首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tandem mass spectrometry employing high-energy, collisionally activated dissociation (CAD) is shown to be a useful method for sequencing through the cystine bridge of intermolecularly disulfide-bonded peptides. A characteristic triplet of intense fragment ions is observed corresponding to cleavage through and to either side of the disulfide bridge. These fragments define the masses of the linked peptides. Fragments due to peptide chain cleavage are also observed at lower abundance in the product-ion spectra and can be sufficient to sequence both of the disulfide-linked peptides without any prior knowledge of the peptide or protein sequence. Even in cases where the peptide sequence-related product-ion yields are poor, the intensities of the disulfide cleavage ions are usually sufficient to determine the molecular weights of the component cystine-bridged peptides. In this paper we demonstrate that the high-energy CAD tandem MS approach may be used to characterize disulfide-bonded peptides directly in complex enzymatic or chemical digests of native proteins. This obviates the need for individual purification of intermolecularly disulfide-linked peptides prior to analysis. The techniques are illustrated here for synthetic, inter- and intramolecularly disulfide-linked peptides and for human transforming growth factor-alpha (des-Val-Val-TGF-alpha), a compact protein containing 48 residues and three disulfides.  相似文献   

2.
The nonenzymatic digestion of proteins by microwave D-cleavage is an effective technique for site-specific cleavage at aspartic acid (D). This specific cleavage C-terminal to D residues leads to inherently large peptides (15-25 amino acids) that are usually relatively highly charged (above +3) when ionized by electrospray ionization (ESI) due to the presence of several basic amino acids within their sequences. It is well-documented that highly charged peptide ions generated by ESI are well-suited for electron transfer dissociation (ETD), which produces c- and z-type fragment ions via gas-phase ion/ion reactions. In this paper, we describe the sequence analysis by ETD tandem mass spectrometry (MS/MS) of multiply charged peptides generated by microwave D-cleavage of several standard proteins. Results from ETD measurements are directly compared to CID MS/MS of the same multiply charged precursor ions. Our results demonstrate that the nonenzymatic microwave D-cleavage technique is a rapid (<6 min) and specific alternative to enzymatic cleavage with Lys-C or Asp-N to produce highly charged peptides that are amenable to informative ETD.  相似文献   

3.
The combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), in-gel enzymatic digestion of proteins separated by two-dimensional gel electrophoresis and searches of molecular weight in peptide-mass databases is a powerful and well established method for protein identification in proteomics analysis. For successful protein identification by MALDI-TOF mass spectrometry of peptide mixtures, critical parameters include highly specific enzymatic cleavage, high mass accuracy and sufficient numbers and sequence coverage of the peptides which can be analyzed. For in-gel digestion with trypsin, the method employed should be compatible both with enzymatic cleavage and subsequent MALDI-TOF MS analysis. We report here an improved method for preparation of peptides for MALDI-TOF MS mass fingerprinting by using volatile solubilizing agents during the in-gel digestion procedure. Our study clearly demonstrates that modification of the in-gel digestion protocols by addition of dimethyl formamide (DMF) or a mixture of DMF/N,N-dimethyl acetamide at various concentrations can significantly increase the recovery of peptides. These higher yields of peptides resulted in more effective protein identification.  相似文献   

4.
Trypsin (EC 3.4.21.4) is the protease of choice for proteome analysis using mass spectrometry of peptides in sample digests. In this work, trypsin from Streptomyces griseus (SGT) was purified to homogeneity from pronase. The enzyme was evaluated in in-gel digestion of protein standards followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) analyses of the digests. We recognized a remarkable cleavage performance of SGT. The number of produced and matching tryptic peptides was higher than in the case of commonly used bovine trypsin (BT) and allowed us to obtain higher identification scores in database searches. Interestingly, SGT was found to also generate nonspecific peptides whose sequencing by MALDI-TOF/TOF tandem mass spectrometry (MS/MS) revealed a partial F-X, Y-X, and W-X cleavage specificity. To suppress autolysis, either arginine or arginine plus lysine residues in SGT were modified by chemical reagents. In consequence, the autolytic pattern of SGT was reduced significantly, but specific activity dropped dramatically. As demonstrated by relative quantification of peptides at different times, SGT is more stable at 37 °C than is its bovine counterpart. We conclude that SGT represents a convenient alternative for proteomic applications involving protein digestion. Moreover, parallel digestions of sample aliquots by SGT and BT provide the possibility of combining partially different results (unique matching peptides) to improve protein identification.  相似文献   

5.
Advances in time-of-flight mass spectrometry allow unit mass resolution of proteins and peptides up to about 6000 Da molecular weight. Identification of larger proteins and study of their posttranslational or experimental modifications by mass analysis is greatly enhanced by cleavage into smaller fragments. Most membrane proteins are difficult to mass analyze because of their high hydrophobicity, typical expression in low quantities, and because the detergents commonly used for solubilization may be deleterious to mass analysis. Cleavage with cyanogen bromide is beneficial for analysis of membrane proteins since the methionine cleavage sites are typically located in hydrophobic domains and cleavage at these points reduces the size of the hydrophobic fragments. Cyanogen bromide also gives high cleavage yields and introduces only volatile contaminants. Even after cleavage membrane proteins often contain fragments that are difficult to chromatograph. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) is capable of analyzing complex mixtures without chromatography. We present a MALDI MS method that quickly and reliably identifies the cyanogen bromide fragments and posttranslational modifications of reduced and alkylated bovine rhodopsin from as little as 30 pmol of rhodopsin in detergent-solubilized retinal rod disk membranes, using 1-5 pmol of digest per sample. The amino acid sequences of some of the peptides in the digest were confirmed by post source decomposition MS analysis of the same samples. The method appears to be general and applicable to the analysis of membrane proteins and the protein composition of membrane preparations.  相似文献   

6.
D'Souza CA  Wood DD  She YM  Moscarello MA 《Biochemistry》2005,44(38):12905-12913
Although multiple sclerosis (MS) is thought to be an autoimmune disease, the mechanisms by which immunodominant epitopes are generated and lymphocytes are activated are not known. Here, myelin basic protein-component 1 (MBP-C1) from MS tissue was shown to undergo autocatalytic cleavage at slightly alkaline pH. Importantly, one of the major peptides released contained the immunodominant epitope 84-89. Interestingly, MBP isolated from MS patients showed a faster time course of cleavage and a more robust release of epitope 84-89 than MBP isolated from normal individuals. The cleavage reaction was not inhibited by protease inhibitors, except for phenylmethanesulfonyl fluoride (PMSF), a serine protease inhibitor. Since PMSF inhibition suggested a role for a serine residue in the cleavage, we labeled myelin basic protein with diisopropyl fluorophosphate (DFP), known to bind active site serine residues. Mass spectrometry was used to identify the labeled peptide, which consisted of residues 140-152. Since this peptide contained a single serine residue, we concluded it to be the active serine. The importance of this cleavage mechanism is that it provides for a ready source of the immunodominant peptide for sensitization of T-cells. It is not necessary to invoke other mechanisms such as molecular mimicry.  相似文献   

7.
Wang D  Thompson P  Cole PA  Cotter RJ 《Proteomics》2005,5(9):2288-2296
Matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry (MS/MS) were used to determine the multiple acetylation sites in the histone acetyltransferase (HAT): p300-HAT. Partial cleavage of the peptides containing acetylated lysine residues by trypsin provided a set of nested sequences that enabled us to determine that multiple acetylation occurs on the same molecule. At the same time, cleavages resulting in a terminal unacetylated lysine suggested that not all of these sites are fully modified. Using MS and MS/MS, we were able to characterize both the unmodified and acetylated tryptic peptides covering more than 82% of the protein.  相似文献   

8.
The peptide sequence (N)DKTH(C) was previously investigated as a site for efficient, specific cleavage of a fusion protein by cupric ions using a humanized gamma1 Fab' as a model protein. Here we show that conservative mutations to three of the residues in the introduced cleavage site resulted in cleavage sites that were significantly improved. They were cleaved more efficiently by Cu(2+), such that cleavage reactions could be shorter, of lower pH or at a lower temperature. Some were even found to be measurably cleaved by Ni(2+). Use of these new cleavage sequences along with cupric ions may provide a more rapid and less harsh method for cost-effective, large-scale proteolytic cleavage of fusion proteins and peptides.  相似文献   

9.
Protein identification has been greatly facilitated by database searches against protein sequences derived from product ion spectra of peptides. This approach is primarily based on the use of fragment ion mass information contained in a MS/MS spectrum. Unambiguous protein identification from a spectrum with low sequence coverage or poor spectral quality can be a major challenge. We present a two-dimensional (2D) mass spectrometric method in which the numbers of nitrogen atoms in the molecular ion and the fragment ions are used to provide additional discriminating power for much improved protein identification and de novo peptide sequencing. The nitrogen number is determined by analyzing the mass difference of corresponding peak pairs in overlaid spectra of (15)N-labeled and unlabeled peptides. These peptides are produced by enzymatic or chemical cleavage of proteins from cells grown in (15)N-enriched and normal media, respectively. It is demonstrated that, using 2D information, i.e., m/z and its associated nitrogen number, this method can, not only confirm protein identification results generated by MS/MS database searching, but also identify peptides that are not possible to identify by database searching alone. Examples are presented of analyzing Escherichia coli K12 extracts that yielded relatively poor MS/MS spectra, presumably from the digests of low abundance proteins, which can still give positive protein identification using this method. Additionally, this 2D MS method can facilitate spectral interpretation for de novo peptide sequencing and identification of posttranslational or other chemical modifications. We envision that this method should be particularly useful for proteome expression profiling of organelles or cells that can be grown in (15)N-enriched media.  相似文献   

10.
The immature core protein (p23, residues 1 to 191) of hepatitis C virus undergoes posttranslational modifications including intramembranous proteolysis within its C-terminal signal sequence by signal peptide peptidase to generate the mature form (p21). In this study, we analyzed the cleavage site and other amino acid modifications that occur on the core protein. To produce the posttranslationally modified core protein, we used a baculovirus-insect cell expression model system. As previously reported, p23 is processed to form p21 in insect as well as in mammalian cells. p21 was found to be associated with the cytoplasmic membrane, and its significant portion behaved as an integral membrane protein. The protein was purified from the membrane by a simple and unique procedure on the basis of its membrane-binding properties and solubility in detergents. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of purified p21 showed that the average molecular mass (m/z 19,307) of its single-charged ion differs by m/z 1,457 from that calculated for p23. To determine the posttranslational modifications, tryptic p21 peptides were analyzed by MALDI-TOF MS. We found three peptides that did not match the theoretically derived peptides of p23. Analysis of these peptides by MALDI-TOF tandem MS revealed that they correspond to N-terminal peptides (residues 2 to 9 and 2 to 10) starting with alpha-N-acetylserine and C-terminal peptide (residues 150 to 177) ending with phenylalanine. These results suggest that the mature core protein (molecular mass of 19,306 Da) includes residues 2 to 177 and that its N terminus is blocked with an acetyl group.  相似文献   

11.
The Staphylococcus aureus surface protein G (SasG) is an important mediator of biofilm formation in virulent S. aureus strains. A detailed analysis of its primary sequence has not been reported to date. SasG is highly abundant in the cell wall of the vancomycin-intermediate S. aureus strain HIP5827, and was purified and subjected to sequence analysis by MS. Data from MALDI-TOF and LC-MS/MS experiments confirmed the predicted N-terminal signal peptide cleavage site at residue A51 and the C-terminal cell wall anchor site at residue T1086. The protein was also derivatized with N-succinimidyloxycarbonyl-methyl-tris(2,4,6-trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu) to assess the presence of additional N-terminal sites of mature SasG. TMPP-derivatized SasG peptides featured m/z peaks with a 572 Da mass increase over the equivalent underivatized peptides. Multiple N-terminal peptides, all of which were observed in the 150 amino acid segment following the signal peptide cleavage at the residue A51, were characterized from MS and MS/MS data, suggesting a series of successive N-terminal truncations of SasG. A strategy combining TMPP derivatization, multiple enzyme digestions to generate overlapping peptides and detailed MS analysis will be useful to determine and understand functional implications of PTMs in bacterial cell wall-anchored proteins, which are frequently involved in the modulation of virulence-associated bacterial surface properties.  相似文献   

12.
The pharmaceutical industry’s interest in monoclonal antibodies (mAbs) and their derivatives has spurred rapid growth in the commercial and clinical pipeline of these effective therapeutics. The complex micro-heterogeneity of mAbs requires in-depth structural characterization for critical quality attribute assessment and quality assurance. Currently, mass spectrometry (MS)-based methods are the gold standard in mAb analysis, primarily with a bottom-up approach in which immunoglobulins G (IgGs) and their variants are digested into peptides to facilitate the analysis. Comprehensive characterization of IgGs and the micro-variants remains challenging at the proteoform level. Here, we used both top-down and middle-down MS for in-depth characterization of a human IgG1 using ultra-high resolution Fourier transform MS. Our top-down MS analysis provided characteristic fingerprinting of the IgG1 proteoforms at unit mass resolution. Subsequently, the tandem MS analysis of intact IgG1 enabled the detailed sequence characterization of a representative IgG1 proteoform at the intact protein level. Moreover, we used the middle-down MS analysis to characterize the primary glycoforms and micro-variants. Micro-variants such as low-abundance glycoforms, C-terminal glycine clipping, and C-terminal proline amidation were characterized with bond cleavages higher than 44% at the subunit level. By combining top-down and middle-down analysis, 76% of bond cleavage (509/666 amino acid bond cleaved) of IgG1 was achieved. Taken together, we demonstrated the combination of top-down and middle-down MS as powerful tools in the comprehensive characterization of mAbs.  相似文献   

13.
ADAM proteases are type I transmembrane proteins with extracellular metalloprotease domains. As for most ADAM family members, ADAM8 (CD156a, MS2) is involved in ectodomain shedding of membrane proteins and is linked to inflammation and neurodegeneration. To identify potential substrates released under these pathologic conditions, we screened 10-mer peptides representing amino acid sequences from extracellular domains of various membrane proteins using the ProteaseSpot system. A soluble ADAM8 protease containing a pro- and metalloprotease domain was expressed in E. coli and purified as active protease owing to autocatalytic prodomain removal. From 34 peptides tested in the peptide cleavage assay, significant cleavage by soluble ADAM8 was observed for 14 peptides representing membrane proteins with functions in inflammation and neurodegeneration, among them the beta-amyloid precursor protein (APP). The in vivo relevance of the ProteaseSpot method was confirmed by cleavage of full-length APP with ADAM8 in human embryonic kidney 293 cells expressing tagged APP. ADAM8 cleaved APP with similar efficiency as ADAM10, whereas the inactive ADAM8 mutant did not. Exchanging amino acids at defined positions in the cleavage sequence of myelin basic protein (MBP) revealed sequence criteria for ADAM8 cleavage. Taken together, the results allowed us to identify novel candidate substrates that could be cleaved by ADAM8 in vivo under pathologic conditions.  相似文献   

14.
15.
In mass spectrometry (MS)-based bottom-up proteomics, protease digestion plays an essential role in profiling both proteome sequences and post-translational modifications (PTMs). Trypsin is the gold standard in digesting intact proteins into small-size peptides, which are more suitable for high-performance liquid chromatography (HPLC) separation and tandem MS (MS/MS) characterization. However, protein sequences lacking Lys and Arg cannot be cleaved by trypsin and may be missed in conventional proteomic analysis. Proteases with cleavage sites complementary to trypsin are widely applied in proteomic analysis to greatly improve the coverage of proteome sequences and PTM sites. In this review, we survey the common and newly emerging proteases used in proteomics analysis mainly in the last 5 years, focusing on their unique cleavage features and specific proteomics applications such as missing protein characterization, new PTM discovery, and de novo sequencing. In addition, we summarize the applications of proteases in structural proteomics and protein function analysis in recent years. Finally, we discuss the future development directions of new proteases and applications in proteomics.  相似文献   

16.
A method for identifying cysteine-containing peptides in proteins is presented using 2-bromoacetamido-4-nitrophenol (BNP) to introduce an easily detectable probe. The formation of a covalent bond between the protein sulfhydryl group and the acetamido moiety of BNP introduces a chromophore with an absorbance maximum at 410 nm. The modified protein can then be cleaved with appropriate proteases and the resulting peptides separated by chromatographic methods. Monitoring the effluent at a single wavelength (405 nm) provides a rapid and simple method of detecting and isolating only those peptides which contain cysteine residue(s). The nitrophenol derivative is stable under conditions required for protease cleavage. The reagent is therefore useful for locating cysteine-containing peptides in protein digests and can be used to explore the accessibility of different cysteines under a variety of conditions. The ease of modification, specificity of reaction, product stability, and simple detection of modified peptides make BNP ideal for investigation of cysteine residues.  相似文献   

17.
Biological samples can contain proteins with concentrations that span more than 10 orders of magnitude. Given the limited dynamic range of analysis methods, observation of proteins present at the lower concentrations requires depletion of high-abundance proteins, or other means of reducing the dynamic range of concentrations. Hexapeptide diversity library beads have been used to bind proteins in a complex sample up to a given saturation limit, effectively truncating the maximum concentration of proteins at a desired level. To avoid the potential problem of susceptibility of the hexapeptides to cleavage by proteases in the sample and/or bacterial degradation, peptide analogues that exhibit similar binding characteristics to peptides can be used in place of peptides. We report here the use of hexameric peptoid diversity library beads to reduce the dynamic range of protein concentrations in human cerebrospinal fluid (CSF). Using this method in conjunction with 2D LC/MS/MS analyses, we identified 200 unique proteins, about twice the number identified in untreated CSF.  相似文献   

18.
Microwave‐assisted (MW) reactions are of special interest to the chemical community due to faster reaction times, cleaner reactions and higher product yields. The adaptation of MW to solid phase peptide synthesis resulted in spectacular syntheses of difficult peptides. In the case of Merrifield support, used frequently in synthesis of special peptides, the conditions used in product cleavage are not compatible with off‐resin monitoring of the reaction progress. The application of MW irradiation in product removal from Merrifield resin using trifluoroacetic acid (TFA) was investigated using model tetrapeptides and the effects were compared with standard trifluoromethanesulphonic acid (TFMSA) cleavage using elemental analysis as well as chromatographic (HPLC) and spectroscopic (IR) methods. The deprotection of benzyloxycarbonyl and benzyl groups in synthetic bioactive peptides was analyzed using LC‐MS and MS/MS experiments. In a 5 min microwave‐assisted TFA reaction at low temperature, the majority of product is released from the resin, making the analytical scale MW‐assisted procedure a method of choice in monitoring the reactions carried out on Merrifield resin due to the short reaction time and compatibility with HPLC and ESI‐MS conditions. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The abundant proteins in human milk have been well characterized and are known to provide nutritional, protective, and developmental advantages to both term and preterm infants. Due to the difficulties associated with detection technology of the peptides, the expression of the peptides present in human milk is not known widely. In recent years, peptidome analysis has received increasing attention. In this report, the analysis of endogenous peptides in human milk was done by mass spectrometry. A method was also developed by our researchers, which can be used in the extraction of peptide from human milk. Analysis of the extracts by LC–MS/MS resulted in the detection of 1000–3000 Da peptide-like features. Out of these, 419 peptides were identified by MS/MS. The identified peptides were found to originate from 34 proteins, of which several have been reported. Analysis of the peptides’ cleavage sites showed that the peptides are cleaved with regulations. This may reflect the protease activity and distribution in human body, and also represent the biological state of the tissue and provide a fresh source for biomarker discovery. Isotope dimethyl labeling analysis was also used to test the effects of premature delivery on milk protein composition in this study. Differences in peptides expression between breast milk in term milk (38–41 weeks gestation) and preterm milk (28–32 weeks gestation) were investigated in this study. 41 Peptides in these two groups were found expressed differently. 23 Peptides were present at higher levels in preterm milk, and 18 were present at higher levels in term milk.  相似文献   

20.
Cathepsin D (CD) plays an important role in both biological and pathological processes, although the cleavage characteristics and substrate selection of CD have yet to be fully explored. We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the CD cleavage sites in bovine serum albumin (BSA). We found that the hydrophobic residues at P1 were not only a preferential factor for CD cleavage but that the hydrophobicity at P1’ also contributed to CD recognition. The concept of hydrophobic scores of neighbors (HSN) was proposed to describe the hydrophobic microenvironment of CD recognition sites. The survey of CD cleavage characteristics in several proteins suggested that the HSN was a sensitive indicator for judging the favorable sites in peptides for CD cleavage, with HSN values of 0.5–1.0 representing a likely threshold. Ovalbumin (OVA), a protein resistant to CD cleavage in its native state, was easily cleaved by CD after denaturation, and the features of the cleaved peptides were quite similar to those found in BSA, where a higher HSN value indicated greater cleavability. We further conducted two-dimensional gel electrophoresis (2DE) to find more proteins that were insensitive to CD cleavage in CD-knockdown cells. Based on an analysis of secondary and three-dimensional structures, we postulated that intact proteins with a structure consisting of all α-helices would be relatively accessible to CD cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号