (probe in position 16.1 or 1.1) was found catalytically active. The cross-link patterns nevertheless indicate a higher flexibility of the core in Na+ than in Mg2+. While most of the cross-links can be accommodated by the Y solution structure, some of them (16.1 to U4 and 2.1) definitely can not, suggesting that additional alternative inactive conformations exist in solution.  相似文献   

16.
Aldose-ketose isomerization by xylose isomerase requires bivalent cations such as Mg2+, Mn2+, or Co2+. The active site of the enzyme from Actinoplanes missouriensis contains two metal ions that are involved in substrate binding and in catalyzing a hydride shift between the C1 and C2 substrate atoms. Glu 186 is a conserved residue located near the active site but not in contact with the substrate and not with a metal ligand. The E186D and E186Q mutant enzymes were prepared. Both are active, and their metal specificity is different from that of the wild type. The E186Q enzyme is most active with Mn2+ and has a drastically shifted pH optimum. The X-ray analysis of E186Q was performed in the presence of xylose and either Mn2+ or Mg2+. The Mn2+ structure is essentially identical to that of the wild type. In the presence of Mg2+, the carboxylate group of residue Asp 255, which is part of metal site 2 and a metal ligand, turns toward Gln 186 and hydrogen bonds to its side-chain amide. Mg2+ is not bound at metal site 2, explaining the low activity of the mutant with this cation. Movements of Asp 255 also occur in the wild-type enzyme. We propose that they play a role in the O1 to O2 proton relay accompanying the hydride shift.  相似文献   

17.
In Reuber rat hepatoma cells (R-Y121B), alkaline phosphatase activity increased without de novo enzyme synthesis (Sorimachi, K., and Yasumura, Y. (1986) Biochim. Biophys. Acta 885, 272-281). The enzyme was partially purified by butanol extraction from the particulate fractions. The incubation of the extracted alkaline phosphatase with the cytosol fraction induced a large increase in enzyme activity (5-10-fold of control). The dialyzed cytosol was more effective than the undialyzed cytosol during an early period of incubation at 37 degrees C. This difference between the dialyzed and the undialyzed cytosol fractions was due to endogenous Na+. For maximal activation of the enzyme, both Mg2+ above 1 mM and Zn2+ at low concentrations (below 0.01 mM) were needed, although Zn2+ at high concentrations (above 0.1 mM) showed an inhibitory effect. Zn2+ and Mg2+ alone slightly increased alkaline phosphatase activity. This activation of the enzyme was temperature dependent and was not observed at 0 or 4 degrees C. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the increase in alkaline phosphatase activity did not involve the fragmentation of the enzyme and that 65Zn2+ bound to it during enzyme activation with 65Zn2+ and Mg2+. The cytosol fraction not only supplied Zn2+ to the nascent enzyme but also increased the maximal enzyme activity more than did direct addition of metal ions. Ferritin and metallothionein contributed to the activation of alkaline phosphatase with the metal ions. Since the binding of Zn2+ and Mg2+ to the nascent alkaline phosphatase is disturbed in Reuber rat hepatoma cells (R-Y121B), the apoenzyme is accumulated inside the cells. The binding of Zn2+ and Mg2+ to the apoenzyme readily takes place in the cell homogenates accompanied by an increase in catalytic activity without new enzyme synthesis.  相似文献   

18.
The RNA-dependent RNA polymerase of bacteriophage phi6 transcribes mRNA from the three segments of the dsRNA viral genome. We have cocrystallized RNA oligonucleotides with the polymerase, revealing the mode of binding of RNA templates. This binding is somewhat different from that previously seen for DNA oligomers, leading to additional RNA-protein hydrogen bonds, consistent with a preference for RNA. Activation of the RNA/polymerase complex by the addition of substrate and Mg2+ initiates a single round of reaction within the crystal to form a dead-end complex that partially collapses within the enzyme active site. By replacing Mg2+ with Ca2+, we have been able to capture the inhibited complex which shows distortion that explains the structural basis for the inhibition of such polymerases by Ca2+.  相似文献   

19.
The four-way DNA (Holliday) junction is an important postulated intermediate in the process of genetic recombination. Earlier studies have suggested that the junction exists in two alternative conformations, depending upon the salt concentration present. At high salt concentrations the junction folds into a stacked X structure, while at low salt concentrations the data indicate an extended unstacked conformation. The stereochemical conformation of the four-way DNA junction at low salt (low alkali ion concentration and no alkaline earth ions) was established by comparing the efficiency of fluorescence resonance energy transfer (FRET) between donor and acceptor molecules attached pairwise in three permutations to the 5' termini of the duplex arms. A new variation of FRET was implemented based upon a systematic variation of the fraction of donor labeled single strands. The FRET results indicate that the structure of the four-way DNA junction at low salt exists as an unstacked, extended, square arrangement of the four duplex arms. The donor titration measurements made in the presence of magnesium ions clearly show the folding of the junction into the X stacked structure. In addition, the FRET efficiency can be measured. The fluorescence anisotropy of the acceptor in the presence of Mg2+ during donor titrations was also measured; the FRET efficiency can be calculated from the anisotropy data and the results are consistent with the folded, stacked X structure.  相似文献   

20.
Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6mer+BSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference among the elastic modulus of the chimeric silk protein, 6mer+BSP, and control films consisting of only the silk component (6mer). The behavior of the 6mer+BSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring, and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca(2+) ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone formation with this new chimeric silk-BSP protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号