首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the contribution of vagal airway receptors to ventilatory control during hypercapnia, we studied 11 normal humans. Airway receptor block was induced by inhaling an aerosol of lidocaine; a preferential upper oropharyngeal block was also induced in a subgroup by gargling a solution of the anesthetic. Inhalation of lidocaine aerosol adequate to increase cough threshold, as measured by citric acid, did not change the ventilatory response to CO2, ratio of the change in minute ventilation to change in alveolar PCO2 (delta VI/delta PACO2), compared with saline control. Breathing pattern at mean CO2-stimulated ventilation of 25 l/min showed significantly decreased respiratory frequency, increased tidal volume, and prolonged inspiratory time compared with saline. Resting breathing pattern also showed significantly increased tidal volume and inspiratory time. In nine of the same subjects gargling a lidocaine solution adequate to extinguish gag response without altering cough threshold did not change delta VI/delta PACO2 or ventilatory pattern during CO2-stimulated or resting ventilation compared with saline. These results suggest that lower but not upper oropharyngeal vagal airway receptors modulate breathing pattern during hypercapnic as well as resting ventilation but do not affect delta VI/delta PACO2.  相似文献   

2.
We monitored the steady-state ventilatory responses of anesthetized cats to increases in lung volume produced by expiratory threshold loads (ETL) to study the roles of peripheral and central neural mechanisms in controlling respiration at elevated lung volumes. Application of an ETL of 5 cmH2O produced a significant decrease in respiratory frequency (-18%) but no change in minute ventilation (VE) due to a significant increase in tidal volume (VT) (19.3%). The drop in frequency was due solely to an increase in expiratory duration. ETL of 10 cmH2O significantly reduced VE (-17.5%) for the same reason. VT was maintained or increased at elevated lung volumes due to both an increase in the rate of rise of phrenic activity and a maintenance of inspiratory duration (TI) despite increases in both chemical drive and pulmonary stretch receptor (PSR) activity. No PSR adapted completely to the maintained change in lung volume. The sensitivity of the inspiratory off-switch mechanism to increases in lung volume, given by the reciprocal of the VT-TI relationship, decreased significantly during breathing on ETL. The results are consistent with the hypothesis that central habituation, not just peripheral adaptation of PSR, determines breathing pattern at elevated lung volumes.  相似文献   

3.
Tidal volumes used in high-frequency ventilation (HFV) may be smaller than anatomic dead space, but since gas exchange does take place, physiological dead space (VD) must be smaller than tidal volume (VT). We quantified changes in VD in three dogs at constant alveolar ventilation using the Bohr equation as VT was varied from 3 to 15 ml/kg and frequency (f) from 0.2 to 8 Hz, ranges that include normal as well as HFV. We found that VD was relatively constant at tidal volumes associated with normal ventilation (7-15 ml/kg) but fell sharply as VT was reduced further to tidal volumes associated with HFV (less than 7 ml/kg). The frequency required to maintain constant alveolar ventilation increased slowly as tidal volume was decreased from 15 to 7 ml/kg but rose sharply with attendant rapid increases in minute ventilation as tidal volumes were decreased to less than 7 ml/kg. At tidal volumes less than 7 ml/kg, the data deviated substantially from the conventional alveolar ventilation equation [f(VT - VD) = constant] but fit well a model derived previously for HFV. This model predicts that gas exchange with volumes smaller than dead space should vary approximately as the product of f and VT2.  相似文献   

4.
Of 181 patients undergoing major abdominal surgery 116 developed chest complications associated with a metabolic acidosis, low Pco2, depressed tidal volume, increased respiratory rate, but no increase in minute volume. In a matched group of 116 patients given intravenous bicarbonate postoperatively only 15 developed chest complications. This suggests that respiratory physiological dead space decreases in patients with pulmonary collapse and atelectasis following surgery. Acidotic respiration proved inefficient in the postoperative period, and intravenous bicarbonate had a very pronounced effect on the tidal and minute volumes of acidotic patients with pulmonary collapse and atelectasis.  相似文献   

5.
To determine the sensitivity of pulmonary resistance (RL) to changes in breathing frequency and tidal volume, we measured RL in intact anesthetized dogs over a range of breathing frequencies and tidal volumes centering around those encountered during quiet breathing. To investigate mechanisms responsible for changes in RL, the relative contribution of airway resistance (Raw) and tissue resistance (Rti) to RL at similar breathing frequencies and tidal volumes was studied in six excised, exsanguinated canine left lungs. Lung volume was sinusoidally varied, with tidal volumes of 10, 20, and 40% of vital capacity. Pressures were measured at three alveolar sites (PA) with alveolar capsules and at the airway opening (Pao). Measurements were made during oscillation at five frequencies between 5 and 45 min-1 at each tidal volume. Resistances were calculated by assuming a linear equation of motion and submitting lung volume, flow, Pao, and PA to a multiple linear regression. RL decreased with increasing frequency and decreased with increasing tidal volume in both isolated and intact lungs. In isolated lungs, Rti decreased with increasing frequency but was independent of tidal volume. Raw was independent of frequency but decreased with tidal volume. The contribution of Rti to RL ranged from 93 +/- 4% (SD) with low frequency and large tidal volume to 41 +/- 24% at high frequency and small tidal volume. We conclude that the RL is highly dependent on breathing frequency and less dependent on tidal volume during conditions similar to quiet breathing and that these findings are explained by changes in the relative contributions of Raw and Rti to RL.  相似文献   

6.
Following complete transection of the thoracic spinal cord at various times during embryonic development, chick embryos and posthatched animals exhibited various degrees of anatomical and functional recovery depending upon the age of injury. Transection on embryonic day 2 (E2), when neurogenesis is still occurring and before descending or ascending fiber tracts have formed, produced no noticeable behavioral or anatomical deficits. Embryos hatched on their own and were behaviorally indistinguishable from control hatchlings. Similar results were found following transection on E5, an age when neurogenesis is complete and when ascending and descending fiber tracts have begun to project through the thoracic region. Within 48 h following injury on E5, large numbers of nerve fibers were observed growing across the site of transection. By E8, injections of horse-radish peroxidase (HRP) administered caudal to the lesion, retrogradely labelled rostral spinal and brainstem neurons. Embryos transected on E5 were able to hatch and could stand and locomote posthatching in a manner that was indistinguishable from controls. Following spinal cord transections on E10, anatomical recovery of the spinal cord at the site of injury was not quite as complete as after E5 transection. Nonetheless, anatomical continuity was restored at the site of injury, axons projected across this region, and rostral spinal and brainstem neurons could be retrogradely labelled following HRP injections administered caudal to the lesion. At least part of this anatomical recovery may be mediated by the regeneration or regrowth of lesioned axons. Although none of the embryos transected on E10 that survived to hatching were able to hatch on their own, because several sham-operated embryos were also unable to hatch, we do not attribute this deficit to the spinal transection. When E10-transected embryos were aided in escaping from the shell, they were able to support their own weight, could stand, and locomote, and were generally comparable, behaviorally, to control hatchlings. Repair of the spinal cord following transection on E15 was considerably less complete compared to embryos transected on E2, E5, or E10. However, in some cases, a degree of anatomical continuity was eventually restored and a few spinal neurons rostral to the lesion could be retrogradely labelled with HRP. By contrast, labelled brainstem neurons were never observed following E15 transection. E15 transected embryos were never able to hatch on their own, and when aided in escaping from the shell, the hatchlings were never able to stand, support their own weight or locomote.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In 10 tracheotomized anesthetized cats during steady-state inhalation of various concentrations of CO2 and O2, the acute respiratory response to baroreceptor stimulation produced by transient inflation of a balloon placed in the descending aorta was studied. The latter induced a sudden rise in mean arterial pressure, ranging from 62 to 95 mmHg. At all PACO2 levels above 30 mmHg, elevation in arterial pressure was accompanied by an immediate drop in tidal volume (VT) and prolongation of the durations of inspiration (Ti) and total breath (Ttot). Breaths obtained during baroreceptor stimulation fell along the same VT vs. Ti and VT vs. Ttot relationships obtained in the normotensive state, suggesting that the lung volume-related vagal control of Ti and Ttot is unaffected by changes in arterial pressure. Since, for a given change in arterial pressure, a constant reduction in VT was obtained at all PACO2 levels above 30 mmHg, it can be concluded that the interaction between PACO2 and arterial pressure is additive. In three cats, at PACO2 levels below 30 mmHg, aortic obstruction resulted in brief periods of apnea. Following apnea, the control of Ti and Ttot was transiently offset, describing hysteresis pathways on the VT vs. Ti and VT vs. Ttot relationships.  相似文献   

8.
In young men (19.0 ± 0.9 years of age), the following parameters were studied during the annual cycle: the tidal and minute lung volumes, vital and forced vital capacities of the lungs, expiratory and inspiratory reserve volumes, 0.5-and 1-s forced expiratory volumes, and Tiffenau index. Young men working under the conditions of the North (62°N) proved to have deeper breathing; the minute volume and vital capacity of their lungs were increased. Analysis of the lung volume during the annual cycle demonstrated changes in most parameters studied (except the expiratory reserve volume and Tiffenau index). The maximum values of the lung volumes were recorded in the cold time of the year (from November to April), whereas the minimum values were observed in the warm time (from May to September).  相似文献   

9.
We have examined breathing patterns and respiratory mechanics in anesthetized tracheostomized newborn piglets and adult pigs and the changes determined by cervical bilateral vagotomy. Piglets had a respiratory system compliance and resistance, on a per kilogram basis, respectively, higher and smaller than the adults. After vagotomy neither variable changed in the newborn, but resistance dropped in the adult. This may suggest that efferent vagal control of bronchomotor tone is more pronounced in the adult. Respiratory system time constant was longer in newborns both before and after vagotomy. The distortion of the chest wall, examined as the ratio between the volume inhaled spontaneously and the passive volume for the same abdominal motion, was more marked in newborns, reflecting their higher chest wall compliance. The work per minute, computed from the pressure and volume changes, was larger in piglets. After vagotomy the external work per minute was not different; however, the larger tidal volumes were accompanied by a larger chest distortion. This may indicate that vagal control of the breathing pattern, by limiting the depth of inspiration and hence the amount of chest distortion, has implications on the energetics of breathing.  相似文献   

10.
Following complete transection of the thoracic spinal cord at various times during embryonic development, chick embryos and posthatched animals exhibited various degrees of anatomical and functional recovery depending upon the age of injury. Transection on embryonic day 2 (E2), when neurogenesis is still occurring and before descending or ascending fiber tracts have formed, produced no noticeable behavioral or anatomical deficits. Embryos hatched on their own and were behaviorally indistinguishable from control hatchlings. Similar results were found following transection on E5, an age when neurogenesis is complete and when ascending and descending fiber tracts have begun to project through the thoracic region. Within 48 h following injury on E5, large numbers of nerve fibers were observed growing across the site of transection. By E8, injections of horseradish peroxidase (HRP) administered caudal to the lesion, retrogradely labelled rostral spinal and brainstem neurons. Embryos transected on E5 were able to hatch and could stand and locomote posthatching in a manner that was indistinguishable from controls. Following spinal cord transections on E10, anatomical recovery of the spinal cord at the site of injury was not quite as complete as after E5 transection. Nonetheless, anatomical continuity was restored at the site of injury, axons projected across this region, and rostral spinal and brainstem neurons could be retogradely labelled following HRP injections administered caudal to the lesion. At least part of this anatomical recovery may be mediated by the regeneration or regrowth of lesioned axons. Although none of the embryos transected on E10 that survived to hatching were able to hatch on their own, because several shamoperated embryos were also unable to hatch, we do not attribute this deficit to the spinal transection. When E10-transected embryos were aided in escaping from the shell, they were able to support their own weight, could stand, and locomote, and were generally comparable, behaviorally, to control hatchlings. Repair of the spinal cord following transection on E15 was considerably less complete compared to embryos transected on E2, E5, or E10. However, in some cases, a degree of anatomical continuity was eventually restored and a few spinal neurons rostral to the lesion could be retrogradely labelled with HRP. By contrast, labelled brainstem neurons were never observed following E15 transection. E15 transected embryos were never able to hatch on their own, and when aided in escaping from the shell, the hatchlings were never able to stand, support their own weight or locomote. We conclude that successful anatomical and functional recovery occurs following a complete spinal cord transection in the chick embryo made any time between E2 and E10. By E15, however, there is an altered response to the transection such that anatomical continuity is not restored sufficiently to mediate behavioral or functional recovery. Although the altered response of the chick embryo spinal cord to injury between E10 and E15 could be due to a variety of factors, we favor the notion that cellular or molecular changes associated with axonal growth and guidance occur at this time that are responsible for the transition from successful to unsuccessful recovery.  相似文献   

11.
There is evidence that serotonin [5-hydroxytryptamine (5-HT)] is involved in the physiological responses to hypercapnia. Serotonergic neurons represent the major cell type (comprising 15-20% of the neurons) in raphe magnus nucleus (RMg), which is a medullary raphe nucleus. In the present study, we tested the hypothesis 1) that RMg plays a role in the ventilatory and thermal responses to hypercapnia, and 2) that RMg serotonergic neurons are involved in these responses. To this end, we microinjected 1) ibotenic acid to promote nonspecific lesioning of neurons in the RMg, or 2) anti-SERT-SAP (an immunotoxin that utilizes a monoclonal antibody to the third extracellular domain of the serotonin reuptake transporter) to specifically kill the serotonergic neurons in the RMg. Hypercapnia caused hyperventilation and hypothermia in all groups. RMg nonspecific lesions elicited a significant reduction of the ventilatory response to hypercapnia due to lower tidal volume (Vt) and respiratory frequency. Rats submitted to specific killing of RMg serotonergic neurons showed no consistent difference in ventilation during air breathing but had a decreased ventilatory response to CO(2) due to lower Vt. The hypercapnia-induced hypothermia was not affected by specific or nonspecific lesions of RMg serotonergic neurons. These data suggest that RMg serotonergic neurons do not participate in the tonic maintenance of ventilation during air breathing but contribute to the ventilatory response to CO(2). Ultimately, this nucleus may not be involved in the thermal responses to CO(2).  相似文献   

12.
Using the technique of rapid airway occlusion during constant-flow inflation, we studied the effects of inflation volume, different baseline tidal volumes (10, 20, and 30 ml/kg), and vagotomy on the resistive and elastic properties of the lungs and chest wall in six anesthetized tracheotomized paralyzed mechanically ventilated cats. Before vagotomy, airway resistance decreased significantly with increasing inflation volume at all baseline tidal volumes. At any given inflation volume, airway resistance decreased with increasing baseline tidal volume. After vagotomy, airway resistance decreased markedly and was no longer affected by baseline tidal volume. Prevagotomy, pulmonary tissue resistance increased progressively with increasing lung volume and was not affected by baseline tidal volume. Pulmonary tissue resistance decreased postvagotomy. Chest wall tissue resistance increased during lung inflation but was not affected by either baseline tidal volume or vagotomy. The static volume-pressure relationships of the lungs and chest wall were not affected by either baseline tidal volume or vagotomy. The data were interpreted in terms of a linear viscoelastic model of the respiratory system (J. Appl. Physiol. 67: 2276-2285, 1989).  相似文献   

13.
A transient time-dependent increase in tidal volume (TV) and respiratory rate has been observed as a spirometric loading effect in experiments on 22 decerebrate cats. Respiration was recorded via the impedance pneumograph throughout the entire experiment while tidal volume was measured at intervals of 10-60 min on a spirometer. A total of 233 spirograms was recorded. The mean control tidal volume was 14 ml/kg, followed by an average increase of 30%, 43%, 51%, and 64% at 30, 60, 90, and 120 sec on the spirometer respectively. Spirometric respiratory rate also increased and as a result instantaneous minute volumes (MV) showed increases up to nearly 400% of control. Maximal effects occurred within 80 sec reflecting a sequential combination of reflex (via vagal afferents) and chemical (increased CO2) factors reaching a new equilibrium. We also noted a spirometric regularization of previously irregular or periodic (Biot's) breathing. It is apparent that the spirometer introduces small and graded perturbations into respiratory control systems.  相似文献   

14.
A series of studies has examined the response of the spinal cord to lesions made at various stages prior to and after metamorphic climax in the clawed frog Xenopus laevis. Complete transections made between Nieuwkoop and Faber (1956) stages 50 and 62 were followed by gradual recovery of righting and coordinated swimming as animals metamorphosed into juveniles (stage 66). Examination of descending axonal projections using horseradish peroxidase (HRP) showed fibers crossing the lesion site and distributing to the caudal lumbar spinal cord. These fibers could be traced from more rostral spinal segments as well as from brainstem injections of HRP. No evidence for rostrally projecting fibers crossing the lesion was obtained. Juvenile frogs of varying ages failed to demonstrate recovery of coordinated swimming or reconstitution of spinal descending pathways. In an additional series of animals, spinal transections were made within 1 or 2 days of tail resorption to assess whether regenerative capacities extended at all into post-metamorphic stages. No evidence for regeneration was found. Studies of metamorphosing frogs after spinal transections showed that fibers crossed the lesion within 5-12 days of transection, well prior to the end of metamorphic climax; however, in some cases in which metamorphosis seemed arrested, little regeneration was observed. Immunocytochemical studies showed that fibers containing serotonin (5-HT) were included in the population of axons that rapidly crossed the lesion after transection at metamorphic stages. These results are compared to those for lesions of the dorsal columns and other systems in developing and juvenile Xenopus. It is suggested that both metamorphosis-related hormonal changes, and axon substrate pathways, may affect the regenerative response in the Xenopus central nervous system (CNS).  相似文献   

15.
Effects of increased external dead space (VD) on ventilatory control in steady-state exercise were determined in three healthy adults. The subjects performed cycle ergometer exercise on six occasions, each with a different VD (range: 0.1--1.0 liter); work rate was incremented every 5 min by 15--20 W. Minute ventilation (VE), CO2 output (VCO2), and mean alveolar PCO2 (PACO2) were measured in the steady state. Without VD, the VE-VCO2 relationship was linear, having a small positive VE intercept, and PACO2 was constant, independent of VCO2. Increased VD was associated with an upward shift of the VE-VCO2 relationship, and an elevated PACO2, again independent of VCO2. At each work rate, the increases in VE accompanying increased VD were no greater than could be expected from a conventional CO2 inhalation study. It is concluded that increasing external dead space does not impair the ability of the human respiratory system to regulate PACO2 during exercise except for resetting the regulated PCO2 level.  相似文献   

16.
The rostral fastigial nucleus (FNr) of the cerebellum facilitates the respiratory response to hypercapnia. We hypothesized that some FNr sites are chemosensitive to focal tissue acidosis and contribute, at least partially, to respiratory modulation. Minute ventilation (VE) was recorded in 21 anesthetized and spontaneously breathing rats. Acetazolamide (AZ; 50 microM) was microinjected unilaterally into the FNr while an isocapnic condition was maintained throughout the experiment. AZ (1 or 20 nl) injection into the FNr significantly elevated VE (46.0 +/- 6.7%; P < 0.05), primarily via an increase in tidal volume (31.7 +/- 3.8%; P < 0.05), with little effect on arterial blood pressure. This augmented ventilatory response was initiated at 6.3 +/- 0.8 min and reached the peak at 19.7 +/- 4.1 min after AZ administration. The same dose of AZ delivered into the interposed and lateral cerebellar nuclei, or vehicle injection into the FNr, failed to elicit detectable cardiorespiratory responses. To determine whether the ventilatory response to AZ injection into the FNr resulted from an increase in respiratory central drive, the minute phrenic nerve activity (MPN) was recorded in seven paralyzed and ventilated rats. Similar to VE, MPN was increased by 38.9 +/- 8.9% (P < 0.05) after AZ administration. Our results suggest that elevation of CO2/H+ within the FNr facilitates respiratory output, supporting the presence of ventilatory chemoreception in rat FNr.  相似文献   

17.
Four different measures (PETCO2, PACO2, PADCO2, and PJCO2) for indirectly estimating arterial PCO2 (PaCO2) from respired gas at the mouth have been investigated. PETCO2 was the end-tidal PCO2. PACO2 was calculated using a reconstruction of the alveolar oscillation of PCO2 obtained from the end-tidal "plateau" in PCO2. PADCO2 was calculated as for PACO2 except that the effects of dead space were incorporated. PJCO2 was calculated from an empirical relationship involving PETCO2 and tidal volume. Six subjects were studied at rest and during cycle ergometry at 50 and 100 W while breathing a variety of gas mixtures. Arterial samples were drawn for determination of true PaCO2. The differences for each method between estimated and true PaCO2 at rest and at 50 and 100 W were as follows: PETCO2, -1.35 +/- 2.64, 1.67 +/- 2.31, and 2.67 +/- 2.02 (SD) Torr; PaCO2, -2.15 +/- 2.73, -0.80 +/- 2.18, and -0.35 +/- 2.31 (SD) Torr; PADCO2, -1.55 +/- 2.54, 0.25 +/- 2.16, and 0.63 +/- 2.26 (SD) Torr; and PJCO2, -1.41 +/- 2.30, 0.12 +/- 1.79, and 0.08 +/- 1.96 (SD) Torr. It is concluded that, at rest, all methods significantly underestimate true PaCO2 and during exercise PETCO2 significantly overestimates PaCO2, but no bias was detected for any of the other methods.  相似文献   

18.
目的: 在急性血液碱化前、后空气吸入下完成症状限制性最大极限心肺运动试验(CPET)的基础上,本文探讨在血液碱化后吸入纯氧对呼吸调控的影响。方法: 正常志愿者5名在碱化血液后呼吸纯氧CPET,在静息、热身、运动及恢复期,连续测定肺通换气指标及每分钟动脉取样的血气指标,对CPET期间的呼吸气体交换和血气指标的动态变化进行分析,同时与急性碱化血液前、后空气CPET数据比较。结果: 碱化血液后吸入纯氧运动呼吸反应与急性碱化血液前、后空气CPET呼吸反应基本一致。CPET期间,各运动状态下的每分通气量均与对照组相似(P>0.05);仅静息每分通气量较血液碱化空气CPET略高(P<0.05),而其它状态和恢复2min时均相近(P>0.05)。潮气量仅峰值运动时较对照和血液碱化空气CPET略低(P<0.05);而运动过程和恢复2min时的潮气量均相近(P>0.05)。呼吸频率在各个时间与血液碱化前后CPET均无差异(P>0.05)。在碱化血液后吸入纯氧运动各个时期的PaO2和SaO2较碱化血液前后空气CPET时明显提高(P<0.001,P<0.05)。血红蛋白浓度虽然较急性血液碱化前后均低,但仅较血液碱化前显著降低(P<0.05),比血液碱化后差异不显著(P>0.05) ; 开始时的PaCO2较碱化血液前后空气CPET时降低(P<0.05),无氧阈时相近(P>0.05),但到峰值及恢复2 min时明显增高(P<0.05);pH仅较对照增高(P<0.05),但与碱化血液空气试验时无差异;乳酸水平较对照略高,但仅在热身和恢复期有差异(P<0.05)。纯氧提高了两人无氧阈和三人峰值运动的功率和时间。结论: 虽然血液碱化给予纯氧, CPET呼吸反应与碱化血液前、后空气CPET呼吸反应模式相似,表明运动中呼吸反应主要取决于代谢变化,而非动脉血气平均值高低。  相似文献   

19.
目的: 在初步验证超快反应聚合物基质光纤氧传感器及其测定系统记录颈动脉氧分压(PaO2)连续动态变化使用基础上,为了分析探讨肺通气对PaO2连续动态变化的影响,我们设计本活体整体动物实验观察研究。方法: 选择杂种山羊4只,全身麻醉气管插管空气机械通气下,切皮直接暴露把后接测定系统的氧传感器直接插入左侧颈动脉连续记录PaO2动态变化。正常分钟通气量机械通气分别通过三种潮气量实施:正常潮气量(潮气量VT=15 ml/kg、呼吸频率Rf=20 bpm)、减半潮气量(VT减半、Rf加倍)和加倍潮气量(VT加倍、Rf减半)。三种潮气量通气时间分别稳定10~15 min,选取后180 s分析计算PaO2平均值、呼吸间PaO2变化的升降幅度和肺-颈动脉延迟时间。以ANOVA及两两比较统计学差异分析不同潮气量的影响。结果: 活体山羊正常通气量机械通气实验时心率和血压均稳定;肺-颈动脉延迟时间为1.4~1.8 s(约为此时的3次心跳)。机械通气正常潮气量下PaO2平均值在(102.94±2.40,99.38~106.16)mmHg,升降幅度是(21.43±1.65,19.21~23.59)mmHg,占平均值的(20.80±1.34,18.65~22.22)%;减半潮气量下,PaO2平均值维持在(101.01±4.25,94.09~105.66)mmHg,虽略降但不显著(与正常机械通气比较P>0.05),但PaO2升降变化幅度却显著降低为(18.14±1.43,16.46~20.05) mmHg,占平均值的(17.95±1.07,16.16~18.98)%(与正常机械通气比较P<0.01);加倍潮气量机械通气下,虽仅略升的PaO2平均值维持在(106.42±4.74,101.19~114.08)mmHg(与正常机械通气比较P>0.05,与减半潮气量机械通气比较P<0.05),但PaO2升降幅度却显著增大为(26.58±1.88,23.46~28.46)mmHg,占平均值的24.99%±1.58%(与正常机械通气和减半潮气量比较P均<0.01)。结论: 正常肺通气的吸气和呼气是颈动脉PaO2上升和下降的始动因素。正常通气量机械通气下减半潮气量和倍增潮气量显著改变PaO2升降幅度,但PaO2平均值仅小幅改变,而肺-颈动脉延迟时间相近。  相似文献   

20.
Neonatal maternal separation (NMS) is a form of stress that exerts persistent, sex-specific effects on the hypoxic ventilatory response. Adult male rats previously subjected to NMS show a 25% increase in the response, whereas NMS females show a response 30% lower than controls (8). To assess the extent to which NMS affects ventilatory control development, we tested the hypothesis that NMS alters the ventilatory response to hypercapnia in awake, unrestrained rats. Pups subjected to NMS were placed in a temperature- and humidity-controlled incubator 3 h/day for 10 consecutive days (P3 to P12). Control pups were undisturbed. At adulthood (8 to 10 wk old), rats were placed in a plethysmography chamber for measurement of ventilatory parameters under baseline and hypercapnic conditions (inspired CO(2) fraction = 0.05). After 20 min of hypercapnia, the minute ventilation response measured in NMS males was 47% less than controls, owing to a lower tidal volume response (22%). Conversely, females previously subjected to NMS showed minute ventilation and tidal volume responses 63 and 18% larger than controls respectively. Although a lower baseline minute ventilation contributes to this effect, the higher minute ventilation/CO(2) production response observed in NMS females suggests a greater responsiveness to CO(2)/H(+) in this group. We conclude that NMS exerts sex-specific effects on the hypercapnic ventilatory response and that the neural mechanisms affected by NMS likely differ from those involved in the hypoxic chemoreflex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号