首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early (4 h) adsorption of Rhizobium meliloti L5-30 in low numbers to alfalfa roots in mineral solution was examined for competition with other bacterial strains. All tested competitor strains decreased the adsorption of L5-30 by extents which depended on the strain and its concentration. The decrease of adsorption by R. meliloti competitors (all of them infective in alfalfa) was nearly complete at saturation (97 to 99% decrease). All other heterologous rhizobia and Agrobacterium tumefaciens at saturating concentrations (106 to 107 per ml) decreased adsorption of L5-30 only partially, less than 60%. The differential effects of homologous and heterologous competitors indicate that initial adsorption of R. meliloti to the root surface of its host occurs in symbiont-specific as well as nonspecific modes and suggest the existence of binding sites on roots which are highly selective for the specific microsymbiont in the presence of other heterologous bacteria even in very unfavorable (less than 10−4) symbiont-competitor concentration ratios.  相似文献   

2.
Alfalfa (Medicago sativa L.) releases different flavonoids from seeds and roots. Imbibing seeds discharge 3′,4′,5,7-substituted flavonoids; roots exude 5-deoxy molecules. Many, but not all, of these flavonoids induce nodulation (nod) genes in Rhizobium meliloti. The dominant flavonoid released from alfalfa seeds is identified here as quercetin-3-O-galactoside, a molecule that does not induce nod genes. Low concentrations (1-10 micromolar) of this compound, as well as luteolin-7-O-glucoside, another major flavonoid released from germinating seeds, and the aglycones, quercetin and luteolin, increase growth rate of R. meliloti in a defined minimal medium. Tests show that the 5,7-dihydroxyl substitution pattern on those molecules was primarily responsible for the growth effect, thus explaining how 5-deoxy flavonoids in root exudates fail to enhance growth of R. meliloti. Luteolin increases growth by a mechanism separate from its capacity to induce rhizobial nod genes, because it still enhanced growth rate of R. meliloti lacking functional copies of the three known nodD genes. Quercetin and luteolin also increased growth rate of Pseudomonas putida. They had no effect on growth rate of Bacillus subtilis or Agrobacterium tumefaciens, but they slowed growth of two fungal pathogens of alfalfa. These results suggest that alfalfa can create ecochemical zones for controlling soil microbes by releasing structurally different flavonoids from seeds and roots.  相似文献   

3.
Using a plate induction assay, we demonstrate that alfalfa exudes inducer of Rhizobium meliloti nodulation genes. The inducer is exuded from the infectible zone of the root, accumulates to at least 1 micromolar, and is not affected by 10 millimolar nitrate. No zones of inhibition are observed. A nodulation minus mutant line of alfalfa, MN-1008, exudes normal levels of inducer. R. meliloti grown in rich medium requires ten-fold higher concentrations of luteolin to achieve half-maximal induction as compared to cells grown in a minimal medium. Flavonoids other than luteolin are found to have activity in R. meliloti nodulation gene induction assays. The compounds apigenin and eriodictyol have activities two-fifths and one-seventh that of luteolin, respectively. Several of the flavonoids tested (morin = naringenin > kaempferol = chrysin > quercetin = fisetin = hesperitin) demonstrate antagonistic activity toward induction by luteolin. The most effective antagonist is the coumarin, umbelliferone.  相似文献   

4.
5.
The addition of streptomycin to nonsterile soil suppressed the numbers of bacterial cells in the rhizosphere of alfalfa (Medicago sativa L.) for several days, resulted in the enhanced growth of a streptomycin-resistant strain of Rhizobium meliloti, and increased the numbers of nodules on the alfalfa roots. A bacterial mixture inoculated into sterile soil inhibited the colonization of alfalfa roots by R. meliloti, caused a diminution in the number of nodules, and reduced plant growth. Enterobacter aerogenes, Pseudomonas marginalis, Acinetobacter sp., and Klebsiella pneumoniae suppressed the colonization by R. meliloti of roots grown on agar and reduced nodulation by R. meliloti, the suppression of nodulation being statistically significant for the first three species. Bradyrhizobium sp. and “Sarcina lutea” did not suppress root colonization nor nodulation by R. meliloti. The doubling times in the rhizosphere for E. aerogenes, P. marginalis, Acinetobacter sp., and K. pneumoniae were less and the doubling times for Bradyrhizobium sp. and “S. lutea” were greater than the doubling time of R. meliloti. Under the same conditions, Arthrobacter citreus injured alfalfa roots. We suggest that competition by soil bacteria reduces nodulation by rhizobia in soil and that the extent of inhibition is related to the growth rates of the rhizosphere bacteria.  相似文献   

6.
Paau A  Cowles JR 《Plant physiology》1975,56(4):526-528
DNA dependent-DNA polymerase activity was established and partially purified from extracts of cultured Rhizobium meliloti, F-28, and nodule bacteroids (R. meliloti, F-28) of alfalfa plants (Medicago sativa). Polymerase activity in the partially purified fractions showed characteristic dependence on Mg2+, DNA, and a full complement of deoxyribonucleoside triphosphates. DNase activity, preference of “activated” double strand DNA, and inhibition by p-chloromercuribenzoate and MnCl2 were responses common to both systems. The two systems however did exhibit some differences in pH, Mg2+, and primer optima. Polymerase activity in crude extracts of the cultured bacteria was more stable and had 10- to 18-fold greater specific activity than the bacteroid extracts. Preliminary measurements of specific DNA polymerase activity in crude extracts of cultured Rhizobium japonicum were not significantly higher than that in the crude extracts of soybean nodule bacteroids. A possible correlation between DNA synthesis and the successful establishment of rhizobia-legume symbiosis is discussed.  相似文献   

7.
Luteolin, a flavone present in seed exudates of alfalfa, induces nodulation genes (nod) in Rhizobium meliloti and also serves as a biochemically specific chemoattractant for the bacterium. The present work shows that R. meliloti RCR2011 is capable of very similar chemotactic responses towards 4′,7-dihydroxyflavone, 4′,7-Dihydroxyflavanone, and 4,4′-dihydroxy-2-methoxychalcone, the three principal nod gene inducers secreted by alfalfa roots. Chemotactic responses to the root-secreted nod inducers in capillary assays were usually two- to four-fold above background and, for the flavone and flavonone, occurred at concentrations lower than those required for half-maximal induction of the nodABC genes. Complementation experiments indicated that the lack of chemotactic responsiveness to luteolin seen in nodD1 and nodA mutants of R. meliloti was not due to mutations in the nod genes, as previously thought. Thus, while nod gene induction and flavonoid chemotaxis have the same biochemical specificity, these two functions appear to have independent receptors or transduction pathways. The wild-type strain was found to suffer selective, spontaneous loss of chemotaxis towards flavonoids during laboratory subculture.  相似文献   

8.
9.
10.
Rhizobium meliloti bacteroids carrying mutations in either fdxNor fixX isolated from alfalfa root nodules were shown to containthe nitrogenase proteins NifH, NifD and NifK. In contrast toan in vitro system of N2-fixation based on R. meliloti wild-typebacteroids, nitrogenase activity could not be restored in crudeextracts of these mutant bacteroids by the addition of an artificialelectron donor, indicating that the nitrogenase proteins werepresent but not functional. ESR-studies revealed that both mutantslacked the FeMo-cofactor of nitrogenase. To analyse the roleof free O2 on the damage of the nitrogenase components and theFeMo-cofactor in these mutant bacteroids, microelectrode studiesof O2 concentrations and gradients within alfalfa root noduleswere carried out. R. meliloti mutants defective in other genesnecessary for symbiotic N2-fixation were also included in thisstudy. Four distinct types of O2 gradients were defined by theapparent presence or absence of an O2 diffusion barrier andby the minimum internal O2 concentration. These data clearlydemonstrated the influence of the microsymbiont on the O2 gradientswithin the nodules. Nodules induced by Rm0540, an R. melilotimutant with altered exopolysaccharide production, which is notable to infect plant cells, did not contain an O2 diffusionbarrier. In contrast, nodules containing a mutant defectivein dicarboxylate transport (dctA-), produced an O2 gradientsimilar to the wild-type. Microelectrode measurements revealedH2 concentrations in alfalfa wild-type nodules comparable tosoyabean, whereas no hydrogen could be detected in nodules harbouringthe dctA mutant or any other mutant strain. Key words: Nitrogen fixation, Rhizobium meliloti bacteroids, ferredoxin-like proteins, microelectrode studies  相似文献   

11.
Nodule formation by wild-type Rhizobium meliloti is strongly suppressed in younger parts of alfalfa (Medicago sativum L.) root systems as a feedback response to development of the first nodules (G Caetano-Anollés, WD Bauer [1988] Planta 175: 546-557). Mutants of R. meliloti deficient in exopolysaccharide synthesis can induce the formation of organized nodular structures (pseudonodules) on alfalfa roots but are defective in their ability to invade and multiply within host tissues. The formation of empty pseudonodules by exo mutants was found to elicit a feedback suppression of nodule formation similar to that elicited by the wild-type bacteria. Inoculation of an exo mutant onto one side of a split-root system 24 hours before inoculation of the second side with wild-type cells suppressed wild-type nodule formation on the second side in proportion to the extent of pseudonodule formation by the exo mutants. The formation of pseudonodules is thus sufficient to elicit systemic feedback control of nodulation in the host root system: infection thread development and internal proliferation of the bacteria are not required for elicitation of feedback. Pseudonodule formation by the exo mutants was found to be strongly suppressed in split-root systems by prior inoculation on the opposite side with the wild type. Thus, feedback control elicited by the wild-type inhibits Rhizobium-induced redifferentiation of host root cells.  相似文献   

12.
A DNA fragment containing the RP4 mob function, as well as the gentamicin and spectinomycin resistance genes, was inserted by gene replacement onto the megaplasmid 2 (pM2) of Rhizobium meliloti 0540 (Inf EPS), resulting in PG101 (Inf EPS). The self-transfer of pM2 and the mobilization of pM2 by plasmid RP4-4 were investigated during conjugation between PG101 and R. meliloti 2526 (Nod). In filter conjugations, pM2 was readily mobilized by RP4-4. In addition to this, the self-transfer of one megaplasmid (pM) was detected at a frequency of 3 × 10−7. Bacteria isolated from the nodules of alfalfa and coinoculated with strains PG101 and 2526 showed that pM2 was mobilized at a frequency of approximately 7 × 10−5. Bacterial cell numbers were too low in the nodules for detection of the self-transfer of pM2 to occur. No pM2 transfer was detected in the inoculum. A comparison of the transfer frequencies for the various conjugation conditions revealed that pM2 transfer occurred as frequently in the nodules as in filter conjugations. These results indicate that the nodule creates conditions for gene transfer that are comparable to optimal laboratory conditions.  相似文献   

13.
14.
The ability of indigenous Rhizobium leguminosarum and Rhizobium meliloti to use organic nutrients as growth substrates in soil was assessed by indirect bacteriophage analysis. A total of 17 organic compounds, including 9 carbohydrates, 3 organic acids, and 5 amino acids, were tested (1,000 μg g−1) in three soils with different cropping histories. Four additional soils were screened with a glucose amendment. Nutrient amendments stimulated growth of indigenous rhizobia, allowing subsequent replication of indigenous bacteriophages. Phage populations were enumerated by plating soil extracts on 19 R. leguminosarum and 9 R. meliloti indicator strains, including root nodule isolates from the soils assayed. On the basis of indirect phage analysis, all soils contained native rhizobia similar to one or more of the indicator strains, although not all indicator strains were detected in soil. All organic compounds stimulated growth of indigenous rhizobia, but the growth response varied for each rhizobial strain depending on the nutrient, the nutrient concentration, and the soil. Indigenous rhizobia readily utilized most organic compounds except phenylalanine, glycine, and aspartic acid. The ability of indigenous rhizobia to utilize a wide range of organic compounds as growth substrates in situ indicates their ability to successfully compete with other soil bacteria for nutrients in these soils.  相似文献   

15.
A series of Rhizobium meliloti and Rhizobium trifolii strains were used as inocula for alfalfa and clover, respectively, grown under bacteriologically controlled conditions. Replicate samples of nodules formed by each strain were assayed for rates of H2 evolution in air, rates of H2 evolution under Ar and O2, and rates of C2H2 reduction. Nodules formed by all strains of R. meliloti and R. trifolii on their respective hosts lost at least 17% of the electron flow through nitrogenase as evolved H2. The mean loss from alfalfa nodules formed by 19 R. meliloti strains was 25%, and the mean loss from clover nodules formed by seven R. trifolii strains was 35%. R. meliloti and R. trifolii strains also were cultured under conditions that were previously established for derepression of hydrogenase synthesis. Only strains 102F65 and 102F51 of R. meliloti showed measurable activity under free-living conditions. Bacteroids from nodules formed by the two strains showing hydrogenase activity under free-living conditions also oxidized H2 at low rates. The specific activity of hydrogenase in bacteroids formed by either strain 102F65 or strain 102F51 of R. meliloti was less than 0.1% of the specific activity of the hydrogenase system in bacteroids formed by H2 uptake-positive Rhizobium japonicum USDA 110, which has been investigated previously. R. meliloti and R. trifolii strains tested possessed insufficient hydrogenase to recycle a substantial proportion of the H2 evolved from the nitrogenase reaction in nodules of their hosts. Additional research is needed, therefore, to develop strains of R. meliloti and R. trifolii that possess an adequate H2-recycling system.  相似文献   

16.
17.
Several carbon metabolism enzymes were measured in cultured cells and bacteroids of Rhizobium meliloti 102F51 and in alfalfa root nodule cytosol. The enzyme activity levels of the pentose phosphate pathway were much higher than those of the Embden-Meyerhof-Parnas or Entner-Doudoroff pathways in extracts of cultured cells. The pattern of enzyme activities in the bacteroids was different from that of cultured cells.  相似文献   

18.
19.
20.
Extracellular enzymes from alfalfa (Medicago sativa L.) involved in the degradation of nodulation (Nod) factors could be distinguished by their different cleavage specificities and were separated by lectin affinity chromatography. A particular glycoprotein was able to release an acylated lipo-disaccharide from all tested Nod factors having an oligosaccharide chain length of four or five residues. Structural modifications of the basic lipo-chitooligosaccharide did not affect the cleavage site and had only weak influence on the cleavage efficiency of Nod factors tested. The acylated lipo-trisaccharide was resistant to degradation. When alfalfa roots were preincubated with Nod factors at nanomolar concentrations, the activity of the dimer-forming enzyme was stimulated up to 6-fold within a few hours. The inducing activity of Nod factors decreased in the order NodRm-IV(C16:2,Ac,S) > NodRm-IV(C16:2,S) and NodRm-V(C16:2,Ac,S) > NodRm-V(C16:2,S) > NodRm-IV(C16:0,S) > NodRm-IV(C16:2). Pretreatment with NodRm-III(C16:2) as well as unmodified chitooligosaccharides did not stimulate the dimer-forming enzyme. Roots preincubated with Rhizobium meliloti showed similar stimulation of the dimer-forming activity. Mutant strains unable to produce Nod factors did not enhance the hydrolytic activity. These results indicate a rapid feedback inactivation of Nod signals after their perception by the host plant alfalfa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号