首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-Phenylpropionitrile was synthesized from Z-3-phenylpropionaldoxime (0.75 M) in a quantitative yield (98 g/l) by the use of cells of Eschrichia coli JM 109/pOxD-9OF, a transformant harboring a gene for a new enzyme, phenylacetaldoxime dehydratase, from Bacillus sp. strain OxB-1. Other arylalkyl- and alkyl-nitriles were also synthesized in high yields from the corresponding aldoximes. Moreover, 3-phenylpropionitrile was successfully synthesized by the recombinant cells in 70 and 100% yields from 0.1 M unpurified E/Z-3-phenylpropionaldoxime, which is spontaneously formed from 3-phenylpropionaldehyde and hydroxylamine in a butyl acetate/water biphasic system and aqueous phase, respectively.  相似文献   

2.
3-Phenylpropionitrile was synthesized from Z-3-phenylpropionaldoxime (0.75 M) in a quantitative yield (98 g/l) by the use of cells of Escherichia coli JM 109/pOxD-90F, a transformant harboring a gene for a new enzyme, phenylacetaldoxime dehydratase, from Bacillus sp. strain OxB-1. Other arylalkyl- and alkyl-nitriles were also synthesized in high yields from the corresponding aldoximes. Moreover, 3-phenylpropionitrile was successfully synthesized by the recombinant cells in 70 and 100% yields from 0.1 M unpurified E/Z-3-phenylpropionaldoxime, which is spontaneously formed from 3-phenylpropionaldehyde and hydroxylamine in a butyl acetate/water biphasic system and aqueous phase, respectively.  相似文献   

3.
We examined the overexpression of a novel FMN-dependent heme-containing lyase, phenylacetaldoxime dehydratase (Oxd) of Bacillus sp. strain OxB-1, in Escherichia coli and Bacillus subtilis. Several plasmids were constructed to express the enzyme under the control of the lac promoter or its own promoter, together with or without nitrilase and a possible regulatory protein that is present in the wild-type genome. The enzyme was expressed using E. coli transfected with the plasmid pOxD-9OF. Expression was under the control of the lac promoter in the pUC18 vector and was much more effective when the start codon was changed from TTG to ATG. When the transfected cells were grown at 37 degrees C, the enzyme was produced mainly in inactive inclusion bodies, whereas the enzyme was largely soluble and active when the cells were grown at 30 degrees C. The production of active enzyme was markedly enhanced by increasing the volume of culture medium. This had the effect of slowing the rate of apoenzyme synthesis. A slow rate of synthesis allows for a more efficient incorporation of heme cofactor into the apoenzyme than a fast rate of synthesis. Under optimized conditions, the enzyme was produced in an active and soluble form at 15,000U/L of culture, which is about 1500-fold higher than the amount produced by the wild-type strain. Moreover, the enzyme comprised over 40% of total extractable cellular protein.  相似文献   

4.
A novel dehydratase that catalyzes the stoichiometric dehydration of Z-phenylacetaldoxime to phenylacetonitrile has been purified 483-fold to homogeneity from a cell-free extract of Bacillus sp. strain OxB-1 isolated from soil. It has a M(r) of about 40 000 and is composed of a single polypeptide chain with a loosely bound protoheme IX. The enzyme is inactive unless FMN is added to the assay, but low activity is also observed when sulfite replaces FMN. The activity in the presence of FMN is enhanced 5-fold under anaerobic conditions compared to the activity measured in air. The enzyme has maximum activity at pH 7.0 and 30 degrees C, and it is stable at up to 45 degrees C at around neutral pH. The aerobically measured activity in the presence of FMN is also enhanced by Fe(2+), Sn(2+), SO(3)(2)(-), and NaN(3). Metal-chelating reagents, carbonyl reagents, electron donors, and ferri- and ferrocyanides strongly inhibit the enzyme with K(i) values in the micromolar range. The enzyme is active with arylalkylaldoximes and to a lesser extent with alkylaldoximes. The enzyme prefers the Z-form of phenylacetaldoxime over its E-isomer. On the basis of its substrate specificity, the enzyme has been tentatively named phenylacetaldoxime dehydratase. The gene coding for the enzyme was cloned into plasmid pUC18, and a 1053 base-pair open reading frame that codes for 351 amino acid residues was identified as the oxd gene. A nitrilase, which participates in aldoxime metabolism in the organism, was found to be coded by the region just upstream from the oxd gene. In addition an open reading frame (orf2), whose gene product is similar to bacterial regulatory (DNA-binding) proteins, was found just upstream from the coding region of the nitrilase. These findings provide genetic evidence for a novel gene cluster that is responsible for aldoxime metabolism in this microorganism.  相似文献   

5.
Xie SX  Kato Y  Komeda H  Yoshida S  Asano Y 《Biochemistry》2003,42(41):12056-12066
An enzyme "alkylaldoxime dehydratase (OxdRG)" was purified and characterized from Rhodococcus globerulus A-4, in which nitrile hydratase (NHase) and amidase coexisted with the enzyme. The enzyme contains heme b as a prosthetic group, requires reducing reagents for the reaction, and is most active at a neutral pH and at around 30 degrees C, similar to the phenylacetaldoxime dehydratase from Bacillus sp. OxB-1 (OxdB). However, some differences were seen in subunit structure, substrate specificity, and effects of activators and inhibitors. The corresponding gene, oxd, encoding a 1059-base pair ORF consisting of 353 codons, was cloned, sequenced, and overexpressed in Escherichia coli. The predicted polypeptide showed 30.3% identity to OxdB. The gene is mapped just upstream of the gene cluster encoding the enzymes involved in the metabolism of aliphatic nitriles, i.e., NHase and amidase, and their regulatory and activator proteins. We report here the existence of an aldoxime dehydratase genetically linked with NHase and amidase, and responsible for the metabolism of alkylaldoxime in R. globerulus.  相似文献   

6.
Z-phenylacetaldoxime (Z-PAOx) degrading bacterium, identified as Bacillus sp. strain OxB-1, was isolated from soil after 2 months acclimation. The enzyme involved in the degradation of Z-PAOx was induced by the aldoxime and required FMN for its activity. The enzyme was partially purified from the cell-free extract of the strain and shown to catalyze the stoichiometric dehydration reaction of Z-PAOx to form phenylacetonitrile (PAN). Activities of nitrilase and amidase acting on PAN and phenylacetamide (PAAm), respectively, to form phenylacetate (PAA) were found in the strain grown on Z-PAOx. This is the first report of aldoxime dehydratase co-existing with nitrile degrading enzymes in bacteria.  相似文献   

7.
Flavin reductase is essential for the oxygenases involved in microbial dibenzothiophene (DBT) desulfurization. An enzyme of the thermophilic strain, Bacillus sp. DSM411, was selected to couple with DBT monooxygenase (DszC) from Rhodococcus erythropolis D-1. The flavin reductase was purified to homogeneity from Bacillus sp. DSM411, and the native enzyme was a monomer of M(r) 16 kDa. Although the best substrates were flavin mononucleotide and NADH, the enzyme also used other flavin compounds and acted slightly on nitroaromatic compounds and NADPH. The purified enzyme coupled with DszC and had a ferric reductase activity. Among the flavin reductases so far characterized, the present enzyme is the most thermophilic and thermostable. The gene coded for a protein of 155 amino acids with a calculated mass of 17,325 Da. The enzyme was overproduced in Escherichia coli, and the specific activity in the crude extracts was about 440-fold higher than that of the wild-type strain, Bacillus sp. DSM411.  相似文献   

8.
Monoacylglycerol lipase [MGLP, EC 3.1.1.23] is produced intracellularly by the moderately thermophilic Bacillus sp. strain H-257. The gene encoding MGLP was cloned, sequenced, and expressed in Escherichia coli. A genomic library of Bacillus sp. strain H-257, prepared in the plasmid vector pACYC184, was screened with a 0.2-kbp DNA fragment amplified by the polymerase chain reaction (PCR) with oligonucleotide primers designed based on the amino acid sequence of a purified MGLP. The plasmid pMGLP31, identified by hybridization with the amplified DNA fragment, contained a 5.3-kbp insert from Bacillus sp. strain H-257 DNA. Sequence analysis of the MGLP gene revealed an open reading frame encoding MGLP consisting of 250 amino acids, with a calculated molecular mass of 27.4 kDa. The deduced amino acid sequence of MGLP contained the consensus pentapeptide (-Gly-Xaa-Ser-Xaa-Gly-), which is conserved among lipases, esterases, and serine proteases. The MGLP is homologous to a putative esterase/lipase from Streptomyces coelicolor (41.8% homology). When pMGLP31 was introduced into E. coli DH1, the transformants produced MGLP intracellularly as an active form to an approximately 13.8-fold greater extent than Bacillus sp. strain H-257. The purified recombinant MGLP was shown to be identical to the native enzyme in terms of chromatographic behavior, isoelectric point, and physicochemical and catalytic properties.  相似文献   

9.
Aldoxime dehydratase (Oxd) is a novel hemeprotein that catalyzes the dehydration reaction of aldoxime to produce nitrile. In this study, we studied the spectroscopic and substrate binding properties of two Oxds, OxdB from Bacillus sp. strain OxB-1 and OxdRE from Rhodococcus sp. N-771, that show different quaternary structures and relatively low amino acid sequence identity. Electronic absorption and resonance Raman spectroscopy revealed that ferric OxdRE contained a six-coordinate low-spin heme, while ferric OxdB contained a six-coordinate high-spin heme. Both ferrous OxdRE and OxdB included a five-coordinate high-spin heme to which the substrate was bound via its nitrogen atom for the reaction to occur. Although the ferric Oxds were inactive for catalysis, the substrate was bound to the ferric heme via its oxygen atom in both OxdB and OxdRE. Electronic paramagnetic resonance (EPR) and rapid scanning spectroscopy revealed that the flexibility of the heme pocket was different between OxdB and OxdRE, which might affect their substrate specificity.  相似文献   

10.
When cells of Bacillus sp. strain GL1 were grown in a medium containing xanthan as a carbon source, alpha-mannosidase exhibiting activity toward p-nitrophenyl-alpha-D-mannopyranoside (pNP-alpha-D-Man) was produced intracellularly. The 350-kDa alpha-mannosidase purified from a cell extract of the bacterium was a trimer comprising three identical subunits, each with a molecular mass of 110 kDa. The enzyme hydrolyzed pNP-alpha-D-Man (Km = 0.49 mM) and D-mannosyl-(alpha-1,3)-D-glucose most efficiently at pH 7.5 to 9.0, indicating that the enzyme catalyzes the last step of the xanthan depolymerization pathway of Bacillus sp. strain GL1. The gene for alpha-mannosidase cloned most by using N-terminal amino acid sequence information contained an open reading frame (3,144 bp) capable of coding for a polypeptide with a molecular weight of 119,239. The deduced amino acid sequence showed homology with the amino acid sequences of alpha-mannosidases belonging to glycoside hydrolase family 38.  相似文献   

11.
When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520-2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The polypeptide had a signal peptide (2 kDa) consisting of 25 amino acid residues preceding the N-terminal amino acid sequence of the enzyme and exhibited significant homology with hyaluronidase of Streptomyces griseus (identity score, 37.7%). Escherichia coli transformed with the gene without the signal peptide sequence showed a xanthan lyase activity and produced intracellularly a large amount of the enzyme (400 mg/liter of culture) with a molecular mass of 97 kDa. During storage at 4 degrees C, the purified enzyme (97 kDa) from E. coli was converted to a low-molecular-mass (75-kDa) enzyme with properties closely similar to those of the enzyme (75 kDa) from Bacillus sp. strain GL1, specifically in optimum pH and temperature for activity, substrate specificity, and mode of action. Logarithmically growing cells of Bacillus sp. strain GL1 on the medium with xanthan were also found to secrete not only xanthan lyase (75 kDa) but also a 97-kDa protein with the same N-terminal amino acid sequence as that of xanthan lyase (75 kDa). These results suggest that, in Bacillus sp. strain GL1, xanthan lyase is first synthesized as a preproform (99 kDa), secreted as a precursor (97 kDa) by a signal peptide-dependent mechanism, and then processed into a mature form (75 kDa) through excision of a C-terminal protein fragment with a molecular mass of 22 kDa.  相似文献   

12.
Fungal aldoxime dehydratase (Oxd) of Fusarium graminearum MAFF305135 was purified and characterized for the first time from its overexpressing Escherichia coli transformant. The enzyme showed about 20% identity with known Oxds, and had similar enzymatic properties with nitrilase-linked Oxd from the Bacillus strain. It belongs to a group of phenylacetaldoxime dehydratases (EC 4.99.1.7), based on its substrate specificity and kinetic analysis.  相似文献   

13.
The purification and characterization of indolyl-3-acetaldoxime dehydratase produced by the plant fungal pathogen Sclerotinia sclerotiorum is described. The substrate specificity indicates that it is an indolyl-3-acetaldoxime dehydratase (IAD, EC 4.99.1.6), which catalyzes transformation of indolyl-3-acetaldoxime to indolyl-3-acetonitrile. The enzyme showed Michaelis-Menten kinetics and had an apparent molecular mass of 44 kDa. The amino acid sequence of IAD, determined using LC-ESI-MS/MS, identified it as the protein SS1G_01653 from S. sclerotiorum. IADSs was highly homologous (84% amino acid identity) to the hypothetical protein BC1G_14775 from Botryotinia fuckeliana B05.10. In addition, similarity to the phenylacetaldoxime dehydratases from Gibberella zeae (33% amino acid identity) and Bacillus sp. (20% amino acid identity) was noted. The specific activity of IADSs increased about 17-fold upon addition of Na(2)S(2)O(4) under anaerobic conditions, but in the absence of Na(2)S(2)O(4) no significant change was observed, whether aerobic or anaerobic conditions were used. As with other aldoxime dehydratases isolated from microbes, the role of IADSs in fungal plant pathogens is not clear, but given its substrate specificity, it appears unlikely that IADSs is a general xenobiotic detoxifying enzyme.  相似文献   

14.
Phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1 (OxdB) catalyzes the dehydration of Z-phenylacetaldoxime (PAOx) to produce phenylacetonitrile. OxdB contains a protoheme that works as the active center of the dehydration reaction. The enzymatic activity of ferrous OxdB was 1150-fold higher than that of ferric OxdB, indicating that the ferrous heme was the active state in OxdB catalysis. Although ferric OxdB was inactive, the substrate was bound to the ferric heme iron. Electron paramagnetic resonance spectroscopy revealed that the oxygen atom of PAOx was bound to the ferric heme, whereas PAOx was bound to the ferrous heme in OxdB via the nitrogen atom of PAOx. These results show a novel mechanism by which the activity of a heme enzyme is regulated; that is, the oxidation state of the heme controls the coordination structure of a substrate-heme complex, which regulates enzymatic activity. Rapid scanning spectroscopy using stopped-flow apparatus revealed that a reaction intermediate (the PAOx-ferrous OxdB complex) showed Soret, alpha, and beta bands at 415, 555, and 524 nM, respectively. The formation of this intermediate complex was very fast, finishing within the dead time of the stopped-flow mixer (approximately 3 ms). Site-directed mutagenesis revealed that His-306 was the catalytic residue responsible for assisting the elimination of the hydrogen atom of PAOx. The pH dependence of OxdB activity suggested that another amino acid residue that assists the elimination of the OH group of PAOx would work as a catalytic residue along with His-306.  相似文献   

15.
A low-molecular-weight, high-alkaline pectate lyase (pectate transeliminase, EC 4.2.2.2) was found in an alkaline culture of Bacillus sp. strain KSM-P15, purified to homogeneity, and crystallized. The enzyme had a relative molecular weight of approximately 20,300 as measured by sedimentation equilibrium, with a sedimentation coefficient (s20,w0) of 1.73 S. It was a basic protein with an isoelectric point of pH 10.3, and the alpha-helical content was only 6.6%. In the presence of Ca2+ ions, the enzyme degraded polygalacturonic acid in a random manner to yield 4,5-unsaturated oligo-galacturonides and had its optimal activity around pH 10.5 and 50-55 degrees C. It also had a protopectinase-like activity on cotton fibers. The N-terminal amino acid sequences of the intact protein (28 amino acids) and its two lysyl endopeptidase-cleaved peptide fragments (8 and 12 amino acids) had very low sequence similarity with pectate lyases reported to date. These results strongly suggest that the pectate lyase of Bacillus sp. strain KSM-P15 may be a novel enzyme and belongs in a new family.  相似文献   

16.
A thermostable chitosanase gene from the environmental isolate Bacillus sp. strain CK4, which was identified on the basis of phylogenetic analysis of the 16S rRNA gene sequence and phenotypic analysis, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30-kDa enzyme. The deduced amino acid sequence of the chitosanase from Bacillus sp. strain CK4 exhibits 76.6, 15.3, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. strain CK4 belongs to cluster III with B. subtilis. The gene was similar in size to that of the mesophile B. subtilis but showed a higher preference for codons ending in G or C. The enzyme contains 2 additional cysteine residues at positions 49 and 211. The recombinant chitosanase has been purified to homogeneity by using only two steps with column chromatography. The half-life of the enzyme was 90 min at 80 degrees C, which indicates its usefulness for industrial applications. The enzyme had a useful reactivity and a high specific activity for producing functional oligosaccharides as well, with trimers through hexamers as the major products.  相似文献   

17.
The maltose phosphorylase (MPase) gene of Bacillus sp. strain RK-1 was cloned by PCR with oligonucleotide primers designed on the basis of a partial N-terminal amino acid sequence of the purified enzyme. The MPase gene consisted of 2,655 bp encoding a theoretical protein with a Mr of 88,460, and had no secretion signal sequence, although most of the MPase activity was detected in the culture supernatant of RK-1. This cloned MPase gene and the trehalose phosphorylase (TPase) gene from Bacillus stearothermophilus SK-1 were efficiently expressed intracellularly under the control of the Bacillus amyloliquefaciens alpha-amylase promoter in Bacillus subtilis. The production yields were estimated to be more than 2 g of enzyme per liter of medium, about 250 times the production of the original strains, in a simple shake flask. About 60% of maltose was converted into trehalose by the simultaneous action of both enzymes produced in B. subtilis.  相似文献   

18.
The cyclomaltodextrin glucanotransferase (CGTase, EC 2.4.1.19) gene from the alkalophilic Bacillus sp. strain no. 17-1 was cloned in Escherichia coli. The cloned CGTase gene consisted of a single open reading frame which would encode a polypeptide of 713 amino acids, and the first 27 amino acid residues comprised a signal peptide. The nucleotide sequence and the amino acid sequence of this CGTase (CGTase 17-1) gene had strong homology with those of the CGTase (CGTase 38-2) gene previously cloned in our laboratory from the alkalophilic Bacillus sp. strain no. 38-2, although the enzymic properties of the CGTase 17-1 were distinct from those of the CGTase 38-2. To analyse those enzymic properties further, we constructed 12 chimeric CGTases using three restriction nuclease sites and compared the enzymic properties of the chimeric CGTases. The N-terminal part of the enzyme was important for heat stability, and the pH-activity profile was influenced by both the N- and the C-terminal parts. A third segment was less important for enzymic properties.  相似文献   

19.
A psychrophilic alanine racemase gene from Bacillus psychrosaccharolyticus was cloned and expressed in Escherichia coli SOLR with a plasmid pYOK3. The gene starting with the unusual initiation codon GTG showed higher preference for codons ending in A or T. The enzyme purified to homogeneity showed the high catalytic activity even at 0 degrees C and was extremely labile over 35 degrees C. The enzyme was found to have a markedly large Km value (5.0 microM) for the pyridoxal 5'-phosphate (PLP) cofactor in comparison with other reported alanine racemases, and was stabilized up to 50 degrees C in the presence of excess amounts of PLP. The low affinity of the enzyme for PLP may be related to the thermolability, and may be related to the high catalytic activity, initiated by the transaldimination reaction, at low temperature. The enzyme has a distinguishing hydrophilic region around the residue no. 150 in the deduced amino acid sequence (383 residues), whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of the region in the three dimensional structure of C atoms of the enzyme was predicted to be in a surface loop surrounding the active site. The region may interact with solvent and reduce the compactness of the active site.  相似文献   

20.
The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (Mr, 84,500) with a subunit with an Mr of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号