首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma membrane cholesterol is critical for neutrophil chemotaxis, although how cholesterol affects chemotactic signaling pathway has not been clearly delineated. Here we demonstrate that cholesterol was absolutely required for polarized redistribution of key chemotactic mediators in human neutrophils in response to all chemoattractants tested (fMet-Leu-Phe, and the chemokines CXCL1, CXCL8 and CXCL12). In particular, PI3K and phosphatidylinositol-3,4,5 triphosphate (PIP3) failed to accumulate at the front and phosphatase and tensin homolog (PTEN) at the back of chemoattractant-stimulated neutrophils after cholesterol depletion. Cholesterol depletion did not affect early chemoattractant signaling events such as G-protein activation, intracellular calcium flux or G-protein-independent endocytosis-linked signaling, including the activation of mitogen-activated protein kinase (MAPK), Hck and Fgr transduced by β-arrestin. During cell polarization, F-actin assemblies redistributed the cholesterol-rich microdomains and cytoskeleton-anchored proteins, including CD16 and CD44 from the leading edge. These data suggest that spatial polarization of chemotactic mediators is orchestrated by protein:protein interactions that organize cholesterol-rich domains of the plasma membrane.  相似文献   

2.
Exposure of neutrophils to chemoattractant induces cell polarization and migration. These behaviors require the asymmetric activation of distinct signaling pathways and cytoskeletal elements in the protruding pseudopod at the front of cells and the retracting uropod at the rear. An important outstanding question is, how does the organization of the plasma membrane participate in establishing asymmetry during polarization and migration? To answer this question, we investigated the function of cholesterol, a lipid known to influence membrane organization. Using controlled cholesterol depletion, we found that a cholesterol-dependent membrane organization enabled cell polarization and migration by promoting uropod function and suppressing ectopic pseudopod formation. At a mechanistic level, we showed that cholesterol was directly required for suppressing inappropriate activation of the pseudopod-promoting Gi/PI3-kinase signaling pathway. Furthermore, cholesterol was required for dampening Gi-dependent negative feedback on the RhoA signaling pathway, thus enabling RhoA activation and uropod function. Our findings suggest a model in which a cholesterol-dependent membrane organization plays an essential role in the establishment of cellular asymmetry by balancing the activation and segregating the localization of competing pseudopod- and uropod-inducing signaling pathways during neutrophil polarization and migration.  相似文献   

3.
Stimulation of neutrophils with chemotactic peptide induces actin reorganization, formation of actin-rich protrusions, and development of polarity. Shape changes and actin polymerization can also be induced by phorbol ester-mediated direct activation of protein kinase C (PKC). We have investigated the role of cholesterol in stimulus-dependent motile events and in activation of signaling pathways in neutrophil-like differentiated HL-60 cells. Depletion of plasma membrane cholesterol using methyl-beta-cyclodextrin (MbetaCD) prevented chemotactic peptide and phorbol ester-induced shape changes and increases in cytoskeletal actin. Cholesterol depletion almost completely suppressed chemotactic peptide-mediated activation of p42/44 mitogen-activated protein kinase (MAPK). Phosphorylation of protein kinase B on Thr-308, which is indicative of activation of phosphatidylinositol 3-kinase, was in contrast only partially inhibited. Stimulus-mediated membrane recruitment of different PKC isoforms was differentially affected by treatment of cells with MbetaCD. Membrane recruitment of PKCalpha induced by chemotactic peptide or phorbol ester was suppressed, whereas that of PKCbetaII was only partially affected. Membrane association of PKCdelta was almost insensitive to cholesterol depletion. In summary, our results implicate an important role of cholesterol-containing lipid microdomains (rafts) especially in chemotactic peptide-induced activation of MAPK pathways and in chemotactic peptide- and phorbol ester-mediated activation of PKCalpha.  相似文献   

4.
Epithelial cell-cell interactions require localized adhesive interactions between E-cadherin on opposing membranes and the activation of downstream signaling pathways that affect membrane and actin dynamics. However, it is not known whether E-cadherin engagement and activation of these signaling pathways are locally coordinated or whether signaling is sustained or locally down-regulated like other receptor-mediated pathways. To obtain high spatiotemporal resolution of immediate-early signaling events upon E-cadherin engagement, we used laser tweezers to place beads coated with functional E-cadherin extracellular domain on cells. We show that cellular E-cadherin accumulated rapidly around beads, reaching a sustained plateau level in 1-3 min. Phosphoinositides and Rac1 co-accumulated with E-cadherin, reached peak levels with E-cadherin, but then rapidly dispersed. Both E-cadherin and Rac1 accumulated independently of Rac1 GTP binding/hydrolysis, but these activities were required for Rac1 dispersal. E-cadherin accumulation was dependent on membrane dynamics and actin polymerization, but actin did not stably co-accumulate with E-cadherin; mathematical modeling showed that diffusion-mediated trapping could account for the initial E-cadherin accumulation. We propose that initial E-cadherin accumulation requires active membrane dynamics and involves diffusion-mediated trapping at contact sites; to propagate further contacts, phosphatidylinositol 3-kinase and Rac1 are transiently activated by E-cadherin engagement and initiate a new round of membrane dynamics, but they are subsequently suppressed at that site to allow maintenance of weak E-cadherin mediated adhesion.  相似文献   

5.
Inoue T  Meyer T 《PloS one》2008,3(8):e3068
Phosphatidylinositol 3-OH kinase (PI3K) has been widely studied as a principal regulator of cell polarization, migration, and chemotaxis. Surprisingly, recent studies showed that mammalian neutrophils and Dictyostelium discoideum cells can polarize and migrate in the absence of PI3K activity. Here we directly probe the roles of PI3K and its downstream effector, Rac, in HL-60 neutrophils by using a chemical biology approach whereby the endogenously present enzymes are synthetically activated in less than one minute. We show that uniform activation of endogenous PI3K is sufficient to polarize previously unpolarized neutrophils and trigger effective cell migration. After a delay following symmetrical phosphatidylinositol (3,4,5)-triphosphate (PIP(3)) production, a polarized distribution of PIP(3) was induced by positive feedback requiring actin polymerization. Pharmacological studies argue that this process does not require receptor-coupled trimeric G proteins. Contrary to the current working model, rapid activation of endogenous Rac proteins triggered effective actin polymerization but failed to feed back to PI3K to generate PIP(3) or induce cell polarization. Thus, the increase in PIP(3) concentration at the leading edge is generated by positive feedback with an AND gate logic with a PI3K-Rac-actin polymerization pathway as a first input and a PI3K initiated non-Rac pathway as a second input. This AND-gate control for cell polarization can explain how Rac can be employed for both PI3K-dependent and -independent signaling pathways coexisting in the same cell.  相似文献   

6.
Migratory front-back polarity emerges from the cooperative effect of myosin IIA (MIIA) and IIB (MIIB) on adhesive signaling. We demonstrate here that, during polarization, MIIA and MIIB coordinately promote localized actomyosin bundling, which generates large, stable adhesions that do not signal to Rac and thereby form the cell rear. MIIA formed dynamic actomyosin proto-bundles that mark the cell rear during spreading; it also bound to actin filament bundles associated with initial adhesion maturation in protrusions. Subsequent incorporation of MIIB stabilized the adhesions and actomyosin filaments with which it associated and formed a stable, extended rear. These adhesions did not turn over and no longer signal to Rac. Microtubules fine-tuned the polarity by positioning the front opposite the MIIA/MIIB-specified rear. Decreased Rac signaling in the vicinity of the MIIA/MIIB-stabilized proto-bundles and adhesions was accompanied by the loss of Rac guanine nucleotide exchange factor (GEFs), like βPIX and DOCK180, and by inhibited phosphorylation of key residues on adhesion proteins that recruit and activate Rac GEFs. These observations lead to a model for front-back polarity through local GEF depletion.  相似文献   

7.
The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (< or = 10 microM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca(2+) ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca(2+) ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.  相似文献   

8.
磷脂酰胆碱过氧化物(phosphatidylcholine hydroperoxide,PCOOH)是磷脂酰胆碱(phosphatidylcholine,PC)氧化的最初产物,在包括动脉粥样硬化在内的各种病理条件下,可以在血浆和组织中检测到。为了评定动脉粥样硬化的程度,我们研究了PCOOH对THP-1细胞与内皮细胞黏附分子(intracellular adhesionmolecule-1,ICAM-1)之间粘附状态的影响,发现THP-1细胞与内皮细胞黏附分子的粘附是剂量依赖于PCOOH的。不氧化的PC、sn-2截断的PC和其他过氧化物不影响THP-1细胞与内皮细胞黏附分子的黏附。在PCOOH处理的细胞中,发现了F-肌动蛋白富集的突出膜结构,与淋巴细胞功能关联的抗原(lymphocytefunction-associated antigen-1,LFA-1)定位在突出结构上。细胞松弛素D和肌动蛋白聚合抑制剂能够抑制PCOOH诱导细胞黏附到ICAM-1和膜突起上。我们研究了参与PCOOH诱导THP-1细胞黏附到ICAM-1上的Rho-家族的GTP酶,发现氟伐他汀对异戊二烯的消耗以及GGTI-286对牛儿基转移酶的阻害均能够抑制PCOOH诱导细胞黏附到ICAM-1和膜上。Pull-down方法表明,在PCOOH处理的细胞中,Rac1和Rac2被活化。Pan-Rho-家族的GTP酶抑制剂难辨梭状芽孢杆菌B、Rac特异抑制剂NSC23776和Rac同型体的RNA干扰,均能够减少细胞黏附。这些结果表明,PCOOH诱导的LFA-1调节的细胞黏附到ICAM-1上是通过actin细胞骨架。这一机理可能参与了单核细胞黏附到动脉壁上并启动了动脉粥样硬化。  相似文献   

9.
Regulation of actin cytoskeleton by Rap1 binding to RacGEF1   总被引:1,自引:0,他引:1  
Rap1 is rapidly and transiently activated in response to chemoattractant stimulation and helps establish cell polarity by locally modulating cytoskeletons. Here, we investigated the mechanisms by which Rap1 controls actin cytoskeletal reorganization in Dictyostelium and found that Rap1 interacts with RacGEF1 in vitro and stimulates F-actin polymerization at the sites where Rap1 is activated upon chemoattractant stimulation. Live cell imaging using GFP-coronin, a reporter for F-actin, demonstrates that cells expressing constitutively active Rap1 (Rap1CA) exhibit a high level of F-actin uniformly distributed at the cortex including the posterior and lateral sides of the chemotaxing cell. Examination of the localization of a PH-domain containing PIP3 reporter, PhdA-GFP, and the activation of Akt/Pkb and other Ras proteins in Rap1CA cells reveals that activated Rap1 has no effect on the production of PIP3 or the activation of Akt/Pkb and Ras proteins in response to chemoattractant stimulation. Rac family proteins are crucial regulators in actin cytoskeletal reorganization. In vitro binding assay using truncated RacGEF1 proteins shows that Rap1 interacts with the DH domain of RacGEF1. Taken together, these results suggest that Rap1-mediated F-actin polymerization probably occurs through the Rac signaling pathway by directly binding to RacGEF1.  相似文献   

10.
Little is known about how neutrophils and other cells establish a single zone of actin assembly during migration. A widespread assumption is that the leading edge prevents formation of additional fronts by generating long-range diffusible inhibitors or by sequestering essential polarity components. We use morphological perturbations, cell-severing experiments, and computational simulations to show that diffusion-based mechanisms are not sufficient for long-range inhibition by the pseudopod. Instead, plasma membrane tension could serve as a long-range inhibitor in neutrophils. We find that membrane tension doubles during leading-edge protrusion, and increasing tension is sufficient for long-range inhibition of actin assembly and Rac activation. Furthermore, reducing membrane tension causes uniform actin assembly. We suggest that tension, rather than diffusible molecules generated or sequestered at the leading edge, is the dominant source of long-range inhibition that constrains the spread of the existing front and prevents the formation of secondary fronts.  相似文献   

11.
The major outer sheath protein (Msp) of Treponema denticola inhibits neutrophil polarization and directed chemotaxis together with actin dynamics in vitro in response to the chemoattractant N-formyl-methionine-leucine-phenylanine (fMLP). Msp disorients chemotaxis through inhibition of a Rac1-dependent signaling pathway, but the upstream mechanisms are unknown. We challenged murine bone marrow neutrophils with enriched native Msp to determine the role of phospholipid modifying enzymes in chemotaxis and actin assembly downstream of fMLP-stimulation. Msp modulated cellular phosphoinositide levels through inhibition of phosphatidylinositol 3-kinase (PI3-kinase) together with activation of the lipid phosphatase, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Impaired phosphatidylinositol[(3,4,5)]-triphosphate (PIP3) levels prevented recruitment and activation of the downstream mediator Akt. Release of the actin capping proteins gelsolin and CapZ in response to fMLP was also inhibited by Msp exposure. Chemical inhibition of PTEN restored PIP3 signaling, as measured by Akt activation, Rac1 activation, actin uncapping, neutrophil polarization and chemotaxis in response to fMLP-stimulation, even in the presence of Msp. Transduction with active Rac1 also restored fMLP-mediated actin uncapping, suggesting that Msp acts at the level of PIP3 in the hierarchical feedback loop of PIP3 and Rac1 activation. Taken together, Msp alters the phosphoinositide balance in neutrophils, impairing the cell “compass”, which leads to inhibition of downstream chemotactic events.  相似文献   

12.
Migrating cells need to make different actin assemblies at the cell's leading and trailing edges and to maintain physical separation of signals for these assemblies. This asymmetric control of activities represents one important form of cell polarity. There are significant gaps in our understanding of the components involved in generating and maintaining polarity during chemotaxis. Here we characterize a family of complexes (which we term leading edge complexes), scaffolded by hematopoietic protein 1 (Hem-1), that organize the neutrophil's leading edge. The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE)2 complex, which mediates activation of actin polymerization by Rac, is only one member of this family. A subset of these leading edge complexes are biochemically separable from the WAVE2 complex and contain a diverse set of potential polarity-regulating proteins. RNA interference–mediated knockdown of Hem-1–containing complexes in neutrophil-like cells: (a) dramatically impairs attractant-induced actin polymerization, polarity, and chemotaxis; (b) substantially weakens Rac activation and phosphatidylinositol-(3,4,5)-tris-phosphate production, disrupting the (phosphatidylinositol-(3,4,5)-tris-phosphate)/Rac/F-actin–mediated feedback circuit that organizes the leading edge; and (c) prevents exclusion of activated myosin from the leading edge, perhaps by misregulating leading edge complexes that contain inhibitors of the Rho-actomyosin pathway. Taken together, these observations show that versatile Hem-1–containing complexes coordinate diverse regulatory signals at the leading edge of polarized neutrophils, including but not confined to those involving WAVE2-dependent actin polymerization.  相似文献   

13.
HS1 is an actin regulatory protein and cortactin homolog that is expressed in hematopoietic cells. Antigen receptor stimulation induces HS1 phosphorylation, and HS1 is essential for T cell activation. HS1 is also expressed in neutrophils; however, the function of HS1 in neutrophils is not known. Here we show that HS1 localizes to the neutrophil leading edge, and is phosphorylated in response to the chemoattractant formyl-Met-Leu-Phe (fMLP) in adherent cells. Using live imaging in microchannels, we show that depletion of endogenous HS1 in the neutrophil-like PLB-985 cell line impairs chemotaxis. We also find that HS1 is necessary for chemoattractant-induced activation of Rac GTPase signaling and Vav1 phosphorylation, suggesting that HS1-mediated Rac activation is necessary for efficient neutrophil chemotaxis. We identify specific phosphorylation sites that mediate HS1-dependent neutrophil motility. Expression of HS1 Y378F, Y397F is sufficient to rescue migration of HS1-deficient neutrophils, however, a triple phospho-mutant Y222F, Y378F, Y397F did not rescue migration of HS1-deficient neutrophils. Moreover, HS1 phosphorylation on Y222, Y378, and Y397 regulates its interaction with Arp2/3. Collectively, our findings identify a novel role for HS1 and its phosphorylation during neutrophil directed migration.  相似文献   

14.
Neutrophils are highly motile leukocytes, and they play important roles in the innate immune response to invading pathogens. Neutrophil chemotaxis requires Rac activation, yet the Rac activators functioning downstream of chemoattractant receptors remain to be determined. We show that DOCK2, which is a mammalian homologue of Caenorhabditis elegans CED-5 and Drosophila melanogaster Myoblast City, regulates motility and polarity during neutrophil chemotaxis. Although DOCK2-deficient neutrophils moved toward the chemoattractant source, they exhibited abnormal migratory behavior with a marked reduction in translocation speed. In DOCK2-deficient neutrophils, chemoattractant-induced activation of both Rac1 and Rac2 were severely impaired, resulting in the loss of polarized accumulation of F-actin and phosphatidylinositol 3,4,5-triphosphate (PIP3) at the leading edge. On the other hand, we found that DOCK2 associates with PIP3 and translocates to the leading edge of chemotaxing neutrophils in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. These results indicate that during neutrophil chemotaxis DOCK2 regulates leading edge formation through PIP3-dependent membrane translocation and Rac activation.  相似文献   

15.
The Wnt-PCP (planar cell polarity, PCP) pathway regulates cell polarity and convergent extension movements during axis formation in vertebrates by activation of Rho and Rac, leading to the re-organization of the actin cytoskeleton. Rho and Rac activation require guanine nucleotide-exchange factors (GEFs), but the identity of the GEF involved in Wnt-PCP-mediated convergent extension is unknown. Here we report the identification of the weak-similarity GEF (WGEF) gene by a microarray-based screen for notochord enriched genes, and show that WGEF is involved in Wnt-regulated convergent extension. Overexpression of WGEF activated RhoA and rescued the suppression of convergent extension by dominant-negative Wnt-11, whereas depletion of WGEF led to suppression of convergent extension that could be rescued by RhoA or Rho-associated kinase activation. WGEF protein preferentially localized at the plasma membrane, and Frizzled-7 induced colocalization of Dishevelled and WGEF. WGEF protein can bind to Dishevelled and Daam-1, and deletion of the Dishevelled-binding domain generates a hyperactive from of WGEF. These results indicate that WGEF is a component of the Wnt-PCP pathway that connects Dishevelled to Rho activation.  相似文献   

16.
Increased recycling and elevated cell surface expression of receptors serve as a mechanism for persistent receptor-mediated signaling. We show that the neuron-enriched Na+/H+ exchanger NHE5 is abundantly expressed in C6 glioma cells and plays an important part in regulating cell surface expression of the receptor tyrosine kinases MET and EGF receptor. NHE5 is associated with transferrin receptor (TfR)- and Rab11-positive recycling endosomal membranes, and NHE5 knockdown by short hairpin RNA significantly elevates pH of TfR-positive recycling endosomes. We present evidence that NHE5 facilitates MET recycling to the plasma membrane, protects MET from degradation, and modulates HGF-induced phosphatidylinositol-3-kinase and mitogen-activated protein kinase signaling. Moreover, NHE5 depletion abrogates Rac1 and Cdc42 signaling and actin cytoskeletal remodeling. We further show that NHE5 knockdown impairs directed cell migration and causes loss of cell polarity. Our study highlights a possible role of recycling endosomal pH in regulating receptor-mediated signaling through vesicular trafficking.  相似文献   

17.
The BCR-triggered responses of mature and transitional immature B cells differ at both the biochemical and functional level. In this study, we show that in mature B cells, BCR signaling triggers Vav phosphorylation and Rac1 activation. Furthermore, we demonstrate that although downstream actin-dependent BCR capping is independent of Rac1 activation, actin-dependent membrane ruffling and cell spreading are Rac1-dependent processes. In contrast, BCR-induced Vav phosphorylation and Rac1 activation is impaired in transitional immature B cells, resulting in defects in actin polymerization-dependent spreading and membrane ruffling while Rac1-independent BCR capping remains intact. Because transitional immature murine B cells maintain lower steady-state levels of plasma membrane cholesterol, we augmented their levels to that of mature B cells and found that BCR-induced Rac1 activation and Rac1-dependent membrane ruffling and cell spreading were restored. These studies provide a direct link between B cell cholesterol levels and downstream cellular signaling processes.  相似文献   

18.
In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MβCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MβCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MβCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal.  相似文献   

19.
Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF) stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration.  相似文献   

20.
Chemotaxis allows neutrophils to seek out sites of infection and inflammation. The asymmetric accumulation of filamentous actin (F-actin) at the leading edge provides the driving force for protrusion and is essential for the development and maintenance of neutrophil polarity. The mechanism that governs actin cytoskeleton dynamics and assembly in neutrophils has been extensively explored and is still not fully understood. By using neutrophil-like HL-60 cells, we describe a pivotal role for Rictor, a component of mammalian target of rapamycin complex 2 (mTORC2), in regulating assembly of the actin cytoskeleton during neutrophil chemotaxis. Depletion of mTOR and Rictor, but not Raptor, impairs actin polymerization, leading-edge establishment, and directional migration in neutrophils stimulated with chemoattractants. Of interest, depletion of mSin1, an integral component of mTORC2, causes no detectable defects in neutrophil polarity and chemotaxis. In addition, experiments with chemical inhibition and kinase-dead mutants indicate that mTOR kinase activity and AKT phosphorylation are dispensable for chemotaxis. Instead, our results suggest that the small Rho GTPases Rac and Cdc42 serve as downstream effectors of Rictor to regulate actin assembly and organization in neutrophils. Together our findings reveal an mTORC2- and mTOR kinase–independent function and mechanism of Rictor in the regulation of neutrophil chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号