首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli aroA gene which codes for the enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSP synthase) has been cloned from the lambda-transducing bacteriophage lambda pserC. The gene has been located on a 4.7 kilobase pair PstI DNA fragment which has been inserted into the multiple copy plasmid pAT153. E. coli cells transformed with this recombinant plasmid overproduce EPSP synthase 100-fold. A simple method for the purification of homogeneous enzyme in milligram quantities has been devised. The resulting enzyme is indistinguishable from enzyme isolated from untransformed E. coli.  相似文献   

2.
The predominant cellular target of the herbicide glyphosate is thought to be the enzyme 5-enolpyruvylshikimate-3-phosphoric acid synthase (EPSP synthase). As a means of biologically testing this finding, we cloned a segment of DNA from Escherichia coli that encodes this enzyme. Clones carrying the gene for EPSP synthase were identified by genetic complementation. Cells that contain a multicopy plasmid carrying the EPSP synthase gene overproduce the enzyme 5- to 17-fold and exhibit at least an 8-fold increased tolerance to glyphosate. These experiments provide direct biological evidence that EPSP synthase is a major site of glyphosate action in E. coli and that, in an amplified form, it can serve as a selectable glyphosate resistance marker.  相似文献   

3.
The predominant cellular target of the herbicide glyphosate is thought to be the enzyme 5-enolpyruvylshikimate-3-phosphoric acid synthase (EPSP synthase). As a means of biologically testing this finding, we cloned a segment of DNA from Escherichia coli that encodes this enzyme. Clones carrying the gene for EPSP synthase were identified by genetic complementation. Cells that contain a multicopy plasmid carrying the EPSP synthase gene overproduce the enzyme 5- to 17-fold and exhibit at least an 8-fold increased tolerance to glyphosate. These experiments provide direct biological evidence that EPSP synthase is a major site of glyphosate action in E. coli and that, in an amplified form, it can serve as a selectable glyphosate resistance marker.  相似文献   

4.
The AROM locus of Aspergillus nidulans specifies a pentafunctional polypeptide catalysing five consecutive steps leading to the production of 5-enolpyruvylshikimate 3-phosphate in the shikimate pathway. Aided by oligonucleotide-mediated site-directed mutagenesis, the whole AROM locus and various overlapping subfragments from within it have been fused to the powerful hybrid trc promoter in the Escherichia coli plasmid pKK233-2. Expression of these subfragments in appropriate aro mutants of E. coli has (a) allowed the delineation of functional domains within the arom polypeptide, (b) shown that the arom polypeptide falls in two independently folding and functioning regions, the N-terminal half specifying 3-dehydroquinate (DHQ) synthase and EPSP synthase and the C-terminus specifying shikimate kinase, biosynthetic 3-dehydroquinase (DHQase) and shikimate dehydrogenase, and (c) strongly suggested an interaction between the DHQ synthase and EPSP synthase domains to stabilise the EPSP synthase activity. In addition an isoenzyme of biosynthetic DHQase, catabolic DHQase, encoded by the QUTE gene of A. nidulans has been transcribed from the trc promoter and upon isopropyl-thio-beta-D-galactoside induction produces up to 20% of the total soluble cell protein.  相似文献   

5.
The pentafunctional AROM protein in Aspergillus nidulans and other fungi catalyses five consecutive enzymatic steps leading to the production of 5-enolpyruvylshikimate 3-phosphate (EPSP) in the shikimate pathway. The AROM protein has five separate enzymatic domains that have previously been shown to display a range of abilities to fold and function in isolation as monofunctional enzymes. In this communication, we report (1) the stable overproduction of a bifunctional protein containing the 3-dehydroquinate (DHQ) synthase and EPSP synthase activities in Escherichia coli to around 10% of the total cell protein; (2) that both the DHQ synthase and EPSP synthase activities in the over-produced fragment are enzymatically active as judged by their ability to complement aroA and aroB mutants of E. coli; (3) that the EPSP synthase domain is only enzymatically active when covalently attached to the DHQ synthase domain (the cis arrangement). When DHQ synthase and EPSP synthase are produced concomitantly by transcribing sequences encoding the individual domains from separate plasmids in the same bacterial cell (the trans arrangement) no overproduction or enzyme activity can be detected for the EPSP synthase domain; (4) the EPSP synthase domain can be stably overproduced as a fusion protein with glutathione S-transferase (GST), however the EPSP synthase in this instance is enzymatically inactive; (5) a protein containing an enzymatically inactive DHQ synthase domain in the cis arrangement with EPSP synthase domain is stably overproduced with enzymatically active EPSP synthase; (6) the two C-terminal domains of the AROM protein specifying the 3-dehydroquinase and shikimate dehydrogenase domains can be overproduced in A. nidulans using a specially constructed expression vector. This same bi-domain fragment however is not produced in E. coli when identical coding sequences are transcribed from a prokaryotic expression vector. These data support the view that multifunctional/multidomain proteins do not solely consist of independent units covalently linked together, but rather that certain individual domains interact to varying degrees to stabilise enzyme activity.  相似文献   

6.
The pentafunctional AROM protein in Aspergillus nidulans and other fungi catalyses five consecutive enzymatic steps leading to the production of 5-enolpyruvylshikimate 3-phosphate (EPSP) in the shikimate pathway. The AROM protein has five separate enzymatic domains that have previously been shown to display a range of abilities to fold and function in isolation as monofunctional enzymes. In this communication, we report (1) the stable overproduction of a bifunctional protein containing the 3-dehydroquinate (DHQ) synthase and EPSP synthase activities in Escherichia coli to around 10% of the total cell protein; (2) that both the DHQ synthase and EPSP synthase activities in the over-produced fragment are enzymatically active as judged by their ability to complement aroA and aroB mutants of E. coli; (3) that the EPSP synthase domain is only enzymatically active when covalently attached to the DHQ synthase domain (the cis arrangement). When DHQ synthase and EPSP synthase are produced concomitantly by transcribing sequences encoding the individual domains from separate plasmids in the same bacterial cell (the trans arrangement) no overproduction or enzyme activity can be detected for the EPSP synthase domain; (4) the EPSP synthase domain can be stably overproduced as a fusion protein with glutathione S-transferase (GST), however the EPSP synthase in this instance is enzymatically inactive; (5) a protein containing an enzymatically inactive DHQ synthase domain in the cis arrangement with EPSP synthase domain is stably overproduced with enzymatically active EPSP synthase; (6) the two C-terminal domains of the AROM protein specifying the 3-dehydroquinase and shikimate dehydrogenase domains can be overproduced in A. nidulans using a specially constructed expression vector. This same bi-domain fragment however is not produced in E. coli when identical coding sequences are transcribed from a prokaryotic expression vector. These data support the view that multifunctional/multidomain proteins do not solely consist of independent units covalently linked together, but rather that certain individual domains interact to varying degrees to stabilise enzyme activity.  相似文献   

7.
5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase, EC 2.5.1.19) is the sixth enzyme in the shikimate pathway which is essential for the synthesis of aromatic amino acids and many secondary metabolites. The enzyme is widely involved in glyphosate tolerant transgenic plants because it is the primary target of the nonselective herbicide glyphosate. In this study, the Dunaliella salina EPSP synthase gene was cloned by RT-PCR approach. It contains an open reading frame encoding a protein of 514 amino acids with a calculated molecular weight of 54.6 KDa. The derived amino acid sequence showed high homology with other EPSP synthases. The Dunaliella salina EPSP synthase gene was expressed in Escherichia coli and the recombinant EPSP synthase were identified by functional complementation assay.  相似文献   

8.
The shikimate pathway enzyme 5-enolpyruvyl shikimate-3-phosphate synthase (EPSP synthase) has received attention in the past because it is the target of the broad-spectrum herbicide glyphosate. The natural substrate of EPSP synthase is shikimate-3-phosphate. However, this enzyme can also utilize shikimate as substrate. Remarkably, this reaction is insensitive to inhibition by glyphosate. Crystallographic analysis of EPSP synthase from Escherichia coli, in complex with shikimate/glyphosate at 1.5 Angstroms resolution, revealed that binding of shikimate induces changes around the backbone of the active site, which in turn impact the efficient binding of glyphosate. The implications from these findings with respect to the design of novel glyphosate-insensitive EPSP synthase enzymes are discussed.  相似文献   

9.
Asp-362, a potential key catalytic residue of Escherichia coli citrate synthase (citrate oxaloacetate-lyase [pro-3S)-CH2COO- ----acetyl-CoA), EC 4.1.3.7) has been converted to Gly-362 by oligonucleotide-directed mutagenesis. The mutant gene was completely sequenced, using a series of synthetic oligodeoxynucleotides spanning the structural gene to confirm that no additional mutations had occurred during genetic manipulation. The mutant gene was expressed in M13 bacteriophage and produced a protein which migrated in an identical manner to wild-type E. coli citrate synthase on SDS-polyacrylamide gels and which cross-reacted with E. coli citrate synthase antiserum. The mutant gene was subsequently recloned into pBR322 for large scale purification of the protein, and the resulting plasmid, pCS31, used to transform the citrate synthase deletion strain, W620. The mutant enzyme purified in an analogous manner to wild-type E. coli citrate synthase and expressed less than 2% of wild-type enzyme activity. The activity of the partial reactions catalysed by citrate synthase was similarly affected suggesting that this residual activity may be due to contaminating wild-type enzyme activity. The mutant citrate synthase retains a high-affinity NADH-binding site consistent with the protein preserving its overall structural integrity. Oxaloacetate binding to the protein is unaffected by the Asp-362 to Gly-362 mutation. Binding of the acetyl-CoA analogue, carboxymethyl-CoA, could not be detected in the mutant protein indicating that the lack of catalytic competence is due primarily to the inability of the protein to bind the second substrate, acetyl-CoA.  相似文献   

10.
Glyphosate has been used globally as a safe herbicide for weed control. It inhibits 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (AroA), which is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants. A Pseudomonas putida strain, 4G-1, was isolated from a soil heavily contaminated by glyphosate in China. Its AroA-encoding gene (aroA) has been cloned, sequenced, and expressed in Escherichia coli. Phylogenetic analysis revealed that this AroA belongs neither to class I nor to class II AroA enzymes. When compared with E. coli AroA, 4G-1 AroA shows similar values for K(m)[PEP], K(m)[S3P], and specific enzyme activity. Moreover, 4G-1 AroA exhibits high tolerance to glyphosate, which indicates a protein with a high potential for structural and functional studies of AroA in general and its potential usage for the generation of transgenic crops resistant to the herbicide.  相似文献   

11.
5-enol-Pyruvylshikimate-3-phosphate synthase (EPSP synthase, EPSPS), an in vivo enzyme target of the herbicide glyphosate (N-phosphonomethyl glycine), was purified from a Petunia hybrida suspension culture line, MP4-G, by a small-scale high-performance chromatographic purification procedure. The cDNA encoding the mature petunia EPSPS (lacking the chloroplast transit sequence) was cloned into a plasmid, pMON342, for expression in Escherichia coli. This clone complemented the EPSPS deficiency of an E. coli aroA- mutant, and the plant enzyme constituted approximately 1% of the total extractable protein. Large-scale purification of the enzyme from E. coli cells resulted in a highly active protein which was homogeneous as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino terminal sequencing. Antibodies raised against the purified enzyme also reacted with the E. coli EPSPS in Western analyses. The availability of large quantities of the plant enzyme will significantly facilitate mechanistic investigations as well as a comparative study with EPSPS from bacteria and fungi.  相似文献   

12.
The 46-kD enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the condensation of shikimate-3-phosphate (S3P) and phosphoenolpyruvate to form EPSP. The reaction is inhibited by N-(phosphonomethyl)-glycine (Glp), which, in the presence of S3P, binds to EPSP synthase to form a stable ternary complex. We have used solid-state NMR and molecular modeling to characterize the EPSP synthase-S3P-Glp ternary complex. Modeling began with the crystal coordinates of the unliganded protein, published distance restraints, and information from the chemical modification and mutagenesis literature on EPSP synthase. New inter-ligand and ligand-protein distances were obtained. These measurements utilized the native (31)P in S3P and Glp, biosynthetically (13)C-labeled S3P, specifically (13)C and (15)N labeled Glp, and a variety of protein-(15)N labels. Several models were investigated and tested for accuracy using the results of both new and previously published rotational-echo double resonance (REDOR) NMR experiments. The REDOR model is compared with the recently published X-ray crystal structure of the ternary complex, PDB code 1G6S. There is general agreement between the REDOR model and the crystal structure with respect to the global folding of the two domains of EPSP synthase and the relative positioning of S3P and Glp in the binding pocket. However, some of the REDOR data are in disagreement with predictions based on the coordinates of 1G6S, particularly those of the five arginines lining the binding site. We attribute these discrepancies to substantive differences in sample preparation for REDOR and X-ray crystallography. We applied the REDOR restraints to the 1G6S coordinates and created a REDOR-refined xray structure that agrees with the NMR results.  相似文献   

13.
The aroA gene (Escherichia coli nomenclature) encoding 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the gram-positive pathogen Streptococcus pneumoniae has been identified, cloned and overexpressed in E. coli, and the enzyme purified to homogeneity. It was shown to catalyze a reversible conversion of shikimate 3-phosphate (S3P) and phosphoenolpyruvate (PEP) to EPSP and inorganic phosphate. Activation by univalent cations was observed in the forward reaction, with NH+4, Rb+ and K+ exerting the greatest effects. Km(PEP) was lowered by increasing [NH+4] and [K+], whereas Km(S3P) rose with increasing [K+], but fell with increasing [NH+4]. Increasing [NH+4] and [K+] resulted in an overall increase in kcat. Glyphosate (GLP) was found to be a competitive inhibitor with PEP, but the potency of inhibition was profoundly affected by [NH+4] and [K+]. For example, increasing [NH+4] and [K+] reduced Ki(GLP versus PEP) up to 600-fold. In the reverse reaction, the enzyme catalysis was less sensitive to univalent cations. Our analysis included univalent cation concentrations comparable with those found in bacterial cells. Therefore, the observed effects of these metal ions are more likely to reflect the physiological behavior of EPSP synthase and also add to our understanding of how to inhibit this enzyme in the host organism. As there is a much evidence to suggest that EPSP synthase is essential for bacterial survival, its discovery in the serious gram-positive pathogen S. pneumoniae and its inhibition by GLP indicate its potential as a broad-spectrum antibacterial target.  相似文献   

14.
Sun YC  Li Y  Zhang H  Yan HQ  Dowling DN  Wang YP 《FEBS letters》2006,580(5):1521-1527
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase (AroA) is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants, and is the target of the herbicide glyphosate. Glyphosate tolerance activity of the enzyme could be obtained by natural occurrence or by site-directed mutagenesis. A functional Pseudomonas putida AroA was obtained by co-expression of two protein fragments AroA(P. putida)-N210 and AroA(P. putida)-C212 in Escherichia coli aroA mutant strain AB2829. From sequence analysis, the equivalent split site on E. coli AroA was chosen for further study. The result indicated that functional E. coli AroA could also be reconstituted from two protein fragments AroA(E. coli)-N218 and AroA(E. coli)-C219, under both in vivo and in vitro conditions. This result suggested that the fragment complementation property of this family of enzyme may be general. Additional experiments indicated that the glyphosate tolerance property of AroA could also be reconstituted in parallel with its enzyme activity. The implication of this finding is discussed.  相似文献   

15.
A vector for site-directed mutagenesis and overproduction of the Escherichia coli single-stranded-DNA-binding protein (E. coli SSB) was constructed. An E. coli strain carrying this vector produces up to 400 mg pure protein from 25 g wet cells. The vector was used to mutate specifically the Phe60 residue of E. coli SSB. Phe60 had been proposed to be located near the single-stranded-DNA-binding site. Substitution of the Phe60 residue by Val, Ser, Leu, His, Tyr and Trp gave proteins with no or only minor conformational changes, as detected by NMR spectroscopy. The affinity of the mutant E. coli SSB proteins for single-stranded DNA decreased in the order Trp greater than Phe (wild-type) greater than Tyr greater than Leu greater than His greater than Val greater than Ser, leading to the conclusion that position 60 is a site of hydrophobic interaction of the protein with DNA.  相似文献   

16.
The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (EC 2.5.1.19), the target of the herbicide glyphosate [N-(phosphonomethyl)glycine], exists in two molecular forms in Euglena gracilis. One form has previously been characterized as a monofunctional 59 kDa protein. The other form constitutes a single domain of the multifunctional 165 kDa arom protein. The two enzyme forms are inversely regulated at the protein and mRNA levels during light-induced chloroplast development, as demonstrated by the determination of their enzyme activities after non-denaturing polyacrylamide gel electrophoresis and Northern hybridization analysis with a Saccharomyces cerevisiae ARO1 gene probe. The arom protein and its mRNA predominate in dark-grown cells, and the levels of both decline upon illumination. In contrast, the monofunctional EPSP synthase and its mRNA are induced by light, the increase in mRNA abundance preceding accumulation of the protein. The two enzymes are localized in different subcellular compartments, as demonstrated by comparing total protein patterns with those of isolated organelles. Glyphosate-adapted wild-type cells and glyphosate-tolerant cells of a plastid-free mutant of E. gracilis, W10BSmL, were used for organelle isolation and protein extraction, as these cell lines overproduce EPSP synthase and the arom protein, respectively. Evidence was obtained for the cytosolic localization of the arom protein and the plastid compartmentalization of the monofunctional EPSP synthase. These conclusions are further supported by the observation that EPSP synthase precursor, produced by in vitro translation of the hybrid-selected mRNA, was efficiently taken up and processed to mature size by isolated chloroplasts from photoautotrophic wild-type E. gracilis cells, while the in vitro-synthesized arom protein was not sequestered by isolated Euglena plastids.  相似文献   

17.
The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (EC 2.5.1.19), the target of the herbicide glyphosate [N-(phosphonomethyl)glycine], exists in two molecular forms in Euglena gracilis. One form has previously been characterized as a monofunctional 59 kDa protein. The other form constitutes a single domain of the multifunctional 165 kDa arom protein. The two enzyme forms are inversely regulated at the protein and mRNA levels during light-induced chloroplast development, as demonstrated by the determination of their enzyme activities after non-denaturing polyacrylamide gel electrophoresis and Northern hybridization analysis with a Saccharomyces cerevisiae ARO1 gene probe. The arom protein and its mRNA predominate in dark-grown cells, and the levels of both decline upon illumination. In contrast, the monofunctional EPSP synthase and its mRNA are induced by light, the increase in mRNA abundance preceding accumulation of the protein. The two enzymes are localized in different subcellular compartments, as demonstrated by comparing total protein patterns with those of isolated organelles. Glyphosate-adapted wild-type cells and glyphosate-tolerant cells of a plastid-free mutant of E. gracilis, W10BSmL, were used for organelle isolation and protein extraction, as these cell lines overproduce EPSP synthase and the arom protein, respectively. Evidence was obtained for the cytosolic localization of the arom protein and the plastid compartmentalization of the monofunctional EPSP synthase. These conclusions are further supported by the observation that EPSP synthase precursor, produced by in vitro translation of the hybrid-selected mRNA, was efficiently taken up and processed to mature size by isolated chloroplasts from photoautotrophic wild-type E. gracilis cells, while the in vitro-synthesized arom protein was not sequestered by isolated Euglena plastids.Dedicated to Prof. Dr. A. Trebst on the occasion of his 65th birthday  相似文献   

18.
Park SJ  Lee SY 《Journal of bacteriology》2003,185(18):5391-5397
The biosynthetic pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) from fatty acids has been established in fadB mutant Escherichia coli strain by expressing the MCL-PHA synthase gene. However, the enzymes that are responsible for the generation of (R)-3-hydroxyacyl coenzyme A (R3HA-CoAs), the substrates for PHA synthase, have not been thoroughly elucidated. Escherichia coli MaoC, which is homologous to Pseudomonas aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1), was identified and found to be important for PHA biosynthesis in a fadB mutant E. coli strain. When the MCL-PHA synthase gene was introduced, the fadB maoC double-mutant E. coli WB108, which is a derivative of E. coli W3110, accumulated 43% less amount of MCL-PHA from fatty acid compared with the fadB mutant E. coli WB101. The PHA biosynthetic capacity could be restored by plasmid-based expression of the maoCEc gene in E. coli WB108. Also, E. coli W3110 possessing fully functional beta-oxidation pathway could produce MCL-PHA from fatty acid by the coexpression of the maoCEc gene and the MCL-PHA synthase gene. For the enzymatic analysis, MaoC fused with His6-Tag at its C-terminal was expressed in E. coli and purified. Enzymatic analysis of tagged MaoC showed that MaoC has enoyl-CoA hydratase activity toward crotonyl-CoA. These results suggest that MaoC is a new enoyl-CoA hydratase involved in supplying (R)-3-hydroxyacyl-CoA from the beta-oxidation pathway to PHA biosynthetic pathway in the fadB mutant E. coli strain.  相似文献   

19.
The interaction of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, 4,5-dideoxyshikimate 3-phosphate (ddS3P), and [2-13C]-and [3-13C]phosphoenolpyruvate (PEP) has been examined by 13C NMR spectroscopy. Although no resonances due to a dead-end intermediate complex could be detected, an enzyme active site specific formation of pyruvate was observed. The interaction of EPSP synthase with shikimate 3-phosphate (S3P) and [2-13C]- or [3-13C]PEP has been examined by 13C NMR spectroscopy. With [2-13C]PEP, in addition to the resonances due to [2-13C]PEP and [8-13C]EPSP, new resonances appeared at 164.8, 110.9, and 107.2 ppm. The resonance at 164.8 ppm has been assigned to enzyme-bound EPSP. The resonance at 110.9 ppm has been assigned to C-8 of an enzyme-free tetrahedral intermediate of the sort originally proposed by Levin and Sprinson [Levin, J. G., & Sprinson, D. B. (1964) J. Biol. Chem. 239, 1142-1150] and recently independently observed by Anderson et al. [Anderson, K. S., Sikorski, J. A., Benesi, A. J., & Johnson, K. A. (1988) J. Am. Chem. Soc. 110, 6577-6579]. The resonance at 107.2 ppm has been assigned to an enzyme-bound intermediate whose structure is closely related to that of the tetrahedral intermediate. With [3-13C]PEP, new resonances appeared at 88.9, 26.2, 25.5, and 24.5 ppm. The resonance at 88.9 ppm has been assigned to enzyme-bound EPSP. The resonance at 26.2 ppm, which was found to correlate with 1.48 ppm by isotope-edited multiple quantum coherence 1H NMR spectroscopy, has been assigned to the methyl group 4-hydroxy-4-methylketoglutarate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In vitro evolution of the polyhydroxyalkanoate (PHA) synthase gene from Pseudomonas sp. 61-3 (phaC1(Ps)) has been performed to generate highly active enzymes. In this study, a positive mutant of PHA synthase, Glu130Asp (E130D), was characterized in detail in vivo and in vitro. Recombinant Escherichia coli strain JM109 harboring the E130D mutant gene accumulated 10-fold higher (1.0 wt %) poly(3-hydroxybutyrate) [P(3HB)] from glucose, compared to recombinant E. coli harboring the wild-type PHA synthase gene (0.1 wt %). Recombinant E. coli strain LS5218 harboring the E130D PHA synthase gene grown on dodecanoate produced more poly(3HB-co-3-hydroxyalkanoate) [P(3HB-co-3HA)] (20 wt %) copolymer than an LS5218 strain harboring the wild-type PHA synthase gene (13 wt %). The E130D mutation also resulted in the production of copolymer with a slight increase in 3HB composition, compared to copolymer produced by the wild-type PHA synthase. In vitro enzyme activities of the E130D PHA synthase toward various 3-hydroxyacyl-CoAs (4-10 carbons in length) were all higher than those of the wild-type enzyme. The combination of the E130D mutation with other beneficial mutations, such as Ser325Thr and Gln481Lys, exhibited a synergistic effect on in vivo PHA production and in vitro enzyme activity. Interestingly, gel-permeation chromatography analysis revealed that the E130D mutation also had a synergistic effect on the molecular weight of polymers produced in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号