首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In search of plant genes expressed during early interactions between Casuarina glauca and Frankia, we have isolated and characterized a C. glauca gene that has strong homology to subtilisin-like protease gene families of several plants including the actinorhizal nodulin gene ag12 of another actinorhizal plant, Alnus glutinosa. Based on the expression pattern of cg12 in the course of nodule development, it represents an early actinorhizal nodulin gene. Our results suggest that subtilisin-like proteases may be a common element in the process of infection of plant cells by Frankia in both Betulaceae (Alnus glutinosa) and Casuarinaceae (Casuarina glauca) symbioses.  相似文献   

3.
The time course of initiation and development of root nodules was investigated in the South American actinorhizal shrub Discaria trinervis (Rhamnaceae). A local strain of Frankia (BCU110501) which was isolated from D. trinervis nodules, was used as inoculum. Inoculated seedlings were periodically studied under the light microscope after clearing with aqueous NaClO. In parallel, semithin and ultrathin sections were analysed by light and electron microscopy. Infection by Frankia BCU110501 involved intercellular penetration among epidermal and cortical root cells. Nodule primordia were detected from 6 d after inoculation, while bacteria were progressing through intercellular spaces of the outer layers of cortical cells. Invasion of host cells by the symbiont occurred 7–9 d after inoculation, and hypertrophy of the primordium cells was associated with Frankia penetration. Root hairs were not deformed during the early events of nodule formation. From 13 to 16 d after inoculation, the proximal cellular zone of the primordia behaved differently from the other tissues after NaClO treatment and remained darkly pigmented. At the same time, differentiation of Frankia vesicles started to occur inside already infected cells. By 16 d after inoculation, spherical vesicles of BCU110501 were homogeneously distributed in the host cells. These vesicles were septate and surrounded by void space. Frankia spores or sporangia were not observed in the nodule tissue. This study has clarified the mode of Frankia penetration in D. trinervis , one of the Rhamnaceae which also includes Ceanothus . The events involved in infection, nodule induction, host-cell infection and vesicle differentiation have been characterized and identified as time-segregated developmental processes in the ontogeny of D. trinervis root nodules.  相似文献   

4.
Actinomycetes from the genus Frankia are able to form symbiotic associations with more than 200 different species of woody angiosperms, so called actinorhizal plants. Many actinorhizal plants are infected via deformed root hairs. Factor(s) eliciting root hair deformation in actinorhizal symbioses have been found to be released into the culture medium, but the factor(s) has (have) not yet been characterized. In the present work, we describe the constitutive production of factor(s) by Frankia strain ArI3 causing root hair deformation on Alnus glutinosa . Deformation was detected after 4–5 h of incubation with both Frankia cultures and their cell-free culture filtrates. When culture filtrate was used, deformation was concentration dependent. A contact time of 2 min between culture filtrate and host roots was sufficient to induce subsequent root hair deformation. No root hair deformation on A. glutinosa could be detected with purified Nod factors from Rhizobium meliloti or R. leguminosarum biovar viciae . No correlation was found between Frankia strains belonging to different host specificity groups and their ability to deform root hairs on A. glutinosa. However, strains not able to deform root hairs on A. glutinosa were also unable to nodulate.  相似文献   

5.
Fifty strains of Frankia were tested for their ability to nodulate six species of actinorhizal plants. Pure cultured strains were used to inoculate seedlings of Alnus glutinosa (L.) Gaertn., Alnus rubra Bong., Casuarina equisetifolia L., Elaeagnus angustifolia L., Hippophaë rhamnoides L. and Myrica cerifera L. in nutrient solution culture. From the results of this study, host inoculation groups among the actinorhizal plants were defined. Although overlap between host inoculation groups appears to be common, the results from this study did not support the view that Frankia strains are promiscuous. All Frankia strains tested in this study could easily be classified into four major host-specificity groups.  相似文献   

6.
Frankia spp. strains typically induce N2-fixing root nodules on actinorhizal plants. The majority of host plant taxa associated with the uncultured Group 1 Frankia strains, i.e., Ceanothus of the Rhamnaceae, Datisca glomerata (Datiscaceae), and all actinorhizal members of the Rosaceae except Dryas, are found in California. A study was conducted to determine the distribution of Frankia strains among root nodules collected from both sympatric and solitary stands of hosts. Three DNA regions were examined, the 5' end of the 16S rRNA gene, the internal transcribed spacer region between the 16S and 23S rRNA genes, and a portion of the glutamine synthetase gene (glnA). The results suggest that a narrow range of Group 1 Frankia spp. strains dominate in root nodules collected over a large area of California west of the Sierra Nevada crest with no apparent host-specificity. Comparisons with Group 2 Frankia strain diversity from Alnus and Myrica within the study range suggest that the observed low diversity is peculiar to Group 1 Frankia strains only. Factors that may account for the observed lack of genetic variability and host specificity include strain dominance over a large geographical area, current environmental selection, and (or) a past evolutionary bottleneck.  相似文献   

7.
Abstract Genetic variations among selected Frankia isolates from nitrogen-fixing root nodules harvested from an individual actinorhizal plant ( Elaeagnus angustifolia L. or Shepherdia argentea Nutt.) were estimated by restriction fragment analysis of their total genomic DNA. The presence of plasmids and their restriction enzyme patterns were used as additional criteria. Certain isolates from separate nodules on the same plant were found indistinguishable, being probably clones of the same strain. An endophytic passage of a strain isolated from S. argentea on another host plant, Hippophaë rhamnoides L., did not modify the structural characteristics of the genome in the reisolates obtained. However, in some cases, especially when restriction endonucleases cleaving Frankia DNA into relatively small fragments were used, multiple infection of the actinorhizal plants with different Frankia strains and the presence of more than one strain in a nodule were demonstrated. Some aspects of variability in natural populations of Frankia are discussed.  相似文献   

8.
The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal "curling" in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere.  相似文献   

9.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   

10.
Actinomycetes from the genus Frankia induce nitrogen-fixing root nodules on actinorhizal plants in the "core rosid" clade of eudicots. Reported here are nine partial Frankia 16S rRNA gene sequences including the first from host plants of the rosaceous genera Cercocarpus and Chamaebatia, 24 partial glutamine synthetase (GSI; glnA) sequences from Frankia in nodules of 17 of the 23 actinorhizal genera, and the partial glnA sequence of Acidothermus cellulolyticus. Phylogenetic analyses of combined Frankia 16S rDNA and glnA sequences indicate that infective strains belong to three major clades (I-III) and that Clade I strains consisting of unisolated symbionts from the Coriariaceae, Datiscaceae, Rosaceae, and Ceanothus of the Rhamnaceae are basal to the other clades. Clock-like mutation rates in glnA sequence alignments indicate that all three major Frankia clades diverged early during the emergence of eudicots in the Cretaceous period, and suggest that present-day symbioses are the result of an ancestral symbiosis that emerged before the divergence of extant actinorhizal plants.  相似文献   

11.
Root nodulation in actinorhizal plants, like Discaria trinervis and Alnus incana, is subject to feedback regulatory mechanisms that control infection by Frankia and nodule development. Nodule pattern in the root system is controlled by an autoregulatory process that is induced soon after inoculation with Frankia. The final number of nodules, as well as nodule biomass in relation to plant biomass, are both modulated by a second mechanism which seems to be related to the N status of the plant. Mature nodules are, in part, involved in the latter process, since nodule excision from the root system releases the inhibition of infection and nodule development. To study the effect of N(2) fixation in this process, nodulated D. trinervis and A. incana plants were incubated under a N(2)-free atmosphere. Discaria trinervis is an intercellularly infected species while A. incana is infected intracellularly, via root hairs. Both symbioses responded with an increment in nodule biomass, but with different strategies. Discaria trinervis increased the biomass of existing nodules without significant development of new nodules, while in A. incana nodule biomass increased due to the development of nodules from new infections, but also from the release of arrested infections. It appears that in D. trinervis nodules there is an additional source for inhibition of new infections and nodule development that is independent of N(2) fixation and nitrogen assimilation. It is proposed here that the intercellular Frankia filaments commonly present in the D. trinervis nodule apex, is the origin for the autoregulatory signals that sustain the blockage of initiated nodule primordia and prevent new roots from infections. When turning to A. incana plants, it seems likely that this signal is related to the early autoregulation of nodulation in A. incana seedlings and is no longer present in mature nodules. Thus, actinorhizal symbioses belonging to relatively distant phylogenetic groups and displaying different infection pathways, show different feedback regulatory processes that control root nodulation by Frankia.  相似文献   

12.
Plants from the Casuarinaceae family enter symbiosis with the actinomycete Frankia leading to the formation of nitrogen-fixing root nodules. We observed that application of the auxin influx inhibitor 1-naphtoxyacetic acid perturbs actinorhizal nodule formation. This suggests a potential role for auxin influx carriers in the infection process. We therefore isolated and characterized homologs of the auxin influx carrier (AUX1-LAX) genes in Casuarina glauca. Two members of this family were found to share high levels of deduced protein sequence identity with Arabidopsis (Arabidopsis thaliana) AUX-LAX proteins. Complementation of the Arabidopsis aux1 mutant revealed that one of them is functionally equivalent to AUX1 and was named CgAUX1. The spatial and temporal expression pattern of CgAUX1 promoter:beta-glucuronidase reporter was analyzed in Casuarinaceae. We observed that CgAUX1 was expressed in plant cells infected by Frankia throughout the course of actinorhizal nodule formation. Our data suggest that auxin plays an important role during plant cell infection in actinorhizal symbioses.  相似文献   

13.
Molecular phylogenetic approaches have begun to outline the origin, distribution and diversity of actinorhizal partners. Geographic isolation of Frankia and its host plants resulting from shifting continents and dispersal patterns have apparently led to the development of Frankia genotypes with differing affinities for host genera, even within the same plant family. Actinorhizal plant genera of widespread global distribution tend to nodulate readily even outside their native ranges. These taxa may maintain infective Frankia populations of considerable diversity on a broad scale. Arid environments seem to have distinctive actinorhizal partnerships, with smaller and more specific sets of Frankia symbionts. This has led to the hypothesis that some host families have taxa that are evolving towards narrow strain specificity, perhaps because of drier habitats where fewer Frankia strains would be able to survive. Harsh conditions such as water-saturated soils near lakes, swamps or bogs that are typically acidic and low in oxygen may similarly lessen the diversity of Frankia strains present in the soil, perhaps limiting the pool of frankiae available for infection locally and, at a larger scale, for natural selection of symbiotic partnerships with host plants. Recent molecular ecological studies have also provided examples of Frankia strain sorting by soil environment within higher order cluster groupings of Frankia host specificity. Future frontiers for ecological research on Frankia and actinorhizal plants include the soil ecosystem and the genome of Frankia and its hosts.  相似文献   

14.
15.
16.
BACKGROUND AND AIMS: The present work aimed to study early stages of nodulation in a chronological sequence and to study phosphorus and nitrogen effects on early stages of nodulation in Alnus incana infected by Frankia. A method was developed to quantify early nodulation stages in intact root systems in the root hair-infected actinorhizal plant A. incana. Plant tissue responses were followed every 2 d until 14 d after inoculation. Cortical cell divisions were already seen 2 d after inoculation with Frankia. Cortical cell division areas, prenodules, nodule primordia and emerging nodules were quantified as host responses to infection. METHODS: Seedlings were grown in pouches and received different levels of phosphorus and nitrogen. Four levels of phosphorus (from 0.03 to 1 mM P) and two levels of nitrogen (0.71 and 6.45 mM N) were used to study P and N effects on these early stages of nodule development. KEY RESULTS: P at a medium concentration (0.1 mM) stimulated cell divisions in the cortex and a number of prenodules, nodule primordia and emerging nodules as compared with higher or lower P levels. A high N level inhibited early cell divisions in the cortex, and this was particularly evident when the length of cell division areas and presence of the nodulation stages were related to root length. CONCLUSIONS: Extended cortical cell division areas were found that have not been previously shown in A. incana. The results show that effects of P and N are already expressed at the stage when the first cortical cell divisions are induced by Frankia.  相似文献   

17.
Endophyte sporulation in root nodules of actinorhizal plants   总被引:1,自引:0,他引:1  
All strains of isolated Frankia possess the genetic capacity to form sporangia since, when grown in vitro, they usually sporulate freely, depending on the physical and chemical environment in which they are cultured. Endophytic sporulation involving Frankia differentiation of sporangia within root nodules has been described in only 16 host species in 9 genera within six families of actinorhizal plants. From studies published to date, endophytic sporulation cannot be correlated with specific environmental conditions surrounding the host plants. Based on the literature and on previously unpublished observations from field and greenhouse studies, an account is given of the occurrence of sporulation in actinorhizal plants with emphasis on Alnus, Casuarina, Comptonia, Elaeagnus and Myrica . The possible role of the host plant in controlling Frankia sporulation as contrasted to the control exerted by the genetic constitution of the microbial symbiont is explored.  相似文献   

18.
Molecular phylogenetic trees were reconstructed from nucleotide sequences of nifH and 16S rDNA for Frankia and of rbcL for actinorhizal plants. Comparison of Frankia phylogenetic trees reconstructed using nifH and 16S rDNA sequences indicated that subgroupings of both trees correspond with each other in terms of plant origins of Frankia strains. The results suggested that 16S rDNAs can be utilized for coevolution analysis of actinorhizal symbioses. Frankia and plant phylogenetic trees reconstructed using 16S rDNA and rbcL sequences were compared. The comparison by tree matching and likelihood ratio tests indicated that although branching orders of both trees do not strictly correspond with each other, subgroupings of Frankia and their host plants correspond with each other in terms of symbiotic partnership. Estimated divergence times among Frankia and plant clades indicated that Frankia clades diverged more recently than plant clades. Taken together, actinorhizal symbioses originated more than three times after the four plant clades diverged.  相似文献   

19.
Filamentous aerobic soil actinobacteria of the genus Frankia can induce the formation of nitrogen-fixing nodules on the roots of a diverse group of plants from eight dicotyledonous families, collectively called actinorhizal plants. Within nodules, Frankia can fix nitrogen while being hosted inside plant cells. Like in legume/rhizobia symbioses, bacteria can enter the plant root either intracellularly through an infection thread formed in a curled root hair, or intercellularly without root hair involvement, and the entry mechanism is determined by the host plant species. Nodule primordium formation is induced in the root pericycle as for lateral root primordia. Mature actinorhizal nodules are coralloid structures consisting of multiple lobes, each of which represents a modified lateral root without a root cap, a superficial periderm and with infected cells in the expanded cortex. In this review, an overview of nodule induction mechanisms and nodule structure is presented including comparisons with the corresponding mechanisms in legume symbioses.  相似文献   

20.
Actinorhizal plants invade nitrogen-poor soils because of their ability to form root nodule symbioses with N(2)-fixing actinomycetes known as Frankia. Frankia strains are difficult to isolate, so the diversity of strains inhabiting nodules in nature is not known. To address this problem, we have used the variability in bacterial 16S rRNA gene sequences amplified from root nodules as a means to estimate molecular diversity. Nodules were collected from 96 sites primarily in northeastern North America; each site contained one of three species of the family Myricaceae. Plants in this family are considered to be promiscuous hosts because several species are effectively nodulated by most isolated strains of Frankia in the greenhouse. We found that strain evenness varies greatly between the plant species so that estimating total strain richness of Frankia within myricaceous nodules with the sample size used was problematical. Nevertheless, Myrica pensylvanica, the common bayberry, was found to have sufficient diversity to serve as a reservoir host for Frankia strains that infect plants from other actinorhizal families. Myrica gale, sweet gale, yielded a few dominant sequences, indicating either symbiont specialization or niche selection of particular ecotypes. Strains in Comptonia peregrina nodules had an intermediate level of diversity and were all from a single major group of Frankia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号