首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for the first time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of approximately 50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers.  相似文献   

2.
Native pig brain tubulin in heterodimer or polymer form was subjected to limited proteolysis by subtilisin, which is known to cleave at accessible sites within the last 50 amino acids of the highly variable carboxyl-termini of the alpha and beta subunits. Heterodimeric tubulin or tubulin polymerized in the presence of 4 M glycerol or taxol was used in these experiments. Digested tubulin was purified by cycles of polymerization and depolymerization, ammonium sulfate precipitation, or ion-exchange chromatography in the absence or presence of nonionic detergent; however, smaller cleaved products of about 34,000 to 40,000 MW remained associated with the major cleaved subunits, alpha' and beta', under all purification conditions. In order to determine the effect of subtilisin cleavage on tubulin heterogeneity, purified native or subtilisin-cleaved tubulin was subjected to isoelectric focusing, followed by SDS-PAGE. The total number of isotypes was reduced from 17-22 for native alpha,beta tubulin to 7-9 for subtilisin-cleaved alpha',beta' tubulin. When tubulin heterodimers were cleaved, a single major beta' isotype was evident; however, when tubulin polymerized in 4 M glycerol was cleaved, two major beta' isotypes were found. Monoclonal antibodies that recognize a beta carboxyl-terminal peptide, residues 410-430, reacted with both major beta' isotypes, indicating that subtilisin cleavage occurred within the last 20 of the 450 amino acids. In order to establish whether this difference was in fact associated with polymer or heterodimer forms of tubulin, digestion was carried out in the presence of taxol, which stabilizes tubulin polymers. A single major beta' isotype different from the cleaved heterodimer, but coincident with one of the bands of the cleaved glycerol-induced polymers, was found when taxol-treated tubulin was digested. This result suggests the presence of more than one subtilisin site in the beta subunit, near residues 430-435, with different accessibility to the enzyme in the heterodimer and polymer form.  相似文献   

3.
We report functional differences between tau isoforms with 3 or 4 C-terminal repeats and a difference in susceptibility to oxidative conditions, with respect to the regulation of microtubule dynamics in vitro and tau-microtubule binding in cultured cells. In the presence of dithiothreitol in vitro, a 3-repeat tau isoform promotes microtubule nucleation, reduces the tubulin critical concentration for microtubule assembly, and suppresses dynamic instability. Under non-reducing conditions, threshold concentrations of 3-repeat tau and tubulin exist below which this isoform still promotes microtubule nucleation and assembly but fails to reduce the tubulin critical concentration or suppress dynamic instability; above these threshold concentrations, amorphous aggregates of 3-repeat tau and tubulin can be produced at the expense of microtubule formation. A 4-repeat tau isoform is less sensitive to the oxidative potential of the environment, behaving under oxidative conditions similarly to the 3-repeat isoform under reducing conditions. Under conditions of oxidative stress, in Chinese hamster ovary cells stably expressing either 3- or 4-repeat tau, 3-repeat tau disassociates from microtubules more readily than the 4-repeat isoform, and tau-containing high molecular weight aggregates are preferentially observed in lysates from the Chinese hamster ovary cells expressing 3-repeat tau, indicating greater susceptibility of 3-repeat tau to oxidative conditions, compared with 4-repeat tau in vivo.  相似文献   

4.
Trypsin preferentially cleaves the alpha subunit of depolymerized tubulin or vinblastine induced aggregates (in which longitudinal interactions between tubulin molecules could take place). No cleavage was found for tubulin polymerized into microtubules (containing lateral and longitudinal tubulin interactions), in the presence of taxol. In the presence of colchicine or podophyllotoxin the alpha subunit was partially protected from proteolytic digestion. Trypsin digestion pattern varied upon the addition of different concentrations of griseofulvin. At the higher concentration used, in which microtubules assembly was inhibited, both tubulin subunits were cleaved.  相似文献   

5.
This paper describes the physical and chemical properties of purified tau, a protein which is associated with brain microtubules and which induces assembly of microtubules from tubulin. Purified tau is composed of four polypeptides which migrate at positions equivalent to molecular weights between 55,000 and 62,000 during electrophoresis on sodium dodecyl sulfate/polyacrylamide gels. These polypeptides are shown to be closely related by peptide mapping and by amnio acid analysis. A comparison by various techniques of the high molecular weight microtubule-associated proteins with the tau polypeptides indicates no apparent relationship. Tau is found by analytical ultracentrifugation and by sedimentation equilibrium to have a sedimentation coefficient of 2.6 S and a native molecular weight of 57,000. Tau, therefore, must be highly asymmetric (an axial ratio of 20:1 using a prolate ellipsoid model), and yet possess little α-helical structure as indicated by circular dichroism. Isoelectric focusing shows tau to be a neutral or slightly basic protein. Tau is also seen to be phosphorylated by a protein kinase which copurifies with microtubules.In the assembly process, tau apparently regulates the formation of longitudinal oligomers from tubulin dimers, and hence promotes ring formation under depolymerizing conditions and microtubule formation under polymerizing conditions. The known asymmetry of the tau molecule suggests that tau induces assembly by binding to several tubulin molecules per tau molecule, thereby effectively increasing the local concentration of tubulin and inducing the formation of longitudinal filaments. The role of tau is discussed in light of reports of polymerization induced by particular non-physiological conditions and by various polycations. The formation of normal microtubules over a wide range of tubulin and tau concentrations under mild buffer conditions suggests that tau and tubulin define a complete in vitro assembly system under conditions which approach physiological.  相似文献   

6.
Phosphocellulose-purified tubulin has been shown to form a characteristic "ladder" of nonmicrotubular aggregates during nondenaturing gel electrophoresis (J. J. Correia and R. C. Williams, Jr. (1985) Arch. Biochem. Biophys. 239, 120-129). In this paper we describe evidence that the intersubunit bonds responsible for formation of these oligomeric particles are disulfides. Two-dimensional nondenaturing-denaturing gel electrophoresis demonstrates that each aggregate zone is composed of alpha- and beta-subunits of tubulin. Omission of beta-mercaptoethanol during the sodium dodecyl sulfate (SDS)-electrophoresis step causes a pattern of aggregates to appear and implicates disulfide linkages in their stabilization. Molecular weights, estimated from mobilities in the second (SDS) dimension of two-dimensional gels, suggest that the aggregates are crosslinked in units of monomers, not heterodimers. Consistent with this conclusion, alpha- or beta-subunits alone (isolated by isoelectric focusing) will form the same ladder of aggregates. The disulfide crosslinking of tubulin is also achievable in solution. It is favored by high concentrations of alcohol, the presence of oxidizing agents, high pH, and high temperature, conditions that denature tubulin and cause rapid noncovalent aggregation or precipitation. When aggregate formation was monitored as a function of time by SDS-gel electrophoresis in the absence of beta-mercaptoethanol and by quantitative sulfhydryl and disulfide titrations, the most effective conditions for the crosslinking reaction included greater than 75% alcohol, excess H2O2, or excess iodine. These results suggest that proximity of a hydrophobic gel matrix, high pH, the presence of oxidizing agents, high protein concentration, tubulin's propensity to aggregate nonspecifically, and the availability of as many as 20 sulfhydryls in alpha beta-tubulin contribute, during nondenaturing gel electrophoresis, to the spontaneous formation of disulfide-crosslinked tubulin aggregates.  相似文献   

7.
Isotypes of vertebrate tubulin have variable amino acid sequences, which are clustered at their C-terminal ends. Isotypes bind colchicine at different on-rates and affinity constants. The kinetics of colchicine binding to purified (unfractionated) brain tubulin have been reported to be biphasic under pseudo-first-order conditions. Experiments with individual isotypes established that the presence of beta(III) in the purified tubulin is responsible for the biphasic kinetics. Because the isotypes mainly differ at the C termini, the colchicine-binding kinetics of unfractionated tubulin and the beta(III) isotype, cleaved at the C termini, have been tested under pseudo-first-order conditions. Removal of the C termini made no difference to the nature of the kinetics. Sequence alignment of different beta isotypes of tubulin showed that besides the C-terminal region, there are differences in the main body as well. To establish whether these differences lie at the colchicine-binding site or not, homology modeling of all beta-tubulin isotypes was done. We found that the isotypes differed from each other in the amino acids located near the A ring of colchicine at the colchicine-binding site on beta tubulin. While the beta(III) isotype has two hydrophilic residues (serine(242) and threonine(317)), both beta(II) and beta(IV) have two hydrophobic residues (leucine(242) and alanine(317)). beta(II) has isoleucine at position 318, while beta(III) and beta(IV) have valine at that position. Thus, these alterations in the nature of the amino acids surrounding the colchicine site could be responsible for the different colchicine-binding kinetics of the different isotypes of tubulin.  相似文献   

8.
We have studied the self-association reactions of purified GDP-liganded tubulin into double rings and taxoid-induced microtubules, employing synchrotron time-resolved x-ray solution scattering. The experimental scattering profiles have been interpreted by reference to the known scattering profiles to 3 nm resolution and to the low-resolution structures of the tubulin dimer, tubulin double rings, and microtubules, and by comparison with oligomer models and model mixtures. The time courses of the scattering bands corresponding to the different structural features were monitored during the assembly reactions under varying biochemical conditions. GDP-tubulin essentially stays as a dimer at low Mg(2+) ion activity, in either the absence or presence of taxoid. Upon addition of the divalent cations, it associates into either double-ring aggregates or taxoid-induced microtubules by different pathways. Both processes have the formation of small linear (short protofilament-like) tubulin oligomers in common. Tubulin double-ring aggregate formation, which is shown by x-ray scattering to be favored in the GDP- versus the GTP-liganded protein, can actually block microtubule assembly. The tubulin self-association leading to double rings, as determined by sedimentation velocity, is endothermic. The formation of the double-ring aggregates from oligomers, which involves additional intermolecular contacts, is exothermic, as shown by x-ray and light scattering. Microtubule assembly can be initiated from GDP-tubulin dimers or oligomers. Under fast polymerization conditions, after a short lag time, open taxoid-induced microtubular sheets have been clearly detected (monitored by the central scattering and the maximum corresponding to the J(n) Bessel function), which slowly close into microtubules (monitored by the appearance of their characteristic J(0), J(3), and J (n) - (3) Bessel function maxima). This provides direct evidence for the bidimensional assembly of taxoid-induced microtubule polymers in solution and argues against helical growth. The rate of microtubule formation was increased by the same factors known to enhance taxoid-induced microtubule stability. The results suggest that taxoids induce the accretion of the existing Mg(2+)-induced GDP-tubulin oligomers, thus forming small bidimensional polymers that are necessary to nucleate the microtubular sheets, possibly by binding to or modifying the lateral interaction sites between tubulin dimers.  相似文献   

9.
A survey of crystallization conditions for pig brain tubulin, using standard vapor diffusion techniques in sitting drops or capillaries, has resulted in irregular, fragile needles or plates with a largest dimension of 0.5 mm. These occurred in 2.5% PEG (MW 3350), 0.1 M Pipes, pH 6.2 and 6.4, 2-16 mM MgSO4, 10-15 mM DTE, and 0.1 mM GDP at 8 degrees C. When GTP replaced GDP these aggregates did not form under any of the conditions surveyed (temperature: 8-10 degrees C; MgSO4: 2-16 mM; pH 6-7; PEG, MW 3350: 1.25-12.5%). EM observations demonstrated that sheets of rings appear in crystal solutions in the presence of GDP or GTP. These results are consistent with the results of Howard and Timasheff (1986, Biochemistry 25, 8292-8300) that tubulin rings form in the presence of GDP or GTP but more readily in GDP. Tubulin crystallization experiments are hampered by tubulin's high degree of heterogeneity. Much of the variability lies in the carboxyl terminal region. Conditions for limited digestion of the heterodimer by subtilisin, removing only the carboxyl terminus, were determined. Reduction of heterogeneity was demonstrated by isoelectric focusing. The solubilities of native and subtilisin-cleaved tubulin in MgSO4, (NH4)2SO4, PEG (MW 1450, 3350, 10,000), DMSO, and MPD were compared. Subtilisin-cleaved tubulin precipitated more readily than native tubulin under all conditions surveyed, consistent with the removal of the highly acidic carboxyl terminus. Vapor diffusion experiments using subtilisin-cleaved tubulin under conditions where native tubulin forms needles or plates resulted in similar aggregates.  相似文献   

10.
Tubulin carboxypeptidase was found to be inhibited by myelin basic protein in a concentration dependent manner. The inhibition was produced by the interaction between myelin basic protein with the substrate. As a consequence of this interaction, turbid insoluble aggregates were formed at either 5 degrees or 37 degrees C. The turbidity increased by increasing the myelin basic protein concentration and it reached a plateau at a molar ratio of myelin basic protein to tubulin dimer of about 6. At plateau, the molar ration in the insoluble aggregates was about 6. When tubulin was in excess, the formation of the insoluble aggregates was diminished. However, if the excess of tubulin was added after the formation of the aggregates, the turbidity was not significantly affected. Turbidity was diminished by increasing the ionic strength.  相似文献   

11.
P Barbier  C Gregoire  F Devred  M Sarrazin  V Peyrot 《Biochemistry》2001,40(45):13510-13519
Cryptophycin 52 (C52) is a new synthetic compound of the cryptophycin family of antitumor agents that is currently undergoing clinical evaluation for cancer chemotherapy. The cryptophycin class of compounds acts on microtubules. This report details the mechanism by which C52 substoichiometrically inhibits tubulin self-assembly into microtubules. The inhibition data were analyzed through a model described by Perez-Ramirez [Perez-Ramirez, B., Andreu, J. M., Gorbunoff, M. J., and Timasheff, S. N. (1996) Biochemistry 35, 3277-3285]. We thereby determined the values of the apparent binding constant of the tubulin-C52 complex to the end of a growing microtubule (K(i)) and the apparent binding constant of C52 to tubulin (K(b)). The binding of C52 depended on tubulin concentration, and binding induced changes in the sedimentation pattern of tubulin, which indicates that C52 induces the self-association of tubulin and tubulin aggregates other than microtubules. Using analytical ultracentrifugation and electron microscopy, we show that C52 induces tubulin to form ring-shaped oligomers (single rings). We also show that C52 inhibits the formation of double rings from either GTP- or GDP-tubulin. In addition, the advances made by electron crystallography in understanding the structure of the tubulin and the microtubule allowed us to visualize the putative binding site of C52 and to reconstruct C52-induced ring oligomers by molecular modeling.  相似文献   

12.
Mechanical properties of brain tubulin and microtubules   总被引:7,自引:0,他引:7       下载免费PDF全文
We measured the elasticity and viscosity of brain tubulin solutions under various conditions with a cone and plate rheometer using both oscillatory and steady shearing modes. Microtubules composed of purified tubulin, purified tubulin with taxol and 3x cycled microtubule protein from pig, cow, and chicken behaved as mechanically indistinguishable viscoelastic materials. Microtubules composed of pure tubulin and heat stable microtubule-associated proteins were also similar but did not recover their mechanical properties after shearing like other samples, even after 60 min. All of the other microtubule samples were more rigid after flow orientation, suggesting that the mechanical properties of anisotropic arrays of microtubules may be substantially greater than those of randomly arranged microtubules. These experiments confirm that MAPs do not cross link microtubules. Surprisingly, under conditions where microtubule assembly is strongly inhibited (either 5 degrees or at 37 degrees C with colchicine or Ca++) tubulin was mechanically indistinguishable from microtubules at 10-20 microM concentration. By electron microscopy and ultracentrifugation these samples were devoid of microtubules or other obvious structures. However, these mechanical data are strong evidence that tubulin will spontaneously assemble into alternate structures (aggregates) in nonpolymerizing conditions. Because unpolymerized tubulin is found in significant quantities in the cytoplasm, it may contribute significantly to the viscoelastic properties of cytoplasm, especially at low deformation rates.  相似文献   

13.
Brain slices were used to examine comparatively the incorporation of [14C]tyrosine into the C terminus of alpha-tubulin of the microtubule and non-assembled tubulin pools. We found that the incorporation of [14C]tyrosine from 5 min up to 60 min of incubation was higher in microtubules than in non-assembled tubulin. The possibility that this result was due to the activity of tubulin carboxypeptidase or tubulin:tyrosine ligase during the in vitro isolation of tubulin was discarded. We also found that tubulin:tyrosine ligase was mainly associated with microtubules when brain slices were homogenized under microtubule-preserving conditions. Conversely the enzyme behaved as a soluble entity when homogenization was performed under conditions that do not preserve microtubules. In addition, soluble tubulin:tyrosine ligase did not become sedimentable when in vitro conditions were changed to induce the formation of microtubules. The results presented in this work indicate the possibility that, in vivo, microtubules and not tubulin dimers are the major substrate for tubulin:tyrosine ligase. This is in contrast with previous findings from in vitro experiments, which showed a preference of the ligase for non-assembled tubulin.  相似文献   

14.
We and others [Lee et al. (1973) J. Biol. Chem. 248, 7253-7262; Kravit et al. (1982) J. Cell Biol. 95, 344a; Kravit et al. (1984) J. Cell Biol. 99, 188-198] have observed oligomers of tubulin by native polyacrylamide gel electrophoresis (PAGE), even when they were not evident in sedimentation velocity or gel-exclusion chromatography experiments under comparable conditions. Aggregates of tubulin are also seen on native starch gels. Tubulins purified from calf brain, sea urchin egg (Strongylocentrotus purpuratus), and antarctic fish brain (Pagothenia borchgrevinki) give rise to similar distributions of aggregates. Unlike microtubules, these oligomers are relatively insensitive to temperature (5-25 degrees C), pH (6.1-8.8), the absence of excess GTP and/or Mg+2, stoichiometric concentrations of colchicine, and a variety of electrophoresis buffers. These aggregates, once formed during electrophoresis, associate and dissociate slowly. Depending upon the incubation conditions, they give rise to kinetically controlled distributions that appear in two-dimensional native PAGE as a square array of discrete polymeric species. The fastest migrating species (monomers) are often observed to reequilibrate preferentially into the second band. The second band reequilibrates into the fourth, the third band into the sixth, the fourth into the eighth, etc. (The assignment of molecular weights to these species by Ferguson analysis is tentative due to their slow reequilibration.) Thus, a feature of the reequilibration is that association occurs more rapidly than dissociation and each species is occasionally observed to "dimerize." This behavior is suggestive of irreversible aggregation (possibly crosslinking) or of the formation of slowly dissociating aggregates. Although they may be related to the protofilaments of microtubules, these oligomers appear to be another example of nonmicrotubular, polymorphic aggregates of tubulin.  相似文献   

15.
G C Na  S N Timasheff 《Biochemistry》1986,25(20):6222-6228
The effects of magnesium ions on the binding of the anticancer drug vinblastine to calf brain tubulin were investigated by a batch gel equilibration method. Magnesium ions at 1 mM strongly enhanced the binding of the first vinblastine molecule to each tubulin dimer without affecting either the drug affinity toward the rest of the binding site or the total stoichiometry of the vinblastine binding to tubulin. Sedimentation velocity studies indicated that magnesium ions can enhance strongly the vinblastine-induced tubulin self-association and suggested that the drug-induced self-association still proceeds through the isodesmic indefinite mechanism in the presence of the divalent cation. In PG buffer (0.01 M NaPi, 10(-4) M GTP, pH 7.0) containing more than 2.5 mM MgCl2, vinblastine induced tubulin to form large amorphous aggregates. The aggregate formation was rapid and took place at a drug stoichiometry between 0.7 and 1.0 mol of vinblastine per mole of tubulin dimers. Increasing the solution ionic strength decreased the rate of aggregate formation. Between an ionic strength of 0.05 and 0.1, the self-association led to the formation of paracrystalline aggregates instead of the amorphous ones. The results indicated that the binding of only the first vinblastine molecule to each tubulin dimer is linked to the self-association of the protein. They also confirmed our previously proposed rationale for the disagreement among the vinblastine-tubulin binding constants reported in the literature in terms of the different magnesium ion concentrations and ionic strength of the buffers used in the various studies.  相似文献   

16.
FtsZ ring in bacterial cytokinesis   总被引:33,自引:5,他引:28  
FtsZ is localized to a cytokinetic ring at the cell division site in bacteria. In this review a model is discussed that suggests that FtsZ self assembles into a ring at a nucleation site formed on the cytoplasmic membrane under cell-cycle control. This model suggests that formation of the cytokinetic FtsZ ring initiates and coordinates the circumferential invagination of the cytoplasmic membrane and cell wall, leading to formation of the septum. It is also suggested that this process may be conserved among the peptidoglycan-containing eubacteria. In addition, similarities between FtsZ and tubulin are discussed.  相似文献   

17.
Tau is a neuronal microtubule-associated protein that plays a central role in many cellular processes, both physiological and pathological, such as axons stabilization and Alzheimer's disease. Despite extensive studies, very little is known about the detailed molecular basis of tau binding to microtubules. We used the four-repeat recombinant htau40 and tubulin dimers to show for the first time that tau is able to induce both microtubule and ring formation from 6S alphabeta tubulin in phosphate buffer without added magnesium (nonassembly conditions). The amount of microtubules or rings formed was protein concentration-, temperature-, and nucleotide-dependent. By means of biophysical approaches, we showed that tau binds to tubulin without global-folding change, detectable by circular dichroism. We also demonstrated that the tau-tubulin interaction follows a ligand-mediated elongation process, with two tau-binding site per tubulin dimer. Moreover, using a tubulin recombinant alpha-tubulin C-terminal fragment (404-451) and a beta-tubulin C-terminal fragment (394-445), we demonstrated the involvement of both of these tubulin regions in tau binding. From this model system, we gain new insight into the mechanisms by which tau binds to tubulin and induces microtubule formation.  相似文献   

18.
Tubulin domains responsible for assembly of dimers and protofilaments.   总被引:12,自引:1,他引:12       下载免费PDF全文
The protein domains responsible for the dimerization and polymerization of tubulin have been determined using chemical cross-linking and limited proteolysis. The intra-dimer bond is formed by the N-terminal domain of alpha-tubulin and the C-terminal domain of beta-tubulin. Conversely, the inter-dimer bond along protofilaments is formed by the N-terminal domain of beta-tubulin (carrying the exchangeable GTP) and the C-terminal domain of alpha-tubulin. The domains of proteolytically cleaved tubulin remain tightly associated in solution. Apart from the monomer, tubulin shows three levels of assembly: the dimer, oligomer and polymer. Several oligomeric species can be visualized by electron microscopy of rotary shadowed phosphocellulose-tubulin, h.p.l.c. and non-denaturing gel electrophoresis. Tubulin's capacity to form the higher level aggregates is not destroyed by enzymatic nicking.  相似文献   

19.
We investigated how the self-association of isolated tubulin dimers affects the rate of GTP hydrolysis and the equilibrium of nucleotide exchange. Both reactions are relevant for microtubule (MT) dynamics. We used HPLC to determine the concentrations of GDP and GTP and thereby the GTPase activity of SEC-eluted tubulin dimers in assembly buffer solution, free of glycerol and tubulin aggregates. When GTP hydrolysis was negligible, the nucleotide exchange mechanism was studied by determining the concentrations of tubulin-free and tubulin-bound GTP and GDP. We observed no GTP hydrolysis below the critical conditions for MT assembly (either below the critical tubulin concentration and/or at low temperature), despite the assembly of tubulin 1D curved oligomers and single-rings, showing that their assembly did not involve GTP hydrolysis. Under conditions enabling spontaneous slow MT assembly, a slow pseudo-first-order GTP hydrolysis kinetics was detected, limited by the rate of MT assembly. Cryo-TEM images showed that GTP-tubulin 1D oligomers were curved also at 36 °C. Nucleotide exchange depended on the total tubulin concentration and the molar ratio between tubulin-free GDP and GTP. We used a thermodynamic model of isodesmic tubulin self-association, terminated by the formation of tubulin single-rings to determine the molar fractions of dimers with exposed and buried nucleotide exchangeable sites (E-sites). Our analysis shows that the GDP to GTP exchange reaction equilibrium constant was an order-of-magnitude larger for tubulin dimers with exposed E-sites than for assembled dimers with buried E-sites. This conclusion may have implications on the dynamics at the tip of the MT plus end.  相似文献   

20.
D C John  M E Grant    N J Bulleid 《The EMBO journal》1993,12(4):1587-1595
Prolyl 4-hydroxylase (P4-H) catalyses a vital post-translational modification in the biosynthesis of collagen. The enzyme consists of two distinct polypeptides forming an alpha 2 beta 2 tetramer (alpha = 64 kDa, beta = 60 kDa), the beta-subunit being identical to the multifunctional enzyme protein disulfide isomerase (PDI). By studying the cell-free synthesis of the rat alpha-subunit of P4-H we have shown that the alpha-subunit can be translocated, glycosylated and the signal peptide cleaved by dog pancreatic microsomal membranes to yield both singly and doubly glycosylated forms. When translations were carried out under conditions which prevent disulfide bond formation, the product synthesized formed aggregates which were associated with the immunoglobulin heavy chain binding protein (BiP). Translations carried out under conditions that promote disulfide bond formation yielded a product that was not associated with BiP but formed a complex with the endogenous beta-subunit (PDI). Complex formation was detected by co-precipitation of the newly synthesized alpha-subunit with antibodies raised against PDI, by sucrose gradient centrifugation and by chemical cross-linking. When microsomal vesicles were depleted of PDI, BiP and other soluble endoplasmic reticulum proteins, no complex formation was observed and the alpha-subunit aggregated even under conditions that promote disulfide bond formation. We have therefore demonstrated that the enzyme P4-H can be assembled at synthesis in a cell-free system and that the solubility of the alpha-subunit is dependent upon its association with PDI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号