首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to address the mechanism of enhancement of the affinity of an antibody toward an antigen from a thermodynamic viewpoint, anti-hen lysozyme (HEL) antibody HyHEL-10, which also recognize the mutated antigen turkey lysozyme (TEL) with reduced affinity, was examined. Grafting high affinity toward TEL onto HyHEL-10 was performed by saturation mutagenesis into four residues (Tyr(53), Ser(54), Ser(56), and Tyr(58)) in complementarity-determining region 2 of the heavy chain (CDR-H2) followed by selection with affinity for TEL. Several clones enriched have a Phe residue at site 58. Thermodynamic analyses showed that the clones selected had experienced a greater than 3-fold affinity increase toward TEL in comparison with wild-type Fv, originating from an increase in negative enthalpy change. Substitution of HyHEL-10 HTyr(58) with Phe led to the increase in negative enthalpy change and to almost identical affinity for TEL in comparison with mutants selected, indicating that mutations at other sites decrease the entropy loss despite little contribution to the affinity for TEL. These results suggest that the affinity of an antibody toward the antigen is enhanced by the increase in enthalpy change by some limited mutation, and excess entropy loss due to the mutation is decreased by other energetically neutral mutations.  相似文献   

2.
Alanine-scanning mutagenesis, X-ray crystallography, and double mutant cycles were used to characterize the interface between the anti-hen egg white lysozyme (HEL) antibody HyHEL-63 and HEL. Eleven HEL residues in contact with HyHEL-63 in the crystal structure of the antigen-antibody complex, and 10 HyHEL-63 residues in contact with HEL, were individually truncated to alanine in order to determine their relative contributions to complex stabilization. The residues of HEL (Tyr20, Lys96, and Lys97) most important for binding HyHEL-63 (Delta G(mutant) - Delta G(wild type) > 3.0 kcal/mol) form a contiguous patch at the center of the surface contacted by the antibody. Hot spot residues of the antibody (Delta Delta G > 2.0 kcal/mol) are organized in two clusters that juxtapose hot spot residues of HEL, resulting in energetic complementarity across the interface. All energetically critical residues are centrally located, shielded from solvent by peripheral residues that contribute significantly less to the binding free energy. Although HEL hot spot residues Lys96 and Lys97 make similar interactions with antibody in the HyHEL-63/HEL complex, alanine substitution of Lys96 results in a nearly 100-fold greater reduction in affinity than the corresponding mutation in Lys97. To understand the basis for this marked difference, we determined the crystal structures of the HyHEL-63/HEL Lys96Ala and HyHEL-63/HEL Lys97Ala complexes to 1.80 and 1.85 A resolution, respectively. Whereas conformational changes in the proteins and differences in the solvent networks at the mutation sites appear too small to explain the observed affinity difference, superposition of free HEL in different crystal forms onto bound HEL in the wild type and mutant HyHEL-63/HEL complexes reveals that the side-chain conformation of Lys96 is very similar in the various structures, but that the Lys97 side chain displays considerable flexibility. Accordingly, a greater entropic penalty may be associated with quenching the mobility of the Lys97 than the Lys96 side chain upon complex formation, reducing binding. To further dissect the energetics of specific interactions in the HyHEL-63/HEL interface, double mutant cycles were constructed to measure the coupling of 13 amino acid pairs, 11 of which are in direct contact in the crystal structure. A large coupling energy, 3.0 kcal/mol, was found between HEL residue Lys97 and HyHEL-63 residue V(H)Asp32, which form a buried salt bridge surrounded by polar residues of the antigen. Thus, in contrast to protein folding where buried salt bridges are generally destabilizing, salt bridges in protein-protein interfaces, whose residual composition is more hydrophilic than that of protein interiors, may contribute significantly to complex stabilization.  相似文献   

3.
Synthetic antibody libraries with restricted chemical diversity were used to explore the intrinsic contributions of four amino acids (Tyr, Ser, Gly and Arg) to the affinity and specificity of antigen recognition. There was no correlation between nonspecific binding and the content of Tyr, Ser or Gly in the antigen-binding site, and in fact, the most specific antibodies were those with the highest Tyr content. In contrast, Arg content was clearly correlated with increased nonspecific binding. We combined Tyr, Ser and Gly to generate highly specific synthetic antibodies with affinities in the subnanomolar range, showing that the high abundance of Tyr, Ser and Gly in natural antibody germ line sequences reflects the intrinsic capacity of these residues to work together to mediate antigen recognition. Despite being a major functional contributor to co-evolved protein-protein interfaces, we find that Arg does not contribute generally to the affinity of naïve antigen-binding sites and is detrimental to specificity. Again, this is consistent with studies of natural antibodies, which have shown that nonspecific, self-reactive antibodies are rich in Arg and other positively charged residues. Our findings suggest that the principles governing naïve molecular recognition differ from those governing co-evolved interactions. Analogous studies can be designed to explore the roles of the other amino acids in molecular recognition. Results of such studies should illuminate the basic principles underlying natural protein-protein interactions and should aid the design of synthetic binding proteins with functions beyond the scope of natural proteins.  相似文献   

4.
To clarify the effects of humanizing a murine antibody on its specificity and affinity for its target, we examined the interaction between hen egg white lysozyme (HEL) and its antibody, HyHEL-10 variable domain fragment (Fv). We selected a human antibody framework sequence with high homology, grafted sequences of six complementarity-determining regions of murine HyHEL-10 onto the framework, and investigated the interactions between the mutant Fvs and HEL. Isothermal titration calorimetry indicated that the humanization led to 10-fold reduced affinity of the antibody for its target, due to an unfavorable entropy change. Two mutations together into the interface of the variable domains, however, led to complete recovery of antibody affinity and specificity for the target, due to reduction of the unfavorable entropy change. X-ray crystallography of the complex of humanized antibodies, including two mutants, with HEL demonstrated that the complexes had almost identical structures and also paratope and epitope residues were almost conserved, except for complementary association of variable domains. We conclude that adjustment of the interfacial structures of variable domains can contribute to the reversal of losses of affinity or specificity caused by humanization of murine antibodies, suggesting that appropriate association of variable domains is critical for humanization of murine antibodies without loss of function.  相似文献   

5.
VL-VH expression by monoclonal antibodies recognizing avian lysozyme   总被引:6,自引:0,他引:6  
Seven BALB/c hybridoma antibodies directed against the protein antigen, hen egg-white lysozyme c (HEL), were characterized on the basis of their ability to bind lysozymes from 10 species of birds, and their ability to bind HEL competitively. The hybridomas were separable into three complementation groups based upon competitive interactions. The fine specificities of all antibodies were distinct, but two, HyHEL-8 and HyHEL-10, had very similar and overlapping reactivity patterns. To test the hypothesis that VL-VH pairing correlates with binding specificity, the N-terminal amino acid sequences were determined to identify the VL and VH isotopes (subgroups) of the anti-HEL antibodies. HyHEL-8 and -10 shared the VK23 light chain isotype and nearly identical heavy chains in Kabat subgroup I, whereas the heavy and light chain isotypes of all other antibodies differed from HyHEL-8 and -10 and from each other. The heavy and light chain isotypes expressed by HyHEL-8 and -10 are also expressed by XRPC-25, a DNP-binding myeloma protein that does not bind lysozyme. These results are discussed with respect to the contributions of various genetic sources of structural diversity to antibody functional diversity.  相似文献   

6.
The binding of murine monoclonal antibody HyHEL-5 to lysozyme has been the subject of extensive crystallographic, computational, and experimental investigations. The complex of HyHEL-5 with hen egg lysozyme (HEL) features salt bridges between Fab heavy chain residue Glu(50), and Arg(45) and Arg(68) of HEL. This interaction has been predicted to play a dominant role in the association on the basis of molecular electrostatics calculations. The association of aspartic acid and glutamine mutants at position 50(H) of the cloned HyHEL-5 Fab with HEL and bobwhite quail lysozyme (BQL), an avian variant bearing an Arg(68) --> Lys substitution in the epitope, was characterized by isothermal titration calorimetry and sedimentation equilibrium. Affinities for HEL were reduced by 400-fold (E50(H)D) and 40,000-fold (E50(H)Q) (DeltaDeltaG degrees estimated at 4.0 and 6.4 kcal mol(-1), respectively). The same mutations reduce affinity for BQL by only 7- and 55-fold, respectively, indicating a reduced specificity for HEL. The loss of affinity upon mutation is in each case primarily due to an unfavorable change in the enthalpy of the interaction; the entropic contribution is virtually unchanged. An enthalpy-entropy compensation exists for each interaction; DeltaH degrees decreases, while DeltaS degrees increases with temperature. The DeltaCp for each mutant interaction is less negative than the wild-type. Mutant-cycle analysis suggests the mutations present in the HyHEL-5 Fab mutants are linked to those present in the BQL with coupling energies between 3 and 4 kcal mol(-1).  相似文献   

7.
While many antibodies with strong antigen-binding affinity have stable variable regions with a strong antibody heavy chain variable region fragment (V(H))/antibody light chain variable region fragment (V(L)) interaction, the anti-lysozyme IgG HyHEL-10 has a fairly strong affinity, yet a very weak V(H)/V(L) interaction strength, in the absence of antigen. To investigate the possible relationship between antigen-binding affinity and V(H)/V(L) interaction strength, a novel phage display system that can switch two display modes was employed. We focused on the two framework region 2 regions of the HyHEL-10 V(H) and V(L), facing each other at the domain interface, and a combinatorial library was made in which each framework region 2 residue was mixed with that of D1.3, which has a far stronger V(H)/V(L) interaction. The phagemid library, encoding V(H) gene 7 and V(L) amber codon gene 9, was used to transform TG-1 (sup+), and the phages displaying functional variable regions were selected. The selected phages were then used to infect a nonsuppressing strain, and the culture supernatant containing V(H)-displaying phages and soluble V(L) fragment was used to evaluate the V(H)/V(L) interaction strength. The results clearly showed the existence of a key framework region 2 residue (H39) that strongly affects V(H)/V(L) interaction strength, and a marked positive correlation between the antigen-binding affinity and the V(H)/V(L) interaction, especially in the presence of a set of particular V(L) residues. The effect of the H39 mutation on the wild-type variable region was also confirmed by a SPR biosensor as a several-fold increase in antigen-binding affinity owing to an increased association rate, while a slight decrease was observed for the single-chain variable region.  相似文献   

8.
In order to address the recognition mechanism of the fragments of antibody variable regions, termed Fv, toward their target antigen, an x-ray crystal structure of an anti-hen egg white lysozyme antibody (HyHEL-10) Fv fragment complexed with its cognate antigen, hen egg white lysozyme (HEL), was solved at 2.3 A. The overall structure of the complex is similar to that reported in a previous article dealing with the Fab fragment-HEL complex (PDB ID code,). However, the areas of Fv covered by HEL upon complex formation increased by about 100 A(2) in comparison with the Fab-HEL complex, and two local structural differences were observed in the heavy chain of the variable region (VH). In addition, small but significant local structural changes were observed in the antigen, HEL. The x-ray data permitted the identification of two water molecules between the VH and HEL and six water molecules retained in the interface between the antigen and the light chain complementarity determining regions (CDRs) 2 and 3 (CDR-L2 and CDR-L3). These water molecules bridge the antigen-antibody interface through hydrogen bond formation in the VL-HEL interface. Eleven water molecules were found to complete the imperfect VH-VL interface, suggesting that solvent molecules mediate the stabilization of interaction between variable regions. These results suggest that the unfavorable effect of deletion of constant regions on the antigen-antibody interaction is compensated by an increase in favorable interactions, including structural changes in the antigen-antibody interface and solvent-mediated hydrogen bond formation upon complex formation, which may lead to a minimum decreased affinity of the antibody Fv fragment toward its antigen.  相似文献   

9.
Li Y  Li H  Smith-Gill SJ  Mariuzza RA 《Biochemistry》2000,39(21):6296-6309
Antigen-antibody complexes provide useful models for studying the structure and energetics of protein-protein interactions. We report the cloning, bacterial expression, and crystallization of the antigen-binding fragment (Fab) of the anti-hen egg white lysozyme (HEL) antibody HyHEL-63 in both free and antigen-bound forms. The three-dimensional structure of Fab HyHEL-63 complexed with HEL was determined to 2.0 A resolution, while the structure of the unbound antibody was determined in two crystal forms, to 1.8 and 2.1 A resolution. In the complex, 19 HyHEL-63 residues from all six complementarity-determining regions (CDRs) of the antibody contact 21 HEL residues from three discontinuous polypeptide segments of the antigen. The interface also includes 11 bound water molecules, 3 of which are completely buried in the complex. Comparison of the structures of free and bound Fab HyHEL-63 reveals that several of the ordered water molecules in the free antibody-combining site are retained and that additional waters are added upon complex formation. The interface waters serve to increase shape and chemical complementarity by filling cavities between the interacting surfaces and by contributing to the hydrogen bonding network linking the antigen and antibody. Complementarity is further enhanced by small (<3 A) movements in the polypeptide backbones of certain antibody CDR loops, by rearrangements of side chains in the interface, and by a slight shift in the relative orientation of the V(L) and V(H) domains. The combining site residues of complexed Fab HyHEL-63 exhibit reduced temperature factors compared with those of the free Fab, suggesting a loss in conformational entropy upon binding. To probe the relative contribution of individual antigen residues to complex stabilization, single alanine substitutions were introduced in the epitope of HEL recognized by HyHEL-63, and their effects on antibody affinity were measured using surface plasmon resonance. In agreement with the crystal structure, HEL residues at the center of the interface that are buried in the complex contribute most to the binding energetics (DeltaG(mutant) - DeltaG(wild type) > 3.0 kcal/mol), whereas the apparent contributions of solvent-accessible residues at the periphery are much less pronounced (<1.5 kcal/mol). In the latter case, the mutations may be partially compensated by local rearrangements in solvent structure that help preserve shape complementarity and the interface hydrogen bonding network.  相似文献   

10.
To study the role of hydrogen bonding via interfacial water molecules in protein-protein interactions, we examined the interaction between hen egg white lysozyme (HEL) and its HyHEL-10 variable domain fragment (Fv) antibody. We constructed three antibody mutants (l-Y50F, l-S91A, and l-S93A) and investigated the interactions between the mutant Fvs and HEL. Isothermal titration calorimetry indicated that the mutations significantly decreased the negative enthalpy change (8-25 kJ mol(-1)), despite some offset by a favorable entropy change. X-ray crystallography demonstrated that the complexes had nearly identical structures, including the positions of the interfacial water molecules. Taken together, the isothermal titration calorimetric and x-ray crystallographic results indicate that hydrogen bonding via interfacial water enthalpically contributes to the Fv-HEL interaction despite the partial offset because of entropy loss, suggesting that hydrogen bonding stiffens the antigen-antibody complex.  相似文献   

11.
The immunoglobulin G1 (IgG1) kappa antibodies HyHEL-5 and HyHEL-10 interact with nonoverlapping epitopes on hen egg lysozyme (HEL); the HyHEL-5/HEL interface has two energetically and structurally important salt links, whereas the HyHEL-10/HEL interface involves predominantly hydrogen bonds and van der Waals interactions. The kinetics of association and dissociation of antibodies HyHEL-5 and HyHEL-10 with HEL under a variety of conditions were investigated in this study. The association of each antibody with HEL follows second-order kinetics. The association process is significantly diffusion-limited, as indicated by the viscosity dependence of the interaction of both antibodies with HEL, although detailed energetics suggest that the association process may be more complex. The association rate constant for the HyHEL-5/HEL system is within a factor of 2 of the modified Smoluchowski estimate for proteins of this size, whereas HyHEL-10 interacts with HEL with an association rate an order of magnitude lower. The association reactions are insensitive to ionic strength, showing only a twofold decrease in the association rate constant when the ionic strength was increased from 27 mM to 500 mM. Interestingly, the association rate constant for the interaction of HyHEL-5 with HEL varies with pH in the range 6.0-10.0, whereas HyHEL-10/HEL association is not affected by pH in the same range. The dissociation of the HyHEL-5/HEL and HyHEL-10/HEL complexes follow first-order kinetics with half-lives at 25 degrees C of approximately 3,150 s and approximately 21,660 s, respectively.  相似文献   

12.
Many germ line antibodies have asparagine residues at specific sites to achieve specific antigen recognition. To study the role of asparagine residues in the stabilization of antigen-antibody complexes, we examined the interaction between hen egg white lysozyme (HEL) and the corresponding HyHEL-10 variable domain fragment (Fv). We introduced Ala and Asp substitutions into the Fv side chains of l-Asn-31, l-Asn-32, and l-Asn-92, which interact directly with residues in HEL via hydrogen bonding in the wild-type Fv-HEL complex, and we investigated the interactions between these mutant antibodies and HEL. Isothermal titration calorimetric analysis showed that all the mutations decreased the negative enthalpy change and decreased the association constants of the interaction. Structural analyses showed that the effects of the mutations on the structure of the complex could be compensated for by conformational changes and/or by gains in other interactions. Consequently, the contribution of two hydrogen bonds was minor, and their abolition by mutation resulted in only a slight decrease in the affinity of the antibody for its antigen. By comparison, the other two hydrogen bonds buried at the interfacial area had large enthalpic advantage, despite entropic loss that was perhaps due to stiffening of the interface by the bonds, and were crucial to the strength of the interaction. Deletion of these strong hydrogen bonds could not be compensated for by other structural changes. Our results suggest that asparagine can provide the two functional groups for strong hydrogen bond formation, and their contribution to the antigen-antibody interaction can be attributed to their limited flexibility and accessibility at the complex interface.  相似文献   

13.
A structural and thermodynamic study of the entropic contribution of salt bridge formation to the interaction between hen egg white lysozyme (HEL) and the variable domain fragment (Fv) of anti-HEL antibody, HyHEL-10, was carried out. Three Fv mutants (HD32A, HD96A, and HD32AD96A) were prepared, and the interactions between the mutant Fvs and HEL were investigated. Crystallography revealed that the overall structures of these mutant complexes were almost identical to that of wild-type Fv. Little structural changes were observed in the HD32AD96A mutant-HEL complex, and two water molecules were introduced into the mutation site, indicating that the two water molecules structurally compensated for the complete removal of the salt bridges. This result suggests that the entropic contribution of the salt bridge originates from dehydration. In the singly mutated complexes, one water molecule was also introduced into the mutated site, bridging the antigen-antibody interface. However, a local structural difference was observed in the HD32A Fv-HEL complex, and conformational changes occurred due to changes in the relative orientation of the heavy chain to the light chain upon complexation in HD96A Fv-HEL complexes. The reduced affinity of these single mutants for the antigen originates from the increase in entropy loss, indicating that these structural changes also introduced an increase in entropy loss. These results suggest that salt bridge formation makes an entropic contribution to the protein antigen-antibody interaction through reduction of entropy loss due to dehydration and structural changes.  相似文献   

14.
Unusual joining sites in the H and L chains of an anti-lysozyme antibody   总被引:3,自引:0,他引:3  
Nucleotide sequences of HyHEL-5, an antibody specific for chicken lysozyme (HEL), indicated unusual joins in the third complementarity-determining region of both the H and L chains. The VK-JK recombination site is unusual in that codon 96, normally derived from the JK gene segment, is deleted entirely, making the L3 one amino acid shorter than normal. Examination of the HyHEL-5 Fab-HEL x-ray structure suggests that the conformation of L3 is clearly important for Ag specificity. A comparison of the HyHEL-5 L3 with that of the structurally related antibody J539 indicates that the deleted residue significantly alters the conformation of the L3 turn. The H chain VH-DH join is also unusual; the VH junction site has probably occurred between the second and third nucleotides of codon 92, with the addition of five random nucleotides that encode for unusual amino acids Leu93 and His94. Although the conformation of H3 is different from what would be predicted from other H3 conformations and is clearly important to the complementarity of HyHEL-5 to HEL, the specific residues at the VH-DH join do not appear to directly contribute to Ag binding. It is not possible to attribute the main chain conformation of H3 to the particular sequence produced by the join; the structural features of H3 may be due to interactions with HEL and/or with other antibody residues.  相似文献   

15.
The structure of the antigen-binding fragment from the monoclonal antibody S64-4 in complex with a pentasaccharide bisphosphate fragment from chlamydial lipopolysaccharide has been determined by x-ray diffraction to 2.6 ? resolution. Like the well-characterized antibody S25-2, S64-4 displays a pocket formed by the residues of germline sequence corresponding to the heavy and light chain V gene segments that binds the terminal Kdo residue of the antigen; however, although S64-4 shares the same heavy chain V gene segment as S25-2, it has a different light chain V gene segment. The new light chain V gene segment codes for a combining site that displays greater affinity, different specificity, and allows a novel antigen conformation that brings a greater number of antigen residues into the combining site than possible in S25-2. Further, while antibodies in the S25-2 family use complementarity determining region (CDR) H3 to discriminate among antigens, S64-4 achieves its specificity via the new light chain V gene segment and resulting change in antigen conformation. These structures reveal an intriguing parallel strategy where two different combinations of germline-coded V gene segments can act as starting points for the generation of germline antibodies against chlamydial antigens and show how anti-carbohydrate antibodies can exploit the conformational flexibility of this class of antigens to achieve high affinity and specificity independently of CDR H3.  相似文献   

16.
Alanine scanning mutagenesis of the HyHEL-10 paratope of the HyHEL-10/HEWL complex demonstrates that the energetically important side chains (hot spots) of both partners are in contact. A plot of deltadeltaG(HyHEL-10_mutant) vs. deltadeltaG(HEWL_mutant) for the five of six interacting side-chain hydrogen bonds is linear (Slope = 1). Only 3 of the 13 residues in the HEWL epitope contribute >4 kcal/mol to the free energy of formation of the complex when replaced by alanine, but 6 of the 12 HyHEL-10 paratope amino acids do. Double mutant cycle analysis of the single crystallographically identified salt bridge, D32H/K97, shows that there is a significant energetic penalty when either partner is replaced with a neutral side-chain amino acid, but the D32(H)N/K97M complex is as stable as the WT. The role of the disproportionately high number of Tyr residues in the CDR was evaluated by comparing the deltadeltaG values of the Tyr --> Phe vs. the corresponding Tyr --> Ala mutations. The nonpolar contacts in the light chain contribute only about one-half of the total deltadeltaG observed for the Tyr --> Ala mutation, while they are significantly more important in the heavy chain. Replacement of the N31L/K96 hydrogen bond with a salt bridge, N31D(L)/K96, destabilizes the complex by 1.4 kcal/mol. The free energy of interaction, deltadeltaG(int), obtained from double mutant cycle analysis showed that deltadeltaG(int) for any complex for which the HEWL residue probed is a major immunodeterminant is very close to the loss of free energy observed for the HyHEL-10 single mutant. Error propagation analysis of double mutant cycles shows that data of atypically high precision are required to use this method meaningfully, except where large deltadeltaG values are analyzed.  相似文献   

17.
The antigen binding fragment (Fab) of a monoclonal antibody (HyHEL-10) consists of variable domains (Fv) and constant domains (CL-CH1). Normal modes have been calculated from the three-dimensional structures of hen egg lysozyme (HEL) with Fab, those of HEL with Fv, and so on. Only a small structural change was found between HEL-Fab and HEL-Fv complexes. However, HEL-Fv had a one order of magnitude lower dissociation constant than HEL-Fab. The Calpha fluctuations of HEL-Fab differed from those of HEL-Fv with normal mode calculation, and the dynamics can be thought to be related to the protein-protein interactions. CL-CH1 may have influence not only around local interfaces between CL-CH1 and Fv, but also around the interacting regions between HEL and Fv, which are longitudinally distant. Eighteen water molecules were found in HEL-Fv around the interface between HEL and Fv compared with one water molecule in HEL-Fab. These solvent molecules may occupy the holes and channels, which may occur due to imperfect complementarity of the complex. Therefore, the suppression of atomic vibration around the interface between Fv and HEL can be thought to be related to favorable and compact interface formation by complete desolvation. It is suggested that the ability to control the antigen-antibody affinity is obtained from modifying the CL-CH1. The second upper loop in the constant domain of the light chain (UL2-CL), which is a conserved gene in several light chains, showed the most remarkable fluctuation changes. UL2-CL could play an important role and could be attractive for modification in protein engineering.  相似文献   

18.
Bostrom J  Haber L  Koenig P  Kelley RF  Fuh G 《PloS one》2011,6(4):e17887
The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2) antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF) to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.  相似文献   

19.
To experimentally examine the functional roles of somatically derived structural variation in the lysozyme-binding mAb HyHEL-10, we have introduced three different point mutations and one insertion at two different sites in HyHEL-10 by site-directed mutagenesis and expression of the mutant antibodies. Mutation of Asp----Ala at position 101 of the H chain returns a somatically mutated residue to its germline sequence for HyHEL-10, and reduces affinity for chicken lysozyme by approximately 9000-fold. Lengthening the third H chain hypervariable region by two amino acids reduces affinity by about 2000-fold. Two mutations, Asp----Thr at position 101 in the H chain and Lys----Thr at position 49 in the L chain, model somatic differences found in another structurally related but functionally distinguishable mAb and minimally decrease affinity for chicken lysozyme. The H chain mutation Asp101VVH----Thr has little effect on affinity for other avian lysozymes but does alter relative fine specificity for these lysozymes. The L chain mutation Lys49VK----Thr increases affinity for duck lysozyme by approximately fivefold. Neither of the positions mutated, 101 in the H chain nor 49 in the L chain, nor the residues near the insertion contact lysozyme in the x-ray structure of the HyHEL-10 F(ab)-HEL complex. The results suggest that these mutations, which model observed somatic mutations, produce functional variation by indirect or long-range effects.  相似文献   

20.
In a previous study we generated an anti-Hepatitis B Virus (HBV) preS1 humanized antibody (HzKR127) that showed in vivo HBV-neutralizing activity in chimpanzees. However, the antigen-binding affinity of the humanized antibody may not be sufficient for clinical use and thus affinity maturation is required for better therapeutic efficacy. In this study, phage display technique was employed to increase the affinity of HzKR127. All six amino acid residues (Glu95-Tyr96-Asp97-Glu98-Ala99-Tyr100) in the heavy (H) chain complementarydetermining region 3 (HCDR3) of HzKR127 were randomized and phage-displayed single chain Fv (scFv) library was constructed. After three rounds of panning, 12 different clones exhibiting higher antigen-binding activity than the wild type ScFv were selected and their antigen-binding specificity for the preS1 confirmed. Subsequently, five ScFv clones were converted to whole IgG and subjected to affinity determination. The results showed that two clones (B3 and A19) exhibited an approximately 6 fold higher affinities than that of HzKR127. The affinity-matured humanized antibodies may be useful in anti-HBV immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号