首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of Escherichia coli O157 in the faeces of farm animals appears to provide a primary route for human infection, either through physical contact or by contamination of the food chain. Controlling the survival and proliferation of this pathogen in the ruminant gut could offer a measure of protection in the short term, and ultimately complement alternative biotechnological based solutions. Normally, E. coli is greatly outnumbered in the ruminant gut by anaerobic bacteria, producers of weak acids inhibitory to the growth of this species. Withdrawal of feed prior to animal slaughter reduces the concentration of these acids in the gut and may be accompanied by the proliferation of E. coli. There are conflicting reports concerning the effects of changes in the ruminant diet upon faecal shedding of E. coli O157. It is contended that it is important to identify animal husbandry methods or feed additives that may be accompanied by an increased risk of proliferation of this pathogen. Greater understanding of the mechanisms involved in bacterial survival in the presence of weak acids, in the interactions between E. coli and other gut bacteria, and of the effects of some antibacterial plant secondary plant compounds on E. coli, could lead to the development of novel control methods.  相似文献   

2.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

3.
Escherichia coli O157 and Salmonella spp. are among the leading causes of food-borne illness in the United Sates and bacteria have been isolated from numerous ruminant animal sources. The objective of this study was to assess the incidence of E. coli O157 and Salmonella spp. in white-tailed deer (Odocoileus virginianus) and livestock simultaneously grazing the same rangeland. Escherichia coli O157 was found in 1.25% of cattle, 1.22% of sheep, and 5.00% of water all from samples taken in September; however, no E. coli O157 was found in other sampled months or any species. Salmonella spp. were found in the highest quantities in deer and sheep, 7.69% and 7.32%, respectively. Salmonella spp. were also found in sampled water troughs, goats, and cattle (5.00%, 3.70%, and 1.25%, respectively). Further research examining pathogen distribution is needed to determine if white-tailed deer are a natural reservoir for these bacteria.  相似文献   

4.
The gastrointestinal tract (GIT) of ruminants is the main reservoir of enterohemorrhagic Escherichia coli, which is responsible for food-borne infections in humans that can lead to severe kidney disease. Characterization of biotic and abiotic factors that influence the carriage of these pathogens by the ruminant would help in the development of ecological strategies to reduce their survival in the GIT and to decrease the risk of contamination of animal products. We found that growth of E. coli O157:H7 in rumen fluid was inhibited by the autochthonous microflora. Growth was also reduced when rumen fluid came from sheep fed a mixed diet composed of 50% wheat and 50% hay, as opposed to a 100% hay diet. In fecal suspensions, E. coli O157:H7 growth was not suppressed by the autochthonous flora. However, a probiotic strain of Lactobacillus acidophilus inhibited E. coli O157:H7 growth in fecal suspensions. The inhibitory effect was dose dependent. These lactic acid bacteria could be a relevant tool for controlling O157:H7 development in the terminal part of the ruminant GIT, which has been shown to be the main site of colonization by these pathogenic bacteria.  相似文献   

5.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

6.
AIMS: To determine if the temperatures used in feed manufacture are likely to destroy Escherichia coli O157. METHODS AND RESULTS: Two commercial feeds were ground and inoculated with E. coli O157 cells. The feeds were heated to 50, 55, 60, 65 or 70 degrees C. Heating produced quadratic survivor curves, with rapid initial decreases. The survival characteristics of E. coli O157 differed in the two feeds. The reductions observed in one feed may not have been due to heat alone. There was evidence that indigenous anti-E. coli O157 factor(s) in one feed acted with the heat and contributed to the observed rates of bacterial death. Heating at 70 degrees C for 20 or 120 s resulted in approx. 1.3 and 2.2 log reductions in E. coli O157 numbers respectively. Lesser reductions were observed at lower temperatures. CONCLUSIONS: The time/temperature combinations used in commercial pelleting processes would not effectively kill high numbers of E. coli O157. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to look at the survival of E. coli O157 strains after heat treatment within concentrated animal feed. The study provides information on the likely risk of E. coli O157 surviving the animal feed manufacturing process.  相似文献   

7.
Consumption of fresh and fresh-cut fruits and vegetables contaminated with Escherichia coli O157:H7 has resulted in hundreds of cases of illness and, in some instances, death. In this study, the influence of cell surface structures of E. coli O157:H7, such as flagella, curli fimbriae, lipopolysaccharides, or exopolysaccharides, on plant defense responses and on survival or colonization on the plant was investigated. The population of the E. coli O157:H7 ATCC 43895 wild-type strain was significantly lower on wild-type Arabidopsis plants than that of the 43895 flagellum-deficient mutant. The population of the E. coli O157:H7 43895 flagellum mutant was greater on both wild-type and npr1-1 mutant (nonexpressor of pathogenesis-related [PR] genes) plants and resulted in less PR gene induction, estimated based on a weak β-glucuronidase (GUS) signal, than did the 43895 wild-type strain. These results suggest that the flagella, among the other pathogen-associated molecular patterns (PAMPs), made a substantial contribution to the induction of plant defense response and contributed to the decreased numbers of the E. coli O157:H7 ATCC 43895 wild-type strain on the wild-type Arabidopsis plant. A curli-deficient E. coli O157:H7 86-24 strain survived better on wild-type Arabidopsis plants than the curli-producing wild-type 86-24 strain did. The curli-deficient E. coli O157:H7 86-24 strain exhibited a GUS signal at a level substantially lower than that of the curli-producing wild-type strain. Curli were recognized by plant defense systems, consequently affecting bacterial survival. The cell surface structures of E. coli O157:H7 have a significant impact on the induction of differential plant defense responses, thereby impacting persistence or survival of the pathogen on plants.  相似文献   

8.
AIMS: To assess whether the persistence of Escherichia coli O157:H7 in soil amended with cattle slurry and ovine stomach content waste is affected by the presence of a maize rhizosphere. METHODS AND RESULTS: Cattle slurry and ovine stomach content waste were inoculated with E. coli O157:H7. Wastes were then applied to soil cores with and without established maize plants. The pathogen survived in soil for over 5 weeks, although at significantly greater numbers in soil receiving stomach content waste in comparison to cattle slurry. Persistence of the pathogen in soil was unaffected by the presence of a rhizosphere. CONCLUSIONS: Other factors may be more influential in regulating E. coli O157:H7 persistence in waste-amended soil than the presence or absence of a rhizosphere; however, waste type did have significant affect on the survival of E. coli O157:H7 in such soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Escherichia coli O157:H7 can be present within animal-derived organic wastes that are routinely spread on land. Introduced measures with regards to such waste disposal may decrease exposure to the organism; however, the persistence of E. coli O157:H7 for considerable periods in waste-amended soil may still pose some risk for both human and animal infection. This study has shown that whilst survival of E. coli O157:H7 in waste-amended soil is not significantly affected by the presence or absence of a maize rhizosphere; it may vary significantly with waste type. This may have implications for land and waste management.  相似文献   

9.
Gastrointestinal tract location of Escherichia coli O157:H7 in ruminants   总被引:1,自引:0,他引:1  
Experimentally inoculated sheep and cattle were used as models of natural ruminant infection to investigate the pattern of Escherichia coli O157:H7 shedding and gastrointestinal tract (GIT) location. Eighteen forage-fed cattle were orally inoculated with E. coli O157:H7, and fecal samples were cultured for the bacteria. Three distinct patterns of shedding were observed: 1 month, 1 week, and 2 months or more. Similar patterns were confirmed among 29 forage-fed sheep and four cannulated steers. To identify the GIT location of E. coli O157:H7, sheep were sacrificed at weekly intervals postinoculation and tissue and digesta cultures were taken from the rumen, abomasum, duodenum, lower ileum, cecum, ascending colon, descending colon, and rectum. E. coli O157:H7 was most prevalent in the lower GIT digesta, specifically the cecum, colon, and feces. The bacteria were only inconsistently cultured from tissue samples and only during the first week postinoculation. These results were supported in studies of four Angus steers with cannulae inserted into both the rumen and duodenum. After the steers were inoculated, ruminal, duodenal, and fecal samples were cultured periodically over the course of the infection. The predominant location of E. coli O157:H7 persistence was the lower GIT. E. coli O157:H7 was rarely cultured from the rumen or duodenum after the first week postinoculation, and this did not predict if animals went on to shed the bacteria for 1 week or 1 month. These findings suggest the colon as the site for E. coli O157:H7 persistence and proliferation in mature ruminant animals.  相似文献   

10.
Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening complications. Because healthy cattle are reservoirs for the bacterium, ruminant infection models have applications in analyzing the relationship between cattle and this human pathogen and in testing interventions to reduce or prevent bovine colonization with this bacterium. Current approaches often do not reliably mimic natural, long-term bovine colonization with E. coli O157:H7 in older calves and adult animals (ages that enter our food chain). Based on the recent identification of the bovine rectoanal junction mucosa as a site of E. coli O157:H7 colonization, we developed a novel rectal swab administration colonization model. We compared this method with oral dosing and direct contact transmission (Trojan) methods. E. coli O157:H7 carriage status was determined by fecal or rectoanal mucosa swab culture. High ( approximately 10(10) CFU) and low ( approximately 10(7) CFU) oral doses of E. coli O157:H7 in sheep and cattle resulted in variable infection with the bacterium. Some animals became colonized with the bacteria and remained culture positive for several weeks, and some animals did not become colonized and rapidly cleared the bacteria in a few days. Pen mates of E. coli O157:H7 culture-positive Trojan cattle had a low infection rate and variable colonization status. However, rectal swab administration of E. coli O157:H7 to cattle resulted in consistent long-term colonization in all animals. The surprising ease with which long-term infections resulted from a single application of bacteria to the rectoanal mucosa also strongly supported this location as a site of E. coli O157:H7 colonization in cattle.  相似文献   

11.
The purpose of this study was to develop a sheep model to investigate reproduction, transmission, and shedding of Escherichia coli O157:H7 in ruminants. In addition, we investigated the effect of diet change on these parameters. Six groups of twin lambs given oral inoculations of 10(5) or 10(9) CFU of E. coli O157:H7 and their nondosed mothers were monitored for colonization by culture of fecal samples. A modified selective-enrichment protocol that detected E. coli O157:H7 at levels as low as 0.06 CFU per g of ovine feces was developed. Horizontal transmission of infection occurred between the lambs and most of the nondosed mothers. When animals were kept in confinement and given alfalfa pellet feed, lambs receiving the higher dose shed the bacteria sooner and longer than all other animals. However, when the animals were released onto a sagebrush-bunchgrass range, every animal, regardless of its previous status (dosed at one of the inoculum levels tested or nondosed) shed E. coli O157:H7 uniformly. Shedding persisted for 15 days, after which all animals tested negative. E. coli O157:H7 reproduction and transmission and the combined effect of diet change and feed withholding were also investigated in a pilot study with experimentally inoculated rams. Withholding feed induced animals to shed the bacteria either by triggering growth of E. coli O157:H7 present in the intestines or by increasing susceptibility to infection. Introduction of a dietary change with brief starvation caused uniform shedding and clearance of E. coli O157:H7, and all animals then tested negative for the bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
AIMS: To compare the persistence of Escherichia coli O157 on a variety of common faecally contaminated farmyard material surfaces (wood and steel) under different moisture and temperature regimes. METHODS AND RESULTS: Samples of field-conditioned farmyard materials (galvanized steel and wood) were cut into pieces and contaminated with fresh cattle faeces inoculated with nontoxigenic E. coli O157 (strain 3704). Thereafter, they were stored at four different environmental conditions; with temperature (5 and 20 degrees C) and moisture (moist or dry) as variables. Transfer of the pathogen to hands from the surfaces was also evaluated. Escherichia coli O157 numbers declined over time on all surfaces albeit at different rates according to the sample material and environmental conditions. Persistence was greatest on moist wood samples under cooler temperatures with large population numbers remaining after 28 days. Desiccation of surfaces resulted in a more rapid decline in E. coli O157 populations under both temperature regimes. Substantial numbers of colonies may also potentially be transferred to human hands from the surfaces during brief contact. CONCLUSIONS: When environmental conditions are favourable, E. coli O157 may persist for considerable times on a range of surfaces. However, when exposed to higher temperatures and dehydration, survival is notably decreased. Overall, bacterial persistence was significantly greater on wood samples relative to steel. SIGNIFICANCE AND IMPACT OF THE STUDY: Escherichia coli O157 is a prevalent pathogen, common in ruminant faeces. Contact with contaminated faeces may lead to human infection, resulting in possible severe illness. Although our study used only one strain of bacteria, our findings indicates that E. coli O157 has the potential to persist for long periods of time on gates, stiles and other farmyard surfaces under a range of environmental conditions. These farmyard surfaces therefore pose a potential infection pathway particularly where there is a high risk of direct human contact (e.g. child petting zoos, open farms).  相似文献   

13.
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a significant human pathogen that resides in healthy cattle. It is thought that a reduction in the prevalence and numbers of EHEC in cattle will reduce the load of EHEC entering the food chain. To this end, an intervention strategy involving the addition of chitosan microparticles (CM) to feed in order to reduce the carriage of this pathogen in cattle was evaluated. Experiments with individual Holstein calves and a crossover study found that the addition of CM to feed decreased E. coli O157:H7 shedding. In the crossover study, CM resulted in statistically significant reductions in the numbers recovered from rectal swab samples (P < 0.05) and the duration of shedding (P < 0.05). The effects of feeding CM to calves differed, indicating that the optimal levels of CM may differ between animals or that other factors are involved in the interaction between CM and E. coli O157:H7. In vitro studies demonstrated that E. coli O157:H7 binds to CM, suggesting that the reduction in shedding may result at least in part from the binding of positively charged CM to negatively charged E. coli cells. Additional studies are needed to determine the impact of CM feeding on animal production, but the results from this study indicate that supplementing feed with CM reduces the shedding of E. coli O157:H7 in cattle.  相似文献   

14.
Chlorate kills E. coli O157:H7 and has been proposed as a feed additive to be included in cattle rations immediately prior to slaughter to reduce E. coli O157: H7 populations in the gut. Antibiotic usage is not recommended in cases of E. coil O157:H7-induced hemorrhagic colitis because some antibiotics stimulate increased toxin production. This study was undertaken to determine if chlorate treatment affected toxin production. Pure cultures of E. coil O157:H7 were treated with 1/4 MIC of antibiotics (ampicillin, tetracycline, ceftiofur, gentamicin, monensin, tylosin, penicillin, ciprofloxacin, and novobiocin); toxin production was significantly increased by some antibiotics, but not by chlorate. Studies with mixed fecal bacteria demonstrated that chlorate killed E. coli O157:H7, but again did not stimulate toxin production. Chlorate appears to be an effective method to reduce shiga toxin-producing E. coil (STEC) populations in food animals, but additional studies are warranted before it is used to control infections.  相似文献   

15.
AIM: To determine the survival of Escherichia coli O157:H7 in dairy wastewater from on-site holding lagoons equipped with or without circulating aerators. METHODS AND RESULTS: Survival was monitored in dairy lagoon microcosms equipped with or without scale-size circulators. Both laboratory strains of E. coli O157:H7 and an isolate of E. coli H7 from wastewater had poor survival rates and none proliferated in water from waste lagoons with or without circulators. Furthermore, the decline of E. coli O157:H7 was not enhanced in those microcosms equipped with circulators. Strain variation in survival was observed in both circulated and settling waters. The decline rate of E. coli O157:H7 Odwalla strain increased proportionately with the inoculum load. Escherichia coli failed to establish itself in wastewater even after four sequential inoculations simulating continuous faecal input into the lagoon. The native aerobic bacteria survived longer with a decimal reduction time of 21.3 days vs either introduced or native E. coli, which declined rapidly with decimal reduction time of 0.5-9.4 days. CONCLUSIONS: Escherichia coli O157:H7 failed to establish and proliferate in dairy wastewater microcosms equipped with or without circulating aerators. SIGNIFICANCE AND IMPACT OF THE STUDY: This study furthers our knowledge of pathogen survival in wastewater, and suggests that proper management of wastewater before its use in irrigation is essential to reduce pathogen transfer to crops.  相似文献   

16.
AIMS: To isolate bacteria from bovine gastrointestinal tract and investigate their inhibitory effect on Escherichia coli O157:H7 in vitro. METHODS AND RESULTS: A total of 2400 bacterial colonies were isolated from cattle colonic mucous membrane. Thirteen strains demonstrated the ability to inhibit the growth of E. coli O157:H7. From these, seven were screened for the presence of virulence factors as: stx(1), stx(2), ehxA, eae, st1a and lt1 by polymerase chain reaction. The selected bacteriocin-producing bacteria showed susceptibility to most of the antibiotics used. CONCLUSIONS: The strains of E. coli isolated, which exhibit inhibitory activity on E. coli O157:H7 growth by the production of inhibitory substances, may be useful in the control of this pathogen in reservoirs. An important characteristic of these strains was the absence of any of the virulence factors assayed and the susceptibility to most of the antibiotics used for Gram-negative bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: These microorganisms might be used as probiotic bacteria to reduce the carriage of E. coli O157:H7 in cattle, thus limiting the contamination of carcasses at slaughter and subsequently the contamination of foods and the transfer of this pathogen to man.  相似文献   

17.
Escherichia coli O157:H7 continues to be an important human pathogen and has been increasingly linked to food-borne illness associated with fresh produce, particularly leafy greens. The aim of this work was to investigate the fate of E. coli O157:H7 on the phyllosphere of lettuce under low temperature and to evaluate the potential hazard of viable but nonculturable (VBNC) cells induced under such stressful conditions. First, we studied the survival of six bacterial strains following prolonged storage in water at low temperature (4°C) and selected two strains with different nonculturable responses for the construction of E. coli O157:H7 Tn7gfp transformants in order to quantitatively assess the occurrence of human pathogens on the plant surface. Under a suboptimal growth temperature (16°C), both E. coli O157:H7 strains maintained culturability on lettuce leaves, but under more stressful conditions (8°C), the bacterial populations evolved toward the VBNC state. The strain-dependent nonculturable response was more evident in the experiments with different inoculum doses (10(9) and 10(6) E. coli O157:H7 bacteria per g of leaf) when strain BRMSID 188 lost culturability after 15 days and strain ATCC 43895 lost culturability within 7 days, regardless of the inoculum dose. However, the number of cells entering the VBNC state in high-cell-density inoculum (approximately 55%) was lower than in low-cell-density inoculum (approximately 70%). We recorded the presence of verotoxin for 3 days in samples that contained a VBNC population of 4 to 5 log(10) cells but did not detect culturable cells. These findings indicate that E. coli O157:H7 VBNC cells are induced on lettuce plants, and this may have implications regarding food safety.  相似文献   

18.
Survival and movement of Escherichia coli O157:H7 in both soil and vermicompost is of concern with regards to human health. Whilst it is accepted that E. coli O157:H7 can persist for considerable periods in soils, it is not expected to survive thermophilic composting processes. However, the natural behavior of earthworms is increasingly utilized for composting (vermicomposting), and the extent to which earthworms promote the survival and dispersal of the bacterium within such systems is unknown. The faecal material produced by earthworms provides a ready supply of labile organic substrates to surrounding microbes within soil and compost, thus promoting microbial activity. Earthworms can also cause significant movement of organisms through the channels they form. Survival and dispersal of E. coli O157:H7 were monitored in contaminated soil and farmyard manure subjected to earthworm digestion over 21 days. Our findings lead to the conclusion that anecic earthworms such as Lumbricus terrestris may significantly aid vertical movement of E. coli O157 in soil, whereas epigeic earthworms such as Dendrobaena veneta significantly aid lateral movement within compost. Although the presence of earthworms in soil and compost may aid proliferation of E. coli O157 in early stages of contamination, long-term persistence of the pathogen appears to be unaffected.  相似文献   

19.
Ruminant animals are carriers of Escherichia coli O157:H7, and the transmission of E. coli O157:H7 from cattle to the environment and to humans is a concern. It is unclear if diet can influence the survivability of E. coli O157:H7 in the gastrointestinal system or in feces in the environment. Feces from cattle fed bromegrass hay or corn silage diets were inoculated with E. coli O157:H7, and the survival of this pathogen was analyzed. When animals consumed bromegrass hay for <1 month, viable E. coli O157:H7 was not recovered after 28 days postinoculation, but when animals consumed the diet for >1 month, E. coli O157:H7 cells were recovered for >120 days. Viable E. coli O157:H7 cells in feces from animals fed corn silage were detected until day 45 and differed little with the time on the diet. To determine if forage phenolic acids affected the viability of E. coli O157:H7, feces from animals fed corn silage or cracked corn were amended with common forage phenolic acids. When 0.5% trans-cinnamic acid or 0.5% para-coumaric acid was added to feces from silage-fed animals, the E. coli O157:H7 death rate was increased significantly (17-fold and 23-fold, respectively) compared to that with no addition. In feces from animals fed cracked corn, E. coli O157:H7 death rates were increased significantly with the addition of 0.1% and 0.5% trans-cinnamic acid (7- and 13-fold), 0.1% and 0.5% p-coumaric acid (3- and 8-fold), and 0.5% ferulic acid (3-fold). These data suggest that phenolic acids common to forage plants can decrease viable counts of E. coli O157:H7 shed in feces.  相似文献   

20.
Challenging 1-day-old White Leghorn chicks perorally with 2.6 x 10(1) to 2.6 x 10(5) Escherichia coli O157:H7 bacteria per chick resulted in cecal colonization at all levels. Two of six chicks inoculated with only 2.6 x 10(1) E. coli O157:H7 bacteria carried 10(3) to 10(4) E. coli O157:H7 bacteria per g of cecal tissue when sacrificed 3 months postinoculation. E. coli O157:H7 colonization persisted at least 10 to 11 months when chicks were administered 10(8) E. coli O157:H7 bacteria. Eggs from five hens that were fecal shedders of E. coli O157:H7 until the termination of the study (10 to 11 months) were assayed for E. coli O157:H7. The organism was isolated from the shells of 14 of 101 (13.9%) eggs but not from the yolks and whites. Considering that chicks can be readily colonized by small populations of E. coli O157:H7 and continue to be long-term shedders, it is possible that chickens and hen eggs can serve as vehicles of this human pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号