首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《FEBS letters》1987,213(2):411-414
A glucosyltransferase catalysing formation of bile acid glucosides was recently isolated from human liver microsomes. In order to investigate the potential occurrence of such bile acid derivatives in vivo, a method was devised for their isolation and purification from urine. Conditions were established with the aid of glucosides of radiolabelled, unconjugated glycine and taurine conjugated bile acids prepared enzymatically using human liver microsomes. Analysis by gas chromatography and mass spectrometry of methyl ester trimethylsilyl ether derivatives indicated the excretion of glucosides of nonamidated hyodeoxycholic, chenodeoxycholic, deoxycholic, ursodeoxycholic and cholic acids and of glycine and taurine conjugated chenodeoxycholic and cholic acids. Additional compounds were present giving mass spectral fragmentation patterns typical ofdi- and trihydroxy bile acid glycosides. Semiquantitative estimates indicated a total daily excretion of about 1 μmol.  相似文献   

2.
Farnesoid X receptor knockout (Fxr(-/-)) mice cannot upregulate the bile salt export pump in bile acid loading or cholestatic conditions. To investigate whether Fxr(-/-) mice differ in bile acid detoxification compared with wild-type mice, we performed a comprehensive analysis of bile acids extracted from liver, bile, serum, and urine of naive and common bile duct-ligated wild-type and Fxr(-/-) mice using electrospray and gas chromatography mass spectrometry. In addition, hepatic and renal gene expression levels of Cyp2b10 and Cyp3a11, and protein expression levels of putative renal bile acid-transporting proteins, were investigated. We found significantly enhanced hepatic bile acid hydroxylation in Fxr(-/-) mice, in particular hydroxylations of cholic acid in the 1beta, 2beta, 4beta, 6alpha, 6beta, 22, or 23 position and a significantly enhanced excretion of these metabolites in urine. The gene expression level of Cyp3a11 was increased in the liver of Fxr(-/-) mice, whereas the protein expression levels of multidrug resistance-related protein 4 (Mrp4) were increased in kidneys of both genotypes during common bile duct ligation. In conclusion, Fxr(-/-) mice detoxify accumulating bile acids in the liver by enhanced hydroxylation reactions probably catalyzed by Cyp3a11. The metabolites formed were excreted into urine, most likely with the participation of Mrp4.  相似文献   

3.
Bile acid homeostasis is tightly maintained through interactions between the liver, intestine, and kidney. During cholestasis, the liver is incapable of properly clearing bile acids from the circulation, and alternative excretory pathways are utilized. In obstructive cholestasis, urinary elimination is often increased, and this pathway is further enhanced after bile duct ligation in mice that are genetically deficient in the heteromeric, basolateral organic solute transporter alpha-beta (Ostα-Ostβ). In this study, we examined renal and intestinal function in Ostα-deficient and wild-type mice in a model of bile acid overload. After 1% cholic acid feeding, Ostα-deficient mice had significantly lower serum ALT levels compared with wild-type controls, indicating partial protection from liver injury. Urinary clearance of bile acids, but not clearance of [(3)H]inulin, was significantly higher in cholic acid-fed Ostα-deficient mice compared with wild-type mice but was not sufficient to account for the protection. Fecal excretion of bile acids over the 5 days of cholic acid feeding was responsible for almost all of the bile acid loss in Ostα-deficient mice, suggesting that intestinal losses of bile acids accounted for the protection from liver injury. Thus fecal loss of bile acids after bile acid overload reduced the need for the kidney to filter and excrete the excess bile acids. In conclusion, Ostα-deficient mice efficiently eliminate excess bile acids via the feces. Inhibition of intestinal bile acid absorption might be an effective therapeutic target in early stages of cholestasis when bile acids are still excreted into bile.  相似文献   

4.
The objective of the present study was to investigate the cholesterol-reducing effect of medium-chain fatty acids (MCFAs) completed by elevated excretion of fecal neutral steroids and/or bile acids. Blood and liver lipid profiles, fecal neutral steroids, bile acids, and mRNA and protein expression of the genes relevant to cholesterol homeostasis were measured and analyzed in C57BL/6J mice fed a cholesterol-rich diet with 2% caprylic acid or capric acid for 12 weeks. Blood total cholesterol and low-density lipoprotein cholesterol (LDL-c) levels were reduced significantly as compared to diet with palmitic acid or stearic acid. Caprylic acid promoted the excretion of fecal neutral steroids, especially cholesterol. The excretion of fecal bile acids, mainly in the form of cholic acid was enhanced and accompanied by elevated expression of mRNA and the protein of hepatic cholesterol 7α-hydroxylase (CYP7A1). These results indicate that MCFAs can reduce blood cholesterol by promoting the excretion of fecal cholesterol and cholic acid.  相似文献   

5.
The effect of bile duct ligation during pregnancy in rats (thereby increasing maternal plasma bile acids levels) on the bile acid content and composition in the fetus was examined. In spite of 30-fold increase in maternal plasma cholic acid, the bile acid content in the fetus of bile duct ligated rats was significantly lower (P <0.05) with a significant reduction in cholic acid content. Plasma cholesterol levels of fetuses from bile duct ligated rats were also significantly lower (p <0.05). In addition to the commonly expected bile acids, gas-liquid Chromatographic analysis of the fetal bile acid pool showed peaks corresponding to several secondary bile acids. These results suggest that the transfer of primary bile acids of maternal origin into the fetus is minimal.  相似文献   

6.
Tomatine is a virtually nonabsorbable saponin which has been used as an antifungal agent and analytically as a cholesterol precipitant. It was used in this study to determine whether or not it can form a complex with cholesterol in vivo in the rat intestine and what effects such complex formation would have on cholesterol metabolism. Rats that were fed tomatine as 1% of the diet had a decreased uptake of dietary cholesterol by the liver, an increased rate of hepatic and intestinal cholesterol synthesis as well as a partial offsetting of the dietary cholesterol-induced decrease in hepatic cholesterogenesis, and an apparent increase in sterol excretion without an effect on bile acid excretion. In vitro, tomatine did not sequester cholic acid as did cholestyramine. The results show that tomatine has an effect on cholesterol absorption and on other aspects of lipid metabolism in the rat similar to that of cholestyramine, with the notable exception that tomatine increased sterol excretion while cholestyramine increased bile acid excretion. It was suggested that tomatine forms a nonabsorbable complex with cholesterol in the rat intestine.  相似文献   

7.
Duodenal bile, urine, plasma, and feces from a child with hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency were analyzed by fast atom bombardment mass spectrometry and gas chromatography-mass spectrometry to investigate the formation and excretion of abnormal bile acids and bile alcohols. The biliary bile salts consisted of glycocholic acid (25%) and of sulfated and glycine conjugated di- and trihydroxycholenoic acids (55%), two C27 bile acids, and eleven sulfated bile alcohols (mainly tetrols, 20%), all having 3 beta,7 alpha-dihydroxy-delta 5 or 3 beta,7 alpha,12 alpha-trihydroxy-delta 5 ring structures. In plasma, sulfated cholenoic acids constituted 65% and unconjugated 3 beta,7 alpha-dihydroxy-5-cholestenoic acid 25% of the total level, 71 micrograms/ml. The urinary excretion of the former was 30.4 mg/day and that of unsaturated bile alcohol sulfates, mainly pentols, 7 mg/day. The predominant bile acid in feces was an unconjugated epimer of 3 beta,7 alpha,12 alpha-trihydroxy-5-cholenoic acid, and small amounts of cholic acid were present. The minimum total excretion was 11.3 mg/day. Treatment with chenodeoxycholic acid resulted in marked clinical improvement and normalized liver function tests. Further studies are needed to define the mechanism of action. Plasma bile acids decreased to 1.6 micrograms/ml and urinary excretion to 3.4 mg/day. Chenodeoxycholic and ursodeoxycholic acids became predominant in all samples. The fecal excretion of unsaturated cholenoic acid sulfates increased to 40 mg/day compared to 89 mg/day of saturated bile acids. The results provide further support for a defective hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency, and indicate that the 3 beta-hydroxy-delta 5 bile acids are formed via 7 alpha-hydroxycholesterol. The formation of glycocholic acid may be due to an incomplete enzyme defect or to transformation of the 3 beta-hydroxy-delta 5 structure by bacterial and hepatic enzymes during an enterohepatic circulation.  相似文献   

8.
The effects of bile duct ligation on bile acid and cholesterol metabolism were examined in male Wistar strain rats. Quantitative and qualitative changes of bile acids and cholesterol in serum and urine occurred; beta-muricholic acid predominantly increased in serum and urine and the ratio of urinary cholic acid and beta-muricholic acid changed from about 5:3 on day 1 to about 1:8 on day 5 under biliary obstruction. The form of the increased urinary bile acids was mainly taurine-conjugated and partly sulfated. Under conditions of bile duct ligation on day 5, 14C-labeled 3 beta-hydroxy-5-cholenoic, lithocholic, and chenodeoxycholic acids were intragastrically administered to the rats after pretreatment with antibiotics and the metabolites of these three acids were investigated. 3 beta-Hydroxy-5-cholenoic acid was most efficiently converted to beta-muricholic acid. The present study strongly suggested the presence of an alternative metabolic pathway induced by bile duct ligation, which caused the change in composition of urinary bile acids, and especially the marked increase in beta-muricholic acid formation. A possible alternative pathway for bile acid biosynthesis under biliary obstruction in rats is postulated.  相似文献   

9.
The principal bile acid of Mongolian gerbil bile is cholic acid, although small amounts of chenodeoxycholic and lesser amounts of deoxycholic acids are identified. Muricholic acids were not found in gerbil bile. The ratio of trihydroxy to dihydroxy bile acids in gerbil bile is approximately 11:1. After administration of [4-(14)C]5alpha-cholestan-3beta-ol to gerbils with bile fistulas, 4-7% of the administered (14)C was recovered in bile and 16% in urine on the first 6 days. Alkaline hydrolysis of the bile afforded the biliary acids which were separated by partition chromatography. The (14)C ratio of trihydroxy to dihydroxy bile acids was 11:1. Allocholic acid was identified as the major acidic biliary metabolite. From analysis of (14)C retained in selected tissues, the adrenal gland appears to be an important site for retention of cholestanol or its metabolites.  相似文献   

10.
Normal and alloxan-diabetic male mice (Crj-ICR) were fed a diet containing 0.5% cholesterol for 5 and 10 weeks, and gallbladder bile was analyzed for cholesterol, phospholipids and bile acids, feces for sterols and bile acids, and plasma and liver for cholesterol, phospholipids, and triglycerides. Normal mice developed no gallstones but the diabetic mice developed cholesterol gallstones with an incidence of 70% by 5 weeks and 80% by 10 weeks after feeding of the cholesterol diet. Diabetic mice fed the ordinary diet also developed stones (23%) by 10 weeks. In the diabetic mice, the gallbladder was enlarged about threefold, and biliary lipid concentration, diet intake, and fecal excretion of sterols and bile acids increased but body weight decreased. Cholic acid and beta-muricholic acid comprised over 40% each of the total biliary bile acids in normal mice, but cholic acid increased to about 80% and beta-muricholic acid decreased to a few percent in the diabetic mice. Fecal excretion of bile acids increased after cholesterol feeding in both normal and diabetic mice, but the increased bile acid in the normal animals was beta-muricholic acid and that in the diabetic mice was deoxycholic acid. The mice that developed gallstones showed a marked increase in biliary cholesterol value and decreases in gallbladder bile and bile acid concentration, but no difference in biliary and fecal bile acid composition, bile acid synthesis, fecal sterols, or plasma and liver lipid levels. Cholesterol absorption was increased in the diabetic mice when examined by plasma 14C/3H ratio and fecal 14C-labeled sterol excretion after a single oral administration of [14C]cholesterol and a simultaneous intravenous injection of [3H]cholesterol. These data led to the conclusion that cholesterol gallstones developed in alloxan-diabetic mice fed excess cholesterol, due to the hyperphagia and the enhancement of cholesterol absorption caused by increases in the synthesis and secretion of cholic acid.  相似文献   

11.
Fatty acid bile acid conjugates (FABACs) prevent and dissolve cholesterol gallstones and prevent diet induced fatty liver, in mice. The present studies aimed to test their hypocholesterolemic effects in mice. Gallstone susceptible (C57L/J) mice, on high fat (HFD) or regular diet (RD), were treated with the conjugate of cholic acid with arachidic acid (FABAC; Aramchol). FABAC reduced the elevated plasma cholesterol levels induced by the HFD. In C57L/J mice, FABAC reduced plasma cholesterol by 50% (p < 0.001). In mice fed HFD, hepatic cholesterol synthesis was reduced, whereas CYP7A1 activity and expression were increased by FABAC. The ratio of fecal bile acids/neutral sterols was increased, as was the total fecal sterol excretion. In conclusion, FABACs markedly reduce elevated plasma cholesterol in mice by reducing the hepatic synthesis of cholesterol, in conjunction with an increase of its catabolism and excretion from the body.  相似文献   

12.
In this qualitative study of the pattern of bile acid excretion in cholestasis, methods are described for the isolation of bile acids from large volumes of urine and plasma. The bile acids were subjected to a group separation and identified by combined gas chromatography-mass spectrometry. The techniques were developed to allow identification of the minor components of the bile acid mixture. Four bile acids that have not previously been described in human urine and plasma were detected, namely 3beta, 7alpha-dihydroxy-5beta-cholan-24-oic acid, 3alpha, 6alpha-dihydroxy-5beta-cholan-24-oic acid (hyodeoxycholic acid), 3alpha, 6alpha, 7alpha-trihydroxy-5beta-cholan-24-oic acid (hyocholic acid) and 3alpha, 7beta, 12alpha-trihydroxy-5beta-cholan-24-oic acid. In addition three C27 steroids were found; 26-hydroxycholesterol and a trihydroxy cholestane, probably 5 beta-cholestane-3alpha, 7alpha, 26-triol were found in the sulphate fraction of plasma and urine. In the plasma sample, a sulphate conjugate of 24-hydroxycholesterol was found. The presence of these compounds probably reflects the existence of further pathways for bile acid metabolism. It is not yet known whether this is a consequence of the cholestasis or whether they are also present in normal man, at much lower concentrations.  相似文献   

13.
The conjugate pattern of biliary [14C]bile acids was investigated in isolated perfused rat livers, which were infused with either [24-14C]cholic acid or [24-14C]chenodeoxycholic acid (40 mumol/h) together with or without taurine or cysteine (80 mumol/h). [14C]Bile acids were chromatographed on a thin-layer plate and the distribution of radioactivity on the plate was measured by radioscanning. The biliary excretion of [14C]bile acids was greater in the infusion with [14C]cholic acid than in the infusion with [14C]chenodeoxycholic acid. Biliary unconjugated [14C]bile acids amounted to about 50% of the total after the infusion with [14C]cholic acid, while only about 10% with [14C]chenodeoxycholic acid. In the initial period of infusion, biliary conjugated [14C]bile acids consisted mostly of the taurine conjugate, which decreased with time and the glycine conjugate increased complementarily. When taurine was simultaneously infused, the decrease in the taurine conjugate was suppressed to some extent. Cysteine infused in place of taurine had a similar influence but was less effective than taurine. The taurine content of liver after the infusion with either of the [14C]bile acids decreased greatly compared with that before the infusion, even when taurine or cysteine was infused simultaneously. The glycine content also decreased after the infusion, but the decrease in glycine was smaller than that in taurine. The results suggest that the conjugate pattern of biliary bile acids in rats depends mainly on the amount of taurine which is supplied to hepatic cells either exogenously from plasma or endogenously within themselves.  相似文献   

14.
H Danielsson 《Steroids》1973,22(4):567-579
The effect of biliary obstruction in the rat on several hydroxylations involved in the formation and metabolism of bile acids was studied. The hydroxylations studied were all catalyzed by the microsomal fraction of liver homogenate fortified with NADPH. The rate of 7α-hydroxylation of cholesterol increased two- to threefold between 24 and 48 hours after ligation of the bile duct and remained at this level the next 48 hours. During the first 24 hours of obstruction the rates of 1 2α-hydroxylation of 7α-hydroxy-4-cholesten-3-one and 7α-hydroxylation of taurodeoxycholic acid decreased but returned to control levels between 24 and 48 hours after operation. The rate of 6β-hydroxylation of lithocholic acid and taurochenodeoxycholic acid increased gradually and reached a plateau between 24 and 48 hours at which time the rate was two to three times faster than in the controls. The increase in 6β-hydroxylase activity was reflected in the pattern of the bile acids excreted in urine. After 48 hours of obstruction β-muricholic acid accounted for 50% or more of the bile acids in urine.  相似文献   

15.
16.
Accumulation of hydrophobic bile acids during cholestasis leads to generation of oxygen free radicals in the liver. Accordingly, this study investigated whether polyphenols from green tea Camellia sinenesis, which are potent free radical scavengers, decrease hepatic injury caused by experimental cholestasis. Rats were fed a standard chow or a diet containing 0.1% polyphenolic extracts from C. sinenesis starting 3 days before bile duct ligation. After bile duct ligation, serum alanine transaminase increased to 760 U/l after 1 day in rats fed a control diet. Focal necrosis and bile duct proliferation were also observed after 1-2 days, and fibrosis developed 2-3 wk after bile duct ligation. Additionally, procollagen-alpha1(I) mRNA increased 30-fold 3 wk after bile duct ligation, accompanied by increased expression of alpha-smooth muscle actin and transforming growth factor-beta and the accumulation of 4-hydroxynenonal, an end product of lipid peroxidation. Polyphenol feeding blocked or blunted all of these bile duct ligation-dependent changes by 45-73%. Together, the results indicate that cholestasis due to bile duct ligation causes liver injury by mechanisms involving oxidative stress. Polyphenols from C. sinenesis scavenge oxygen radicals and prevent activation of stellate cells, thereby minimizing liver fibrosis.  相似文献   

17.
The quantity of bile secreted during 24 hours and the concentration of total bile acids in adult 11--12-months-old and aged 27--29-month-old rats were determined by cannulation of common bile duct. As revealed, the difference in bile acid production and in the concentrations of cholesterol fractions in the liver and plasma between the adult and aged rats on a standard diet was insignificant. But the excretion of bile acids was markedly elevated both in adult and aged rats on atherogenous diet. The level of total and ester cholesterol in the plasma was higher in aged rats than in adult animals.  相似文献   

18.
Kittens were adapted to a semipurified diet and then fed either a control diet that contained 0.1% taurine or a taurine-free diet for 6 weeks; at the end of the feeding period, kittens fed the taurine-free diet had plasma and liver taurine concentrations that were 0.38 and 0.15%, respectively, of those for control kittens. Hepatic cysteinesulfinate decarboxylase activity in taurine-deficient kittens was five-times the level in control kittens, but hepatic cysteine dioxygenase activity was not affected by the dietary treatment. Taurine-conjugated bile acids made up 98% of the total bile acids in the gall bladder of control kittens, but they accounted for only 44% of the total bile acids in the bile of taurine-depleted kittens; both the concentrations of taurine-conjugated bile acids and total bile acids were markedly decreased in taurine-deficient kittens. No effect of taurine depletion on the fractional excretion of taurine in the urine was observed. The kitten may have some mechanisms for adapting to a low-taurine diet, but these are clearly not sufficient to maintain tissue taurine levels in the absence of dietary taurine.  相似文献   

19.
20.
Ketonic bile acids have been found to be quantitatively important in urine of healthy infants during the neonatal period. In order to determine their structures, the bile acids in urine from 11 healthy infants were analyzed by gas-liquid chromatography-mass spectrometry (GLC-MS) and three samples with particularly high levels of ketonic bile acids were selected for detailed studies by ion exchange chromatography, fast atom bombardment mass spectrometry, microchemical reactions, and GLC-MS. The major ketonic bile acid was identified as 7 alpha, 12 alpha-dihydroxy-3-oxo-5 beta-chol-1-enoic acid, not previously described as a naturally occurring bile acid. The positional isomer 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholenoic acid, recently described as a major urinary bile acid in infants with severe liver diseases, was also excreted by most infants. Three acids related to cholic acid were identified: 7 alpha, 12 alpha-dihydroxy-3-oxo-, 3 alpha, 12 alpha-dihydroxy-7-oxo-, and 3 alpha, 7 alpha-dihydroxy-12-oxo-5 beta-cholanoic acids. Five bile acids having one oxo and three hydroxy groups were also present. Based on mass spectra and biological considerations two of these were tentatively given the structures 1 beta, 7 alpha, 12 alpha-trihydroxy-3-oxo- and 1 beta, 3 alpha, 12 alpha-trihydroxy-7-oxo-5 beta-cholanoic acids. Some of the others had a hydroxy group at C-4 or C-2. The levels of ketonic bile acids were higher on the third than on the first day of life, and lower after 1 month. The formation and excretion especially of 3-oxo bile acids is proposed to result from changes of the redox state in the liver in connection with birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号