首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Splan KE  Allen JE  McLendon GL 《Biochemistry》2007,46(42):11938-11944
XIAP (X-linked inhibitor of apoptosis protein) is involved in the mediation of programmed cell death and, therefore, is a target for the development of cancer therapeutics. Peptide mimetics based upon Smac, the natural binding partner of XIAP, and specifically, dimeric peptides, have shown great promise in drug development. In the present work, the basis for enhanced dimer efficacy has been explored. Comparisons are made between the peptide binding site on the BIR3 domain of XIAP alone (residues 238-358) and a less truncated construct that includes both BIR2 and BIR3 domains (residues 151-350). This contingency differentially enhances the binding of dimeric tetrapeptides, potentially by providing additional hydrophobic binding surface. The effect of BIR2 on the BIR3 binding site is sustained, even if the BIR2 binding site is disrupted by mutagenesis, as shown by both a fluorescent competition assay and a polarity sensitive dye, badan. FRET measurements reveal an observed separation of >or=45 A between the BIR2 and BIR3 peptide binding pockets, thereby precluding a direct simultaneous interaction of the dimer molecules with both binding domains. Furthermore, variations in the linker length between dimeric tetrapeptides did not show a predictable trend in binding affinities, suggesting that local concentration effects were also an unlikely explanation for the enhanced dimeric affinities. Taken together, the results suggest that enhanced binding of dimeric peptides likely reflects the increased hydrophobic surface area on or near the BIR3 site and have significant ramifications for the design of therapeutics that target this class of proteins.  相似文献   

2.
Fourteen 14-mer peptides corresponding to a consensus sequence of metal-binding loops from proteins of the calmodulin family were synthesized. The effect of varying both the position in the binding loop, and the type of aromatic side chains as energy donors for enhancement of terbium luminescence, was studied. It was concluded that tryptophan in loop position 7 gave optimal luminescence enhancement, and that the additional inclusion of a tyrosine in the loop at positions 2 or 4 could further boost emission from the bound terbium. In all further cases energy transfer from aromatic residues at positions other than 7 was markedly less efficient. These results suggest that the peptides assume a configuration which allows a hexadentate ligand structure around the bound terbium ion. This is consistent with a Dexter-type electron exchange model of energy transfer.  相似文献   

3.
NMR studies of the antiapoptotic protein survivin have been used to determine the homodimer interface of the protein in solution and to identify residues of the protein that interact with Smac/Diablo. In solution, survivin(1-120) forms a bow-tie-shaped dimer whose interface is composed of its N-terminal residues as well as residues connecting its BIR domain to the C-terminal alpha helix. The solution structure resolves the controversy regarding the two possible dimer interfaces for survivin observed in X-ray crystal structures. The structural basis for the interaction between survivin and Smac/Diablo was also investigated. When Smac/Diablo or N-terminal Smac/Diablo peptide analogues are added to a solution of survivin, specific residues near alpha4 and beta3 are perturbed. NMR experiments indicate that the peptides bind across the third beta-strand of survivin in a manner similar to the way Smac/Diablo peptides bind to the BIR3 domain of X-linked IAP (XIAP).  相似文献   

4.
Luminescence of Tb3+ ions bound to a calmodulin fragment has been studied. It is shown that during their lifetime excited ions dissociate from the peptide. If concentration of free peptide is high enough they can be coordinated again. As a consequence, observed terbium luminescence lifetime and intensity depends not only on binding equilibrium, but also on concentration of free peptide molecules. In such a system terbium binding constant cannot be correctly determined by simple steady-state measurements of luminescence intensities. Instead, terbium luminescence decay curves measured at various peptide concentrations must be analysed. Such an analysis has been made for a fragment of the IIIrd calcium binding domain of rat testis calmodulin. Rate constant of terbium association and the equilibrium binding constant corresponding to the best fit of theoretical functions to experimental points have been determined.  相似文献   

5.
A small series of peptide mimics was designed and synthesized to contain a heterocyclic ring in place of the potentially labile N-terminal peptide bond of the tetrapeptide containing the Smac-XIAP-binding motif. Two Smac mimics were shown to bind to the BIR3 domain of XIAP with moderate affinity and one displayed increased activity in cells relative to the Smac peptides. The structures of BIR3-XIAP in complex with a Smac peptide and a peptide mimic were solved and analyzed to elucidate the structure-activity relationship surrounding the Smac-binding domain within BIR3-XIAP.  相似文献   

6.
To understand the key determinants in calcium-binding affinity, a calcium-binding site with pentagonal bipyramid geometry was designed into a non-calcium-binding protein, domain 1 of CD2. This metal-binding protein has five mutations with a net charge in the coordination sphere of -5 and is termed DEEEE. Fluorescence resonance energy transfer was used to determine the metal-binding affinity of DEEEE to the calcium analog terbium. The addition of protein concentration to Tb(III) solution results in a large enhancement of Tb(III) fluorescence due to energy transfer between terbium ions and aromatic residues in CD2-D1. In addition, both calcium and lanthanum compete with terbium for the same desired metal binding pocket. Our designed protein exhibits a stronger affinity for Tb(III), with a K(d) of 21 microM, than natural calcium-binding proteins with a similar Greek key scaffold.  相似文献   

7.
Wu JW  Cocina AE  Chai J  Hay BA  Shi Y 《Molecular cell》2001,8(1):95-104
The inhibitor of apoptosis protein DIAP1 suppresses apoptosis in Drosophila, with the second BIR domain (BIR2) playing an important role. Three proteins, Hid, Grim, and Reaper, promote apoptosis, in part by binding to DIAP1 through their conserved N-terminal sequences. The crystal structures of DIAP1-BIR2 by itself and in complex with the N-terminal peptides from Hid and Grim reveal that these peptides bind a surface groove on DIAP1, with the first four amino acids mimicking the binding of the Smac tetrapeptide to XIAP. The next 3 residues also contribute to binding through hydrophobic interactions. Interestingly, peptide binding induces the formation of an additional alpha helix in DIAP1. Our study reveals the structural conservation and diversity necessary for the binding of IAPs by the Drosophila Hid/Grim/Reaper and the mammalian Smac proteins.  相似文献   

8.
The C-terminal 40-residue t peptide of acetylcholinesterase (AChE) forms an amphiphilic alpha helix with a cluster of seven aromatic residues. It allows oligomerization and induces a partial degradation of AChE subunits through the endoplasmic reticulum-associated degradation pathway. We show that the t peptide induces the misfolding of a fraction of AChE subunits, even when mutations disorganized the cluster of aromatic residues or when these residues were replaced by leucines, indicating that this effect is due to hydrophobic residues. Mutations in the aromatic-rich region affected the cellular fate of AChE in a similar manner, with or without mutations that prevented dimerization. Degradation was decreased and secretion was increased when aromatic residues were replaced by leucines, and the opposite occurred when the amphiphilic alpha helix was disorganized. The last two residues (Asp-Leu) somewhat resembled an endoplasmic reticulum retention signal and caused a partial retention but only in mutants possessing aromatic residues in their t peptide. Our results suggested that several "signals" in the catalytic domain and in the t peptide act cooperatively for AChE quality control.  相似文献   

9.
Sweeney MC  Wang X  Park J  Liu Y  Pei D 《Biochemistry》2006,45(49):14740-14748
Inhibitor of apoptosis (IAP) proteins regulate programmed cell death by inhibiting members of the caspase family of proteases. The X-chromosome-linked IAP (XIAP) contains three baculovirus IAP repeat (BIR) domains, which bind directly to the N-termini of target proteins including those of caspases-3, -7, and -9. In the present study, we defined the consensus sequences of the motifs that interact with the three BIR domains in an unbiased manner. A combinatorial peptide library containing four random residues at the N-terminus was constructed and screened using BIR domains as probes. We found that the BIR3 domain binds a highly specific motif containing an alanine or valine at the N-terminus (P1 position), an arginine or proline at the P3 position, and a hydrophobic residue (Phe, Ile, and Tyr) at the P4 position. The BIR2-binding motif is less stringent. Although it still requires an N-terminal alanine, it tolerates a wide variety of amino acids at P2-P4 positions. The BIR1 failed to bind to any peptides in the library. SPR analysis of individually synthesized peptides confirmed the library screening results. Database searches with the BIR2- and BIR3-binding consensus sequences revealed a large number of potential target proteins. The combinatorial library method should be readily applicable to other BIR domains or other types of protein modular domains.  相似文献   

10.
We describe the peptide-binding specificity of the baculoviral IAP repeat (BIR) domains of the human inhibitor of apoptosis (IAP) proteins, X-linked IAP, cellular IAP1 and neuronal apoptosis inhibitory protein (NAIP). Synthetic peptide libraries were used to profile each domain, and we distinguish two types of binding specificity, which we refer to as type II and type III BIR domains. Both types have a dominant selectivity for Ala in the first position of the four N-terminal residues of the peptide ligands, which constitute a core recognition motif. Our analysis allows us to define the signature of type III BIRs that demonstrate a preference for Pro in the third residue of the ligand, resembling the classic IAP-binding motif (IBM). The signature of the type II BIRs was similar to type III, but with a striking absence of specificity for Pro in the third position, suggesting that the definition of an IBM must be modified depending on the type of BIR in question. These findings explain how subtle changes in the peptide-binding groove of IAP BIR domains can significantly alter the target protein selectivity. Our analysis allows for prediction of BIR domain protein-binding preferences, provides a context for understanding the mechanism of peptide selection and heightens our knowledge of the specificity of IAP antagonists that are being developed as cancer therapeutics.  相似文献   

11.
The ability of the wild-type XIAP BIR3 domain as well as its Trp323Ser variant in inhibition of human caspase-9, binding to AVPFVASLPN (SMAC-peptide), SMAC protein, and mature caspase-9 was investigated. In order to investigate the role of W323 on these interactions, this residue was mutated to Serine. Circular dichroism as well as thermal denaturation studies showed that W323S mutation did not hamper proper folding of the protein. The dissociation constants for the interaction of the wild type BIR3 as well as its mutant to Smac-type peptide were found to be 1.8 and 27 muM, respectively. The inhibition of and binding to caspase-9 by wild-type BIR3 and its mutant were also compared. While the wild-type protein potently inhibited the enzyme, the mutant failed to do so. The lack of caspase-9 inhibition was due to absence of interaction of the mutant BIR3 with mature caspase-9. These results indicate that Trp323 of BIR3 plays a pivotal role both in maintaining necessary conformation for caspase-9 interaction and to a lesser extent, recognition of Smac-type peptide. Moreover, decreased stability of the mutant compared with the wild type indicates that W323 is essential for maintaining the stability BIR3-Smac-peptide complex.  相似文献   

12.
Target-assisted iterative screening (TAIS) has been applied to a random phage-displayed peptide library in a search for novel ligands of the third baculovirus IAP ('inhibitors of apoptosis') repeat (BIR) domain of cIAP1. The peptides selected in the screen fall into two distinct specificity groups, one that conforms to a known IAP-binding motif (IBM) and another one that reveals a novel BIR domain interacting motif, NH(2)-SR(V/P)W. The biochemical profiling of selected sequences with synthetic peptides, which included alanine scanning and N- and C-terminal truncations as well as competition with the Smac peptide, suggests a major energetic contribution of tryptophan at the +4 position of peptide ligands to binding and identifies the latter together with the respective pocket on the BIR domain surface as a 'hot spot' of the interaction. A peptide featuring the novel motif selectively binds the full-length cIAP1 protein in cell lysates. A 'two-pocket' model of BIR domain recognition mechanism is proposed as the basis of differential BIR domain interactions with different IBMs.  相似文献   

13.
With the goal of developing artificial nucleases for DNA hydrolysis, metal-coordinating peptides have been tethered to a DNA-intercalating rhodium complex to deliver metal ions to the sugar-phosphate backbone. The intercalator, [Rh(phi)(2)bpy']Cl(3) [phi = 9,10-phenanthrenequinone diimine; bpy' = 4-(butyric acid)-4'-methyl-2,2'-bipyridine], provides DNA binding affinity, and a metal-binding peptide contributes reactivity. This strategy for DNA hydrolysis is a general one, and zinc(II)-promoted cleavage has been demonstrated for two widely different tethered metallopeptides. An intercalator coupled with a de novo-designed alpha helix containing two histidine residues has been demonstrated to cleave both supercoiled plasmid and linear DNA substrates. Mutation of this peptide confirms that the two histidine residues are essential for Zn(2+) binding and cleavage. Zinc(II)-promoted cleavage of supercoiled plasmid has also been demonstrated with an intercalator-peptide conjugate containing acidic residues and modeled after the active site of the BamHI endonuclease. Other redox-active metals, such as copper, have been delivered to DNA with our intercalator-peptide conjugates to effect oxidative chemistry. Copper cleavage experiments and photocleavage experiments with [Rh(phi)(2)bpy'](3+) complement the hydrolysis studies and provide structural information about the interactions between the tethered metallopeptides and DNA. Variation of the rhodium intercalator was also explored, but with a mismatch-specific intercalator, no site-specific hydrolysis was found. These experiments, in which the peptide, the metal cation, and the intercalator components of the conjugate are each varied, illustrate some of the issues involved in creating an artificial nuclease with DNA intercalators and metallopeptides.  相似文献   

14.
Abnormal levels of endogenous calcium ions are known to induce eye lens opacity, and a variety of causative factors has been proposed, including calcium-mediated aggregation and precipitation of the lens proteins crystallins. We have specifically looked in some detail at the interaction of Ca2+ with various crystallins and its consequences. Lenses incubated in solutions containing 10 mM Ca2+ or 5 mM Tb3+ opacified. Fluorescence titration of crystallins with TbCl3 revealed that this ion binds to delta- and beta-crystallins in solution. Equilibrium dialysis showed that four Ca2+ ions bind to one delta-crystallin tetramer with an affinity of 4.3 x 10(3) M-1. Analysis of the amino acid sequence of delta-crystallin reveals the presence of a calmodulin-type "helix-loop-helix" or "EF-hand" calcium ion binding conformational motif in the region comprising residues 300-350. This is a novel feature of the molecule not reported so far. No other crystallins appear to have this motif. beta-Crystallin also binds four Ca2+ ions/aggregate unit of mass 160 kDa, with an affinity of 2.6 x 10(3) M-1, presumably in the midregion of the molecule that is rich in anionic and polar residues. Circular dichroism spectroscopy shows that the binding of calcium ion leads to subtle conformational changes in the molecules, notably in the tertiary structure.  相似文献   

15.
RNA–peptide/protein interactions have been of utmost importance to life since its earliest forms, reaching even before the last universal common ancestor (LUCA). However, the ancient molecular mechanisms behind this key biological interaction remain enigmatic because extant RNA–protein interactions rely heavily on positively charged and aromatic amino acids that were absent (or heavily under-represented) in the early pre-LUCA evolutionary period. Here, an RNA-binding variant of the ribosomal uL11 C-terminal domain was selected from an approximately 1010 library of partially randomized sequences, all composed of ten prebiotically plausible canonical amino acids. The selected variant binds to the cognate RNA with a similar overall affinity although it is less structured in the unbound form than the wild-type protein domain. The variant complex association and dissociation are both slower than for the wild-type, implying different mechanistic processes involved. The profile of the wild-type and mutant complex stabilities along with molecular dynamics simulations uncovers qualitative differences in the interaction modes. In the absence of positively charged and aromatic residues, the mutant uL11 domain uses ion bridging (K+/Mg2+) interactions between the RNA sugar-phosphate backbone and glutamic acid residues as an alternative source of stabilization. This study presents experimental support to provide a new perspective on how early protein–RNA interactions evolved, where the lack of aromatic/basic residues may have been compensated by acidic residues plus metal ions.  相似文献   

16.
The Caenorhabditis elegans SEM-5 SH3 domains recognize proline-rich peptide segments with modest affinity. We developed a bivalent peptide ligand that contains a naturally occurring proline-rich binding sequence, tethered by a glycine linker to a disulfide-closed loop segment containing six variable residues. The glycine linker allows the loop segment to explore regions of greatest diversity in sequence and structure of the SH3 domain: the RT and n-Src loops. The bivalent ligand was optimized using phage display, leading to a peptide (PP-G(4)-L) with 1000-fold increased affinity for the SEM-5 C-terminal SH3 domain over that of a natural ligand. NMR analysis of the complex confirms that the peptide loop segment is targeted to the RT and n-Src loops and parts of the beta-sheet scaffold of this SH3 domain. This binding region is comparable to that targeted by a natural non-PXXP peptide to the p67(phox) SH3 domain, a region not known to be targeted in the Grb2 SH3 domain family. PP-G(4)-L may aid in the discovery of additional binding partners of Grb2 family SH3 domains.  相似文献   

17.
XIAP, an important regulator of apoptosis, has emerged as a target for the development of cancer therapeutics. The homodimeric Smac protein simultaneously binds to both the BIR2 and BIR3 domains of XIAP. Peptide-based dimeric compounds that mimic the binding mode of Smac show promise as XIAP antagonists. Herein we characterize the first example of a Smac mimetic that incorporates a peptide sequence specific for BIR2. We show that the tetrapeptide motif Ala-Glu-Ala-Val has a higher affinity for BIR2 than the BIR3-specific sequence Ala-Val-Pro-Phe, and we compare the binding characteristics of a heterodimeric peptide containing both tetrapeptide motifs to those of a homodimeric peptide featuring only AVPF. Despite the enhanced affinity of AEAV (relative to AVPF) for BIR2, the heterodimeric peptide displays only a slightly higher affinity for XIAP relative to its homodimeric counterpart. Enhanced affinity of both dimers relative to the tetrapeptide AVPF is largely maintained even when the BIR2 binding groove is modified, implying that hydrophobic contacts afforded by the second peptide motif need not necessarily be made at the BIR2 binding groove to contribute substantial binding energy. Finally, we use mutagenesis to show that the difference in sequence specificity observed between the two domains is primarily owing to steric bulk introduced at the BIR2 site by lysine 206. Replacement of K206 at BIR2 with glycine, the corresponding residue in BIR3, restores the majority of the affinity for the AVPF motif exhibited by BIR3. The implications of these finding in the development of XIAP antagonists are discussed. ? 2011 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 98: 122-130, 2012.  相似文献   

18.
The human platelet thrombin receptor is activated when thrombin cleaves its receptor's amino-terminal extension to reveal a new amino terminus that functions as a tethered peptide ligand. Exactly how this "agonist peptide domain" remains cryptic within the uncleaved receptor and becomes functional after receptor cleavage is unknown. In this report we define the structural features of the thrombin receptor's agonist peptide domain important for receptor activation. Studies with mutant thrombin receptors have suggested that agonist peptide domain residues 2-6 contained determinants critical for receptor activation, and the synthetic peptide SFLLR-NH2 representing the 1st 5 amino-terminal residues of the agonist peptide domain was sufficient to specify agonist activity. Acetylating or removing the agonist peptide's amino-terminal ammonium group greatly attenuated agonist activity. Agonist peptide residue Phe2 was vital for agonist function; residues Leu4 and Arg5 individually played less important roles. These structure-function relationships held for both platelet activation and activation of the cloned receptor expressed in transfected mammalian cells. Our studies suggest that structures at the extreme amino terminus of the thrombin receptor's agonist peptide domain, in particular the free ammonium group of Ser1 and the phenyl ring of Phe2, are critical for receptor activation and that the agonist function of this domain is expressed when receptor proteolysis unmasks such determinants. In addition to revealing details of the thrombin receptor's proteolytic triggering mechanism, these studies open avenues to the development of drugs targeting the thrombin receptor and to further definition for the role of the thrombin receptor in cellular regulation.  相似文献   

19.
Caspase activation, the executing event of apoptosis, is under deliberate regulation. IAP proteins inhibit caspase activity, whereas Smac/Diablo antagonizes IAP. XIAP, a ubiquitous IAP, can inhibit both caspase-9, the initiator caspase of the mitochondrial apoptotic pathway, and the downstream effector caspases, caspase-3 and caspase-7. Smac neutralizes XIAP inhibition of caspase-9 by competing for binding of the BIR3 domain of XIAP with caspase-9, whereas how Smac liberates effector caspases from XIAP inhibition is not clear. It is generally believed that binding of Smac with IAP generates a steric hindrance that prevents XIAP from inhibiting effector caspases, and therefore small molecule mimics of Smac are not able to reverse inhibition of the effector caspases. Surprisingly, we show here that binding of a dimeric Smac N-terminal peptide with the BIR2 domain of XIAP effectively antagonizes inhibition of caspase-3 by XIAP. Further, we defined the dynamic and cooperative interaction of Smac with XIAP: binding of Smac with the BIR3 domain anchors the subsequent binding of Smac with the BIR2 domain, which in turn attenuates the caspase-3 inhibitory function of XIAP. We also show that XIAP homotrimerizes via its C-terminal Ring domain, making its inhibitory activity toward caspase-3 more susceptible to Smac.  相似文献   

20.
The X-linked inhibitor of apoptosis protein (XIAP) is overexpressed in several malignant cells where it prevents apoptosis by binding to, and blocking, the activation of caspase-3, -7, and -9. Human XIAP (479 residues) is composed of three tandem-repeated baculoviral IAP repeat (BIR) domains (BIR1-3), and by a C-terminal RING domain. Smac-DIABLO [second mitochondria-derived activator of caspases (Smac)-direct IAP binding protein with low pI (DIABLO)], the natural antagonist of XIAP, binds through its N-terminal sequence AVPI to the same surface groove, in the BIR domains, that binds caspases. Synthetic compounds mimicking such tetrapeptide motif effectively block the interaction between IAP and active caspases, thus triggering apoptosis. Peptidomimetics based on an azabicyclo[x.y.0]alkane scaffolds, have been shown to bind the BIR3 domain of XIAP with micromolar to nanomolar affinities, thus presenting attractive features for drug lead optimization. Here we report a study on three newly synthesized Smac mimetics, which have been characterized in their complexes with XIAP BIR3 domain through X-ray crystallography and molecular modelling/docking simulations. Based on analysis of the crystal structures, we show that specific substitutions at the 4-position of the azabicyclo[5.3.0]alkane scaffold results in sizeable effects on the peptidomimetic-BIR3 domain affinity. By means of functional, biophysical and simulative approaches we also propose that the same Smac mimetics can bind XIAP BIR2 domain at a location structurally related to the BIR3 domain AVPI binding groove. Details of the XIAP-Smac mimetic recognition principles highlighted by this study are discussed in light of the drug-like profile of the three (potentially proapoptotic) compounds developed that show improved performance in ADMET (adsorption, distribution, metabolism, excretion and toxicity) tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号