首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand the mechanism of lipid transfer protein (LTP) action and the effects of altered lipoprotein composition on its activity, we evaluated the dependence of LTP activity on the concentrations of cholesteryl ester (CE) and/or triglyceride (TG) in the phospholipid bilayer of substrate particles. Phosphatidylcholine (PC)-cholesterol liposomes containing up to 2 mole% TG and/or CE were prepared by cholate dialysis and used as either the donor of lipids to, or the acceptor of lipids from, low density lipoproteins (LDL). CE or TG transfer from liposomes of varying neutral lipid content to LDL showed saturation kinetics with an apparent Km of less than or equal to 0.2 mole%. Throughout this concentration-dependent response. PC transfer, which depended on the same LTP-donor particle binding interactions as those required for neutral lipid transfer, was essentially unchanged. Lipid transfer in the reverse direction (from LDL to liposomes of varying neutral lipid content) followed the same kinetics showing that transfer between the two particles is tightly coupled and bidirectional. When liposomes contained both TG and CE, these lipids competed for transfer in a manner analogous to that previously noted with lipoprotein substrates. In conclusion, CE and TG transfer activities are determined by the concentration of these lipids in the phospholipid surface of donor and acceptor particles. At low TG and CE concentrations, LTP bound to the liposome surface as indicated by PC transfer, but only a portion of these interactions actually facilitated a neutral lipid transfer event. Thus, the overall rate of neutral lipid transfer, and the competition between TG and CE for transfer, depend on the concentrations of these lipids in the phospholipid layer.  相似文献   

2.
Here we have studied how the length of the pyrene-labeled acyl chain (n) of a phosphatidylcholine, sphingomyelin, or galactosylceramide affects the partitioning of these lipids between 1), gel and fluid domains coexisting in bovine brain sphingomyelin (BB-SM) or BB-SM/spin-labeled phosphatidylcholine (PC) bilayers or 2), between liquid-disordered and liquid-ordered domains in BB-SM/spin-labeled PC/cholesterol bilayers. The partitioning behavior was deduced either from modeling of pyrene excimer/monomer ratio versus temperature plots, or from quenching of the pyrene monomer fluorescence by spin-labeled PC. New methods were developed to model excimer formation and pyrene lipid quenching in segregated bilayers. The main result is that partition to either gel or liquid-ordered domains increased significantly with increasing length of the labeled acyl chain, probably because the pyrene moiety attached to a long chain perturbs these ordered domains less. Differences in partitioning were also observed between phosphatidylcholine, sphingomyelin, and galactosylceramide, thus indicating that the lipid backbone and headgroup-specific properties are not severely masked by the pyrene moiety. We conclude that pyrene-labeled lipids could be valuable tools when monitoring domain formation in model and biological membranes as well as when assessing the role of membrane domains in lipid trafficking and sorting.  相似文献   

3.
The zebrafish larva is a powerful tool for the study of dietary triglyceride (TG) digestion and how fatty acids (FA) derived from dietary lipids are absorbed, metabolized and distributed to the body. While fluorescent FA analogues have enabled visualization of FA metabolism, methods for specifically assaying TG digestion are badly needed. Here we present a novel High Performance Liquid Chromatography (HPLC) method that quantitatively differentiates TG and phospholipid (PL) molecules with one or two fluorescent FA analogues. We show how this tool may be used to discriminate between undigested and digested TG or phosphatidylcholine (PC), and also the products of TG or PC that have been digested, absorbed and re-synthesized into new lipid molecules. Using this approach, we explored the dietary requirement of zebrafish larvae for phospholipids. Here we demonstrate that dietary TG is digested and absorbed in the intestinal epithelium, but without dietary PC, TG accumulates and is not transported out of the enterocytes. Consequently, intestinal ER stress increases and the ingested lipid is not available support the energy and metabolic needs of other tissues. In TG diets with PC, TG is readily transported from the intestine and subsequently metabolized.  相似文献   

4.
Isoflurane is an inhalational general anesthetic widely used in surgical operations as a racemic mixture of its two optical isomers. The recent availability of pure enantiomers of isoflurane has encouraged their use in experimental studies, and stereoselective effects have now been observed on anesthetic-sensitive neuronal ion channels. Although it has been assumed that such chiral effects demonstrate direct interactions with proteins, it is possible that they could be due to stereoselective interactions with chiral membrane lipids. We have determined the partition coefficients of the two optical isomers of isoflurane between lipid bilayers and water, using racemic isoflurane and gas chromatography with a chiral column. For lipid bilayers of phosphatidylcholine (PC) and 4 mol% phosphatidic acid (PA), both with and without cholesterol (CHOL), we found equal partitioning of the isoflurane optical isomers. The ratios of the S(+) to R(-) isoflurane partition coefficients were (mean +/- SEM): 1.018 +/- 0.010 for bilayers of PC/CHOL/PA (mole ratios 56:40:4) and 1.011 +/- 0.002 for bilayers of PC/PA (mole ratio 96:4). Molar partition coefficients for racemic isoflurane were 49 +/- 4 and 165 +/- 10, respectively. These findings support the view that the stereoselective effects on ion channels observed with isoflurane are due to direct actions on proteins rather than lipids.  相似文献   

5.
The two DNA fractions were isolated from sarcoma 37 by the use of the phenol method: supramolecular complex of DNA (SC DNA, 60%) and "phenol" nuclear matrix DNA (PNM DNA, 40%). The lipids in SC DNA represented of light and tightly bound components, the latter was similar to the lipid composition of PNM DNA. SC DNA contains 20 micrograms of neutral lipids (NL) and 6.5 micrograms of phospholipids (PL), while PNM DNA contains 9.8 micrograms of NL and 3.5 micrograms of PL per mg DNA. SC DNA-bound lipids of sarcoma 37 are deficient in free cholesterol (FC, 13%), but rich in cholesterol esters (CE, 39%) and free fatty acids (FFA, 23%); very rich in cardiolipin (CL, 43%) and phosphatidylethanolamine (PE, 28%), but deficient in phosphatidylcholine (PC, 12%). The tumor contains triglycerides (TG) that is absent in DNA of the normal cells. The injection of sarcolysine (10 micrograms/kg) markedly increased (1.5-3 times) the content of all LN and PL fractions in SC DNA, which was accompanied by both the accumulation of FC, TG, PC and the reduction of the remaining lipid fractions in PNM DNA. It is supposed, that DNA-bound lipids may be the target for the action of sarcolysine.  相似文献   

6.
We investigated whether chylomicron formation is involved in the dietary phosphatidylcholine (PC)-induced increase in triglyceride (TG) absorption using an inhibitor of chylomicron formation, pluronic L-81 (L-81). In rats, cannulas were implanted into the duodenum (exps. 1 and 2) and the mesenteric lymph duct (exp. 1), and an emulsified lipid solution containing the test lipids (soybean oil, SO or soybean oil plus phosphatidylcholine, LE) with or without L-81 was infused through a duodenal cannula at a rate 3 ml/h for 2 h, and followed by infusion of a glucose-NaCl solution for 2 h. Mesenteric lymph was collected for 4 h (exp. 1). In exp. 2, the mucosa and contents of the small intestine were collected at 20, 40, or 90 min after the start of duodenal infusion of the test lipid to evaluate accumulation of lipids incorporated into the mucosa in the rats without a lymph cannula. In exp. 1, lymphatic TG outputs rapidly increased with infusion of both test lipids without L-81, but L-81 abolished these increases. TG accumulated in the small intestinal mucosa with L-81 treatment in a time-dependent manner, but the levels of accumulation were similar between the SO and LE groups (exp. 2). There were no differences in the amounts of lipid remaining in the small intestinal lumen between the L-81-treated SO and LE groups. These results indicate that uptake of lipid into the mucosal cells was not increased by LE. We conclude that the formation of chylomicron is responsible for increases in the promotive effect of a high level of dietary PC on the lymphatic absorption of TG.  相似文献   

7.
Li Y  Na K  Lee HJ  Lee EY  Paik YK 《Journal of biochemistry》2011,149(5):529-538
Accumulation of lipids inside the cell is primarily caused by disorders of lipid metabolism. S-adenosylmethionine synthetase (SAMS) produces SAM, an important methyl donor in various phospholipid methyltransferase reactions catalysed by phosphoethanolamine N-methyltransferase (PMT-1). A gel-based, quantitative proteomic analysis of the RNA interference (RNAi)-mediated inactivation of the pod-2 gene, which encodes acetyl-CoA carboxylase, showed a substantial down-regulation of SAMS-1. Consequently, RNAi of either sams-1 or pmt-1 caused a significant increase in lipid droplet size in the intestine of Caenorhabditis elegans. Lipid droplets exhibited increased triacylglycerol (TG) and decreased phosphatidylcholine (PC) levels, suggesting a reciprocal relationship between TG and PC regulation. These lipid-associated phenotypes were rescued by choline feeding. Among the five fat metabolism-related genes examined, two genes were highly induced by inactivation of sams-1 or pmt-1: pod-2 and stearoyl-CoA desaturase (fat-7). Thus, both SAMS-1 and PMT-1 were shown to contribute to the homoeostasis of TG and PC levels in C. elegans, which would provide an important survival strategy under harsh environmental conditions.  相似文献   

8.
We investigated whether chylomicron formation is involved in the dietary phosphatidylcholine (PC)-induced increase in triglyceride (TG) absorption using an inhibitor of chylomicron formation, pluronic L-81 (L-81). In rats, cannulas were implanted into the duodenum (exps. 1 and 2) and the mesenteric lymph duct (exp. 1), and an emulsified lipid solution containing the test lipids (soybean oil, SO or soybean oil plus phosphatidylcholine, LE) with or without L-81 was infused through a duodenal cannula at a rate 3 ml/h for 2 h, and followed by infusion of a glucose–NaCl solution for 2 h. Mesenteric lymph was collected for 4 h (exp. 1). In exp. 2, the mucosa and contents of the small intestine were collected at 20, 40, or 90 min after the start of duodenal infusion of the test lipid to evaluate accumulation of lipids incorporated into the mucosa in the rats without a lymph cannula. In exp. 1, lymphatic TG outputs rapidly increased with infusion of both test lipids without L-81, but L-81 abolished these increases. TG accumulated in the small intestinal mucosa with L-81 treatment in a time-dependent manner, but the levels of accumulation were similar between the SO and LE groups (exp. 2). There were no differences in the amounts of lipid remaining in the small intestinal lumen between the L-81-treated SO and LE groups. These results indicate that uptake of lipid into the mucosal cells was not increased by LE. We conclude that the formation of chylomicron is responsible for increases in the promotive effect of a high level of dietary PC on the lymphatic absorption of TG.  相似文献   

9.
Lipid--protein multiple binding equilibria in membranes   总被引:3,自引:0,他引:3  
Phospholipids at the lipid--protein interface of membrane proteins are in dynamic equilibrium with fluid bilayer. In order to express the number of binding sites (N) and the relative binding constants (K) in terms of measurable quantities, the equilibrium is formulated as an exchange reaction between lipid molecules competing for hydrophobic sites on the protein surface. Experimental data are reported on two integral membrane proteins, cytochrome oxidase and (Na,-K)-ATPase, reconstituted into defined phospholipids. Electron spin resonance measurements on reconstituted preparations of beef heart cytochrome oxidase in 1,2-dioleoyl-sn-3-phosphatidylcholine containing small quantities of the spin-labeled phospholipid 1-palmitoyl-2-(14-proxylstearoyl)-sn-3-phosphatidylcholine (PC*) gave a linear plot of bilayer/bound PC* vs. the lipid/protein ratio as predicted by the theory, with K congruent to 1 and N = 40 (normalized to heme aa3). This demonstrates that the spin-label moiety attached to the hydrocarbon chain does not significantly perturb the binding equilibria. In the second experimental system, (Na,K)-ATPase purified from rectal glands of Squalus acanthias was reconstituted with defined phosphatidylcholines as the lipid solvent and spin-labeled phospholipids with choline or serine head groups (PC*, PS*) as the solute. The (Na,K)-ATPase has a larger number of lipid binding or contact sites (N = 60-65 per alpha 2 beta 2 dimer) and exhibits a detectably larger average binding constant for the negatively charged phosphatidylserine than for the corresponding phosphatidylcholine. These results show that a multiple equilibria, noninteracting site binding treatment can account for the behavior of lipids exchanging between the protein surface and the lipid bilayer. Selective sites among a background of nonselective sites are experimentally detectable as a change in the measured relative binding constant.  相似文献   

10.
Mortierella ramanniana var. angulispora accumulates triacylglycerol (TG) in lipid bodies. Studies on lipid transport into lipid bodies are essential for elucidating mechanisms of lipid body formation. We used fluorescent dyes and fluorescent lipid analogs to visualize lipid body formation with a confocal laser scanning microscope. Different sizes of lipid bodies were stained by Nile red, a lipid body marker - one with a diameter of about 1 micrometer and the other with a diameter of about 2-3 micrometers. Lipid bodies matured into larger ones with culture. To metabolically monitor lipid bodies, we used 1-palmitoyl, 2-[5-(5,7-dimethyl boron dipyrromethene difluoride)-1-pentanoyl]-phosphatidic acid (C5-DMB-PA), and C5-DMB-phosphatidylcholine (C5-DMB-PC). These were taken up into fungal cells and incorporated into intracellular organelles at 30 degrees C. C5-DMB-PA was quickly incorporated into lipid bodies while C5-DMB-PC was initially incorporated into internal membranes, presumably endoplasmic reticulum membranes, and fluorescence was then gradually transported into lipid bodies. The transport of fluorescent lipids accompanied their metabolism into diacylglycerol (DG) and TG, which, taken together with the fluorescence distribution, suggested that conversion to TG was not necessary for transport into lipid bodies. It is likely that the synthesized DG was mainly located in lipid bodies and the conversion to TG took place in lipid bodies. C5-DMB-PA and C5-DMB-PC were converted to DG and TG in the membrane and lipid body fractions of this fungus, which agreed with in vivo metabolism of these fluorescent lipids and in vitro enzyme activity related to PA and PC metabolism. These results indicate that transport and metabolism of C5-DMB-PA and C5-DMB-PC represent two different routes for lipid body formation in this fungus.  相似文献   

11.
Functional membranes containing purified Torpedo californica acetylcholine receptor and dioleoylphosphatidylcholine (DOPC) were prepared by a cholate dialysis procedure with lipid to protein ratios of 100-400 to 1 (mol/mol). Spin-labeled lipids were incorporated into the reconstituted membranes and into native membranes prepared from Torpedo electroplax, and electron paramagnetic resonance (EPR) spectra were recorded between 0 and 20 degrees C. The spin-labels included nitroxide derivatives of stearic acid (16-doxylstearic acid), androstane, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidic acid (PA). The phospholipid spin-labels had 16-doxylstearic acid in the sn-2 position. All the spectra showed two components corresponding to a relatively mobile bilayer component and a motionally restricted "protein-perturbed" component. The relative amounts of mobile and perturbed components were quantitated by spectral subtraction and integration techniques. The mobile/perturbed ratio was somewhat temperature dependent, and the results are discussed in terms of exchange between mobile and perturbed environments. Plots of the mobile/perturbed ratios vs. lipid/protein ratios at 1 degree C gave straight lines from which the relative binding affinity of each spin-label and the number of perturbed lipids per receptor protein could be calculated. All the spin-labels gave similar values for the number of perturbed lipids (40 +/- 7), a number close to the number of lipids that will fit around the intramembranous perimeter of the receptor. The affinities of the spin-labeled lipids for the receptor relative to DOPC were androstane (K = 4.3) congruent to 16-doxylstearic acid (4.1) greater than PA (2.7) greater than PE (1.1) approximately PC (1.0) approximately PS (0.7). The lipids having the highest affinity for the acetylcholine receptor were also those that have the largest effects on the ion flux functional properties of the receptor, and the results are discussed in terms of lipid effects on receptor function.  相似文献   

12.
Hoang AN  Sandlin RD  Omar A  Egan TJ  Wright DW 《Biochemistry》2010,49(47):10107-10116
In eukaryotic cells, neutral lipids serve as major energy storage molecules; however, in Plasmodium falciparum, a parasite responsible for causing malaria in humans, neutral lipids may have other functions during the intraerythrocytic stage of the parasite life cycle. Specifically, experimental data suggest that neutral lipid structures behave as a catalyst for the crystallization of hemozoin, a detoxification byproduct of several blood-feeding organisms, including malaria parasites. Synthetic neutral lipid droplets (SNLDs) were produced by depositing a lipid blend solution comprised of mono- and diglycerides onto an aqueous surface. These lipid droplets are able to mediate the production of brown pigments that are morphologically and chemically identical to hemozoin. The partitioning of heme into these SNLDs was examined by employing Nile Red, a lipid specific dye. Soluble ferriprotoporphyrin IX was observed to spontaneously localize to the lipid droplets, partitioning in a pH-dependent manner with an estimated log P of 2.6. Interestingly, the pH profile of heme partitioning closely resembles that of β-hematin formation. Differential scanning calorimetry and kinetic studies demonstrated that the SNLDs provide a unique environment that promotes hemozoin formation. SNLD-mediated formation of the malaria pigment displayed an activation energy barrier lower than those of individual lipid components. In particular, lipid droplets composed of diglycerides displayed activation barriers lower than those composed of monoglycerides. This difference was attributed to the greater fluidity of these lipids. In conjunction with the known pattern of lipid body proliferation, it is suggested that neutral lipid structures within the digestive vacuole not only are the location of in vivo hemozoin formation but are also essential for the survival of the parasite by functioning as a kinetically competent and site specific mediator for heme detoxification.  相似文献   

13.
To extend our knowledge of model membrane systems based upon one lipid component, multi-lamellar bilayers were made of cholesterol with two phospholipids in equimolar ratio, and the enthalpy change delta H of the main phase transition of the temary mixture was measured by differential scanning calorimetry (DSC) as a function of increasing cholesterol concentration c. The lipids were saturated phosphatidylcholines CnPC of acyl chain length n, and as the n of the two lipids became more different (from C13PC/C14PC to C14PC/C15PC to C14PC/C18PC to C14PC/C19PC) distinct breaks in the delta H versus c plots were observed. These mixtures displayed only one broad DSC endotherm. Mixtures of an unsaturated lipid C18: 1PC (dioleoyl) with C16PC or with C18PC showed two peaks, with each peak being associated with its parent lipid. However, the delta H versus c plots for each of these peaks showed an initial independence of cholesterol concentration followed by a dependence on cholesterol concentration. These results indicate that, in lipid mixtures, the type of interaction of cholesterol with each lipid component depends on the concentration of cholesterol present.  相似文献   

14.
The kinetics of the partitioning of lipid vesicles containing acidic phospholipids in aqueous two-phase polymer systems are dependent upon the vesicle size; the larger the vesicles, the more readily they absorb to the interfaces between the two polymer phases and hence are cleared from the top phase as phase separation proceeds. The partitioning of neutral lipid vesicles is principally to the bulk interface and is the same in phase systems of both low and high electrostatic potential difference between the two phases (delta psi). The incorporation of negatively charged lipids has two effects upon partition. First, vesicles with negatively charged lipids exhibit increased bottom phase partitioning in phases of low delta psi due to an enhanced wetting of the charged lipids by the lower phase. Second, the presence of a negatively charged group on the vesicle surface results in increased partition to the interface and top phase in phase systems of high delta psi. Differences observed in the partition of vesicles containing various species of negatively charged lipid thus reflect a competition between these two opposing factors.  相似文献   

15.
The plasma cholesteryl ester-transfer protein (CETP, Mr 74,000) promotes exchange of both neutral lipids and phospholipids (phosphatidylcholine, PC) between lipoproteins. To investigate the mechanism of facilitated lipid transfer, CETP was incubated with unilamellar egg PC vesicles containing small amounts of cholesteryl ester (CE) or triglyceride, and then analyzed by gel filtration chromatography. There was rapid transfer of radiolabeled CE or triglyceride and PC from vesicles to CETP. The CETP with bound lipids was isolated and incubated with low density lipoproteins (LDL), resulting in transfer of the lipids to LDL. The CETP bound up to 0.9 mol of CE or 0.2 mol of triglyceride and 11 mol of PC/mol of CETP. para-Chloromercuriphenylsulfonate, an inhibitor of CE and triglyceride transfer, was found to decrease the binding of radiolabeled CE and triglyceride by CETP. Under various conditions the CETP eluted either as an apparent monomer with bound lipid (Mr 75,000-93,000), or in complexes with vesicles. The distribution of CETP between these two states was influenced by the presence of apoA-I or albumin, incubation time, vesicle/CETP ratio, and buffer pH and ionic strength. The results indicate that the CETP has binding sites for CE, triglyceride, and PC which readily equilibrate with lipoprotein lipids and suggest that CETP can act as a carrier of lipid between lipoproteins.  相似文献   

16.
T Nomura  K Kurihara 《Biochemistry》1987,26(19):6141-6145
In a previous paper [Nomura, T., & Kurihara, K. (1987) Biochemistry (preceding paper in this issue)], we showed that azolectin liposomes are depolarized by various odorants and there is a good correlation between the responses in the liposomes and the frog or porcine olfactory responses. In this study, we examined effects of changed lipid composition on responses of liposomes to various odorants. The membrane potential changes in response to odorants were monitored with the fluorescent dye 3,3'-dipropylthiocarbocyanine iodide [diS-C3(5)]. Egg phosphatidylcholine (PC) liposomes showed depolarizing responses to nine odorants among ten odorants tested. The magnitudes of depolarization by alcohols were similar to those in azolectin liposomes, but those by other odorants were much less than those in azolectin liposomes. Addition of sphingomyelin (SM) to PC led to an increase in the magnitude of depolarization by most odorants. Addition of phosphatidylethanolamine (PE) to PC (PE/PC = 0.25) led to depolarizing responses to four odorants among six odorants tested, and a further increase in PE content (PE/PC = 0.54) led to depolarizing responses only to two odorants. Addition of SM to the lipids of this composition of PC and PE [SM/(PC + PE) = 0.22] led to depolarizing responses to four odorants again. Liposomes made of a mixture of SM, PE, and PC exhibited depolarizing responses to four odorants tested, and addition of cholesterol to the lipids [cholesterol/(PC + PE + SM) = 0.05 and 0.11] led to depolarizing responses only to two and one odorant, respectively. Thus, changes in lipid composition of liposomes led to great changes in specificity of the responses to odorants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Enterocytes are responsible for the absorption of dietary lipids, which involves TRL [TG (triacylglycerol)-rich lipoprotein] assembly and secretion. In the present study, we analysed the effect on TRL secretion of Caco-2 enterocyte adaptation to a differential glucose supply. We showed that TG secretion in cells adapted to a low glucose supply for 2 weeks after confluence was double that of control cells maintained in high-glucose-containing medium, whereas the level of TG synthesis remained similar in both conditions. This increased secretion resulted mainly from an enlargement of the mean size of the secreted TRL. The increased TG availability for TRL assembly and secretion was not due to an increase in the MTP (microsomal TG transfer protein) activity that is required for lipid droplet biogenesis in the ER (endoplasmic reticulum) lumen, or to the channelling of absorbed fatty acids towards the monoacylglycerol pathway for TG synthesis. Interestingly, by electron microscopy and subcellular fractionation studies, we observed, in the low glucose condition, an increase in the TG content available for lipoprotein assembly in the ER lumen, with the cytosolic/microsomal TG levels being verapamil-sensitive. Overall, we demonstrate that Caco-2 enterocytes modulate TRL secretion through TG partitioning between the cytosol and the ER lumen according to the glucose supply. Our model will help in identifying the proteins involved in the control of the balance between TRL assembly and cytosolic lipid storage. This mechanism may be a way for enterocytes to regulate TRL secretion after a meal, and thus impact on our understanding of post-prandial hypertriglyceridaemia.  相似文献   

18.
The mechanisms by which digested fat is absorbed and transported in the circulation are well documented. However, it is uncertain whether the molecular species composition of dietary fats influences the molecular species composition of meal-derived lipids in blood. This may be important because enzymes that remove meal-derived fatty acids from the circulation exhibit differential activities towards individual lipid molecular species. To determine the effect of consuming oils with different molecular compositions on the incorporation of 20:5n-3 and 22:6n-3 into plasma lipid molecular species. Men and women (18–30 years) consumed standardised meals containing 20:5n-5 and 22:6n-3 (total 450 mg) provided by an oil from transgenic Camelina sativa (CSO) or a blended fish oil (BFO) which differed in the composition of 20:5n-3 and 22:6n-3 – containing molecular species. Blood was collected during the subsequent 8 h. Samples were analysed by liquid chromatography-mass spectrometry. The molecular species composition of the test oils was distinct from the composition of plasma triacylglycerol (TG) or phosphatidylcholine (PC) molecular species at baseline and at 1.5 or 6 h after the meal. The rank order by concentration of both plasma PC and TG molecular species at baseline was maintained during the postprandial period. 20:5n-3 and 22:6n-3 were incorporated preferentially into plasma PC compared to plasma TG. Together these findings suggest that the composition of dietary lipids undergoes extensive rearrangement after absorption, such that plasma TG and PC maintain their molecular species composition, which may facilitate lipase activities in blood and/or influence lipoprotein structural stability and function.  相似文献   

19.
Sugar beet seedlings (Beta vulgaris L. cv. Monohill) were cultivated for 3 weeks at different root and shoot temperatures and the plasma membranes (PM) from roots were purified by aqueous two-phase partitioning and analyzed for lipid composition and ATPase activities. Lipid analyses, undertaken immediately after PM purification from the roots, showed that a low root zone temperature (10 degrees C) decreased the ratio between the major lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). A low temperature in the root environment increased the mol% of PE and decreased the mol% of phosphatidic acid (PA), independent on the shoot growth temperature. A low temperature also decreased the mol% of linoleic acid (18:2) and increased mol% of linolenic acid (18:3) in the analyzed lipid classes, especially in PC and PE. The ratio between acyl chain lipids and protein generally increased in PM from roots grown at 10 degrees C, compared with higher temperature. The changes in lipid composition correlated with changes in ATPase activities, detected as hydrolyses of MgATP. The kinetic parameters, K(m) and V of the PM H(+)ATPase in roots increased at a low cultivation temperature, independent on shoot temperature. Moreover, Arrhenius analyses showed that the transition temperature was independent of both root or shoot growth temperature at 10-24 degrees C, whereas the activation energy of the ATPase was dependent on the growth temperature of the root, and independent on shoot temperature. Thus, acclimation processes can take place in roots, irrespective of the shoot temperature.  相似文献   

20.
This article reviews the use of fluorescent lipids and free probes in the studies of lipid regular distribution in model membranes. The first part of this article summarizes the evidence and physical properties for lipid regular distribution in pyrene-labeled phosphatidylcholine (PC)/unlabeled PC binary mixtures as revealed by the fluorescence of pyrene-labeled PC. The original and the extended hexagonal superlattice model are discussed. The second part focuses on the fluorescence studies of sterol regular distributions in membranes. The experimental evidence for sterol superlattice formation obtained from the fluorescent sterol (i.e. dehydroergosterol) and non-sterol fluorescent probes (e.g. DPH and Laurdan) are evaluated. Prospects and concerns are given with regard to the sterol regular distribution. The third part deals briefly with the evidence for polar headgroup superlattices. The emphasis of this article is placed on the new concept that membrane properties and activities, including the activities of surface acting enzymes, drug partitioning, and membrane free volume, are fine-tuned by minute changes in the concentration of bulky lipids (e.g. sterols and pyrene-containing acyl chains) in the vicinities of the critical mole fractions for superlattice formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号