首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chylomicron apolipoprotein metabolism was studied utilizing chylomicrons isolated from the pleural fluid of a patient with a recurrent chylous pleural effusion. Chylomicrons contained apolipoproteins A-I, A-II, B, C-I, C-II, C-III, D, E, and albumin. Following intravenous injection of [125I] chylomicrons, almost all of the A apolipoprotein radioactivity was recovered in high density lipoproteins, while only a small amount of the B apolipoprotein radioactivity was recovered in low density lipoproteins. These observations indicate that intestinal chylomicron A apolipoproteins serve as precursors for plasma high density lipoprotein A apolipoproteins and only a small fraction of chylomicron apolipoprotein B is metabolized to form low density lipoprotein apolipoprotein B.  相似文献   

2.
3.
Human muscle metabolism during sprint running   总被引:8,自引:0,他引:8  
Biopsy samples were obtained from vastus lateralis of eight female subjects before and after a maximal 30-s sprint on a nonmotorized treadmill and were analyzed for glycogen, phosphagens, and glycolytic intermediates. Peak power output averaged 534.4 +/- 85.0 W and was decreased by 50 +/- 10% at the end of the sprint. Glycogen, phosphocreatine, and ATP were decreased by 25, 64, and 37%, respectively. The glycolytic intermediates above phosphofructokinase increased approximately 13-fold, whereas fructose 1,6-diphosphate and triose phosphates only increased 4- and 2-fold. Muscle pyruvate and lactate were increased 19 and 29 times. After 3 min recovery, blood pH was decreased by 0.24 units and plasma epinephrine and norepinephrine increased from 0.3 +/- 0.2 nmol/l and 2.7 +/- 0.8 nmol/l at rest to 1.3 +/- 0.8 nmol/l and 11.7 +/- 6.6 nmol/l. A significant correlation was found between the changes in plasma catecholamines and estimated ATP production from glycolysis (norepinephrine, glycolysis r = 0.78, P less than 0.05; epinephrine, glycolysis r = 0.75, P less than 0.05) and between postexercise capillary lactate and muscle lactate concentrations (r = 0.82, P less than 0.05). The study demonstrated that a significant reduction in ATP occurs during maximal dynamic exercise in humans. The marked metabolic changes caused by the treadmill sprint and its close simulation of free running makes it a valuable test for examining the factors that limit performance and the etiology of fatigue during brief maximal exercise.  相似文献   

4.
Human alcohol dehydrogenases and serotonin metabolism   总被引:2,自引:0,他引:2  
Human liver alcohol dehydrogenases (ADH) may participate in serotonin (5-hydroxytryptamine) metabolism. Class I and II isozymes catalyze the oxidation of 5-hydroxytryptophol (5-HTOL) with kcat/Km values ranging from 10 to 100 mM-1 min-1 compared to 4-66 mM-1 min-1 for that of ethanol at pH 7.40, 25 degrees C. The product, 5-hydroxyindoleacetaldehyde, was purified as its semicarbazone and identified by mass spectrometry. Ethanol competitively inhibits 5-HTOL oxidation by beta 1 gamma 2 ADH with a Ki of 440 microM, a value similar to the Km of ethanol, 210 microM. The inhibition constants for 1,10-phenanthroline and 4-methylpyrazole are 20 microM and 80 nM respectively, essentially identical to those obtained with ethanol as substrate, 22 microM and 70 nM, respectively. The competition between ethanol and 5-HTOL for ADH can explain observations of ethanol induced changes in serotonin metabolism in vivo.  相似文献   

5.
Human variability in the metabolism of sulfamethazine   总被引:1,自引:0,他引:1  
J M Parker 《Human heredity》1969,19(4):402-409
  相似文献   

6.
7.
Phytanic acid is a methyl-branched fatty acid present in the human diet. Due to its structure, degradation by β-oxidation is impossible. Instead, phytanic acid is oxidized by -oxidation, yielding pristanic acid. Despite many efforts to elucidate the -oxidation pathway, it remained unknown for more than 30 years. In recent years, the mechanism of -oxidation as well as the enzymes involved in the process have been elucidated. The process was found to involve activation, followed by hydroxylase, lyase and dehydrogenase reactions. Part, if not all of the reactions were found to take place in peroxisomes. The final product of phytanic acid -oxidation is pristanic acid. This fatty acid is degraded by peroxisomal β-oxidation. After 3 steps of β-oxidation in the peroxisome, the product is esterified to carnitine and shuttled to the mitochondrion for further oxidation. Several inborn errors with one or more deficiencies in the phytanic acid and pristanic degradation have been described. The clinical expressions of these disorders are heterogeneus, and vary between severe neonatal and often fatal symptoms and milder syndromes with late onset. Biochemically, these disorders are characterized by accumulation of phytanic and/or pristanic acid in tissues and body fluids. Several of the inborn errors involoving phytanic acid and/or pristanic acid metabolism have been characterized on the molecular level.  相似文献   

8.
The body's protein mass not only provides architectural support for cells but also serves vital roles in maintaining their function and survival. The whole body protein pool, as well as that of individual tissues, is determined by the balance between the processes of protein synthesis and degradation. These in turn are regulated by interactions among hormonal, nutritional, neural, inflammatory, and other influences. Prolonged changes in either the synthetic or degradative processes (or both) that cause protein wasting increase morbidity and mortality. The application of tracer kinetic methods, combined with measurements of the activity of components of the cellular signaling pathways involved in protein synthesis and degradation, affords new insights into the regulation of both protein synthesis and breakdown in vivo. These insights, including those from studies of insulin, insulin-like growth factor I, growth hormone, and amino acid-mediated regulation of muscle and whole body protein turnover, provide opportunities to develop and test therapeutic approaches with promise to minimize or prevent these adverse health consequences.  相似文献   

9.
Significant amounts of glycerol reach the colon microbiota daily through the diet and/or by in situ microbial production or release from desquamated epithelial cells. Some gut microorganisms may anaerobically reduce glycerol to 1,3-propanediol (1,3-PDO), with 3-hydroxypropanal as an intermediate. Accumulation of the latter intermediate may result in the formation of reuterin, which is known for its biological activity (e.g. antimicrobial properties). To date, glycerol metabolism in mixed cultures from the human colon has received little attention. Using in vitro batch incubations of faeces from 10 human individuals, we demonstrated that glycerol addition (140 mM) significantly affects the metabolism and composition of the microbial community. About a third of the samples exhibited rapid glycerol conversion, yielding proportionally higher levels of acetate and 1,3-PDO. In contrast, a slower glycerol metabolism resulted in higher levels of propionate. Furthermore, rapid glycerol metabolism correlated with significant shifts in the Lactobacillus-Enterococcus community, which were not observed in slower glycerol-metabolizing samples. As the conversion of glycerol to 1,3-PDO is a highly reducing process, we infer that the glycerol metabolism may act as an effective hydrogen sink. Given the importance of hydrogen-consuming processes in the gut, this work suggests that glycerol may have potential as a tool for modulating fermentation kinetics and profiles in the gastrointestinal tract.  相似文献   

10.
Cardiomyocyte energy metabolism is altered in heart failure, and primary defects of metabolic pathways can cause heart failure. Studying cardiac energetics in rodent models has principal shortcomings, raising the question to which extent human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) can provide an alternative. As metabolic maturation of CM occurs mostly after birth during developmental hypertrophy, the immaturity of hiPSC-CM is an important limitation. Here we shortly review the physiological drivers of metabolic maturation and concentrate on methods to mature hiPSC-CM with the goal to benchmark the metabolic state of hiPSC-CM against in vivo data and to see how far known abnormalities in inherited metabolic disorders can be modeled in hiPSC-CM. The current data indicate that hiPSC-CM, despite their immature, approximately mid-fetal state of energy metabolism, faithfully recapitulate some basic metabolic disease mechanisms. Efforts to improve their metabolic maturity are underway and shall improve the validity of this model.  相似文献   

11.
While efficient glucose transport is essential for all cells, in the case of the human placenta, glucose transport requirements are two-fold; provision of glucose for the growing fetus in addition to the supply of glucose required the changing metabolic needs of the placenta itself. The rapidly evolving environment of placental cells over gestation has significant consequences for the development of glucose transport systems. The two-fold transport requirement of the placenta means also that changes in expression will have effects not only for the placenta but also for fetal growth and metabolism. This review will examine the localization, function and evolution of placental glucose transport systems as they are altered with fetal development and the transport and metabolic changes observed in pregnancy pathologies.  相似文献   

12.
The adult brain relies on glucose for its energy needs and stores it in the form of glycogen, primarily in astrocytes. Animal and culture studies indicate that brain glycogen may support neuronal function when the glucose supply from the blood is inadequate and/or during neuronal activation. However, the concentration of glycogen and rates of its metabolism in the human brain are unknown. We used in vivo localized 13C-NMR spectroscopy to measure glycogen content and turnover in the human brain. Nine healthy volunteers received intravenous infusions of [1-(13)C]glucose for durations ranging from 6 to 50 h, and brain glycogen labeling and washout were measured in the occipital lobe for up to 84 h. The labeling kinetics suggest that turnover is the main mechanism of label incorporation into brain glycogen. Upon fitting a model of glycogen metabolism to the time courses of newly synthesized glycogen, human brain glycogen content was estimated at approximately 3.5 micromol/g, i.e., three- to fourfold higher than free glucose at euglycemia. Turnover of bulk brain glycogen occurred at a rate of 0.16 micromol.g-1.h-1, implying that complete turnover requires 3-5 days. Twenty minutes of visual stimulation (n=5) did not result in detectable glycogen utilization in the visual cortex, as judged from similar [13C]glycogen levels before and after stimulation. We conclude that the brain stores a substantial amount of glycogen relative to free glucose and metabolizes this store very slowly under normal physiology.  相似文献   

13.
《Cell host & microbe》2022,30(1):17-30.e9
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
  相似文献   

14.
Carboxylesterases (CEs) are traditionally regarded as xenobiotic metabolizing enzymes that hydrolyze esterified xenobiotics to alcohol and carboxylic acid products. However, there is a growing appreciation for the role of CEs in the processing of endobiotics, including cholesteryl esters and triacylglycerols. Human liver microsomes (HLMs) are often used in reaction phenotyping studies to discern interindividual variability in xenobiotic metabolism. The two major CE isoforms expressed in human liver are hCE1 and hCE2. These two isoforms are different gene products. We have begun studies to evaluate the CE phenotype' of human liver samples, i.e. to determine both the levels of hCE1 and hCE2 protein and the hydrolytic activity of each. We have previously shown that there is little variation in hCE1 protein expression in HLM samples from 11 individuals [a 1.3-fold difference between the highest and lowest individuals; coefficient of variation (CV), 9%]. hCE2 protein expression in individual HLMs is only slightly more variable than hCE1 (2.3-fold difference between the highest and lowest individuals; CV, 36%). However, hCE1 protein is found in 46-fold higher amounts in HLMs than hCE2 protein (64.4 +/- 16.5 microg hCE1/mg microsomal protein compared to 1.4 +/- 0.2 microg hCE2/mg microsomal protein). The hydrolytic activity specifically attributable to hCE1 and hCE2 in individual HLMs was measured using bioresmethrin (a pyrethroid insecticide hydrolyzed specifically by hCE1, but not by hCE2) and procaine (an analgesic drug hydrolyzed by hCE2, but not by hCE1). The hydrolytic activity of individual HLMs toward bioresmethrin and procaine did not correlate with the protein content of hCE1 and hCE2. Thus, the mere abundance of CE proteins is not a good predictor of CE activity in HLMs. Identification of the factors that lead to altered CE activities in HLMs will be important to characterize since several pharmaceutical agents, environmental toxicants, and endobiotics are metabolized by these enzymes.  相似文献   

15.
ProapoA-I (apoA-i+2 isoform) is the major apoA-I isoprotein secreted by the liver and intestine; however, it is a minor isoprotein in plasma and lymph where the major A-I apo-lipoprotein is mature apoA-I (apoA-I0, apoA-I-1, and apoA-I-2 isoforms). In the present report we provide evidence that apoA-I is rapidly and quantitatively converted to mature apoA-I, and the mature apoA-I isoforms are catabolized at equal rates. In these studies, human proapoA-I was isolated from thoracic duct chylomicrons collected during active fat absorption and mature apoA-I was isolated from plasma high density lipoproteins. The isolated lipoproteins were delipidated, fractionated by gel permeation chromatography, and the individual apoA-I isoforms were separated by preparative isoelectrofocusing. The metabolism of apoA-I isoproteins was studied in normal volunteers (N = 6) in a metabolic ward. In the first study proapoA-I and mature apoA-I (apoA-I0 isoform) were injected simultaneously into two normal subjects and the conversion of proapoA-I to mature apoA-I and the decay of radioactivity were followed in plasma and HDL over a 14-day period. ProapoA-I was rapidly and completely converted to mature apoA-I with a fractional rate of conversion of 4.0 pools/day. The average residence times of proapoA-I and mature apoA-I were 0.23 and 6.5 days, respectively. The mature apoA-I derived from proapoA-I had a residence time which was the same as the injected mature apoA-I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Twelve individuals have been described with glycerol kinase deficiency. Five of these individuals are adults who were noted incidentally to have pseudohypertriglyceridemia. Six of these individuals are children who manifest a clinical complex which includes adrenal hypoplasia/insufficiency and developmental delay. Another child has intermittent coma, a normal IQ, and no evidence of adrenal insufficiency. Genetic and biochemical hypotheses are proposed to explain this clinical variability. Glycerol kinase binds specifically and reversibly to the porin, the pore-forming protein of the outer mitochondrial membrane, which also binds hexokinase. Mutations affecting any component of this kinase-binding system will alter the properties of this system. Glycerol kinase deficiency, as an inborn error of this compartmented metabolic system, offers an investigational opportunity for studying this microenvironment.  相似文献   

18.
19.
Chronic exposure to high altitude is known to result in changes in the mechanisms regulating O(2) delivery to the contracting muscle. However, the effects of acclimatization on metabolism in the contracting muscle cell remain unclear. In this study, we have investigated the hypothesis that acclimatization would result in a closer coupling between ATP utilization and ATP production and that the improved energy state would be accompanied by a reorganization of the metabolic pathways consisting of an increased oxidative and decreased glycolytic potential. Five men, mean age of 28 +/- 2 (SE) yr, performed a standardized, two-stage submaximal cycling task in normoxia for 20 min at each of 59 and 74% peak O(2) consumption before and 3-4 days after returning from a 21-day expedition to Mount Denali (6,194 m). Acclimatization was without effect in altering the resting values of the adenine nucleotides (ATP, ADP, AMP), inosine monophosphate (IMP), or phosphocreatine (PCr) in the vastus lateralis. During exercise (40 min) after acclimatization compared with preacclimatization, PCr was not as depressed (33.2 +/- 7.1 vs. 40.6 +/- 5.4 mmol/kg dry wt) and IMP (0.289 +/- 0.11 vs. 0. 131 +/- 0.03 mmol/kg dry wt) and lactate (26.1 +/- 6.2 vs. 18.6 +/- 8.8 mmol/kg dry wt) in contracting muscle were not as elevated (P < 0.05). Although no effect of acclimatization was observed for the maximal activity (mol. kg protein(-1). h(-1)) of citrate synthase (4. 76 +/- 0.44 vs. 4.94 +/- 0.45), lactate dehydrogenase was increased by 13% (36.5 +/- 2.6 vs. 41.2 +/- 3.1, P < 0.05). It is concluded that acclimatization results in an improved energy state in the contracting muscle when tested under normoxic conditions; however, these effects are not associated with a higher oxidative potential or a lower glycolytic potential as hypothesized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号