首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hibernation and daily torpor in an armadillo, the pichi (Zaedyus pichiy)   总被引:2,自引:0,他引:2  
Hibernation and daily torpor are physiological strategies to cope with energetic challenges that occur in many mammalian and avian taxa, but no reliable information exists about daily torpor or hibernation for any xenarthran. Our objective was to determine whether the pichi (Zaedyus pichiy), a small armadillo (Xenarthra, Dasypodidae) that inhabits arid and semi-arid habitats in central and southern Argentina and Chile, enters shallow daily torpor or prolonged deep hibernation during winter when environmental temperature and food availability are low. We studied body temperature changes during winter in semi-captive pichis by means of temperature dataloggers implanted subcutaneously. All individuals entered hibernation, characterized by torpor events of 75 ± 20 h during which the subcutaneous temperature (Tsc) decreased to 14.6 ± 2.1 °C. These events were interrupted by periods of euthermia of 44 ± 38 h with a Tsc of 29.1 ± 0.7 °C. After the hibernation season, daily torpor bouts of 4 to 6 h occurred irregularly, with Tsc dropping to as low as 24.5 °C. We conclude that the pichi is a true hibernator and can enter daily torpor outside of the hibernation season.  相似文献   

2.
Remote measurements of body temperature (Tb) in animals require implantation of relatively large temperature-sensitive radio-transmitters or data loggers, whereas rectal temperature (Trec) measurements require handling and therefore may bias the results. We investigated whether ∼0.1 g temperature-sensitive subcutaneously implanted transponders can be reliably used to quantify thermal biology and torpor use in small mammals. We examined (i) the precision of transponder readings as a function of temperature and (ii) whether subcutaneous transponders can be used to remotely record subcutaneous temperature (Tsub). Five adult male dunnarts (Sminthopsis macroura, body mass 24 g) were implanted with subcutaneous transponders to determine Tsub as a function of time and ambient temperature (Ta), and in comparison to thermocouple readings of Trec. Transponder temperature was highly correlated with water bath temperature (r2=0.96–0.99) over a range of approximately 10.0–40.0 °C. Transponders provided reliable data (±0.6 °C) over the Tsub of 21.4–36.9 °C and could be read from a distance of up to 5 cm. Below 21.4 °C, accuracy was reduced to ±2.8 °C, but individual transponder accuracy varied. Consequently, small subcutaneous transponders are useful to remotely quantify thermal physiology and torpor patterns without having to disturb the animal and disrupt torpor. Even at Tsub<21.4 °C where the accuracy of the temperature readings was reduced, transponders do provide reliable data on whether and when torpor is used.  相似文献   

3.
Several energy-saving strategies have evolved in animals, one example being the short-term reduction of metabolism and body temperature (torpor) in endotherms. For bats, pronounced torpor behaviour has been described. The aim of this study was to assess individual variation in torpor expression of male Myotis daubentonii, and to analyse whether this variation is related to habitat characteristics. For that we measured skin temperatures of bats from different habitats using radio transmitters and also recorded ambient temperature. Skin temperature was corrected for ambient temperature and individual body mass. Cluster analysis of residuals revealed two different thermoregulatory strategies. Males in cluster 1 were more often encountered torpid and reached lower minimum skin temperatures than males in cluster 2. The differences in behaviour were related to environmental variables (water surface area near the roost, roost altitude, precipitation, ambient temperature in the warmest quarter of the year). Males from cluster 1 occupied less favourable habitats (less water surface, higher altitudes, wetter and colder climate) than males from cluster 2. Our data suggest a linkage between torpor behaviour and habitat characteristics. These characteristics could be used to identify favourable and marginal habitats for M. daubentonii.  相似文献   

4.
Turkish hamsters (Mesocricetus brandti) are a model organism for studies of hibernation, yet a detailed account of their torpor characteristics has not been undertaken. This study employed continuous telemetric monitoring of body temperature (T b) in hibernating male and female Turkish hamsters at ambient temperatures (T as) of 5 and 13 °C to precisely characterize torpor bout depth, duration, and frequency, as well as rates of entry into and arousal from torpor. Hamsters generated brief intervals of short (<12 h), shallow test bouts (T b > 20 °C), followed by deep torpor bouts lasting 4–6 days at T a = 5 °C and 2–3 days at T a = 13 °C. Females at T a = 5 °C had longer bouts than males, but maintained higher torpor T b; there were no sex differences at T a = 13 °C. Neither body mass loss nor food intake differed between the two T as. Hamsters entered torpor primarily during the scotophase (subjective night), but timing of arousals was highly variable. Hamsters at both T as generated short, shallow torpor bouts between deep bouts, suggesting that this species may be capable of both hibernation and daily torpor.  相似文献   

5.
Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400 h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD = −3.1 MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5 °C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20–30 days Tmax ≥ 35 °C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r2 from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars.  相似文献   

6.
Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010–2012), when T a was high and insects were relatively abundant. Torpor use and activity were affected by T a. Bats remained normothermic on the warmest days; they employed one “morning” torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given T a, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.  相似文献   

7.
8.
Membrane fluidity adaptation to the low growth temperature in Bacillus subtilis involves two distinct mechanisms: (1) long-term adaptation accomplished by increasing the ratio of anteiso- to iso-branched fatty acids and (2) rapid desaturation of fatty acid chains in existing phospholipids by induction of fatty acid desaturase after cold shock. In this work we studied the effect of medium composition on cold adaptation of membrane fluidity. Bacillus subtilis was cultivated at optimum (40 °C) and low (20 °C) temperatures in complex medium with glucose or in mineral medium with either glucose or glycerol. Cold adaptation was characterized by fatty acid analysis and by measuring the midpoint of phospholipid phase transition Tm (differential scanning calorimetry) and membrane fluidity (DPH fluorescence polarization). Cells cultured and measured at 40 °C displayed the same membrane fluidity in all three media despite a markedly different fatty acid composition. The Tm was surprisingly the highest in the case of a culture grown in complex medium. On the contrary, cultivation at 20 °C in the complex medium gave rise to the highest membrane fluidity with concomitant decrease of Tm by 10.5 °C. In mineral media at 20 °C the corresponding changes of Tm were almost negligible. After a temperature shift from 40 to 20 °C, the cultures from all three media displayed the same adaptive induction of fatty acid desaturase despite their different membrane fluidity values immediately after cold shock.  相似文献   

9.
Alterations in temperature adaptation processes and changes in the content of stress-related compounds, polyamines and salicylic acid were evaluated in Atnoa1 (NO-associated 1) Arabidopsis mutant. The Fv/Fm chlorophyll-a fluorescence induction parameter and the actual quantum yield were significantly lower in the Atnoa1 mutant than in the wild-type. In the wild-type Col-0, the fastest increase in the non-photochemical quenching (NPQ) occurred in plants pre-treated at low temperature (4 °C), while the slowest was in those adapted to 30 °C. The NPQ showed not only a substantially increased level in the light-adapted state, but also more rapid light induction after the dark-adapted state in the Atnoa1 mutant than in the wild-type. The results of freezing tests indicated that both the wild-type and the mutant had better freezing tolerance after cold hardening, since no significant differences were found between the genotypes. The level of putrescine increased substantially, while that of spermine decreased by the end of the cold-hardening (4 °C, 4 d) period. The quantity of spermidine in Atnoa1 was significantly higher than in Col-0, at both control and cold-hardening temperatures. A similar trend was observed for spermine, but only under control conditions. The mutant plants showed substantially higher salicylic acid (SA) contents for both the free and bound forms. This difference was significant not only in the control, but also in the cold-hardened plants. These results suggest that there is a compensation mechanism in Atnoa1 mutant Arabidopsis plants to reduce the negative effects of the mutation. These adaptation processes include the stimulation of photoprotection and alterations in the SA and polyamine compositions.  相似文献   

10.
The Caatinga is one of the world's richest dry forests. This forest occurs only in Brazil, but is the least studied and protected Brazilian ecosystem. There are few reports about drought tolerance mechanisms in Caatinga trees. This work evaluates water relations of six adult species in the middle of the dry season to further understand water relations in this ecosystem, which will be important for future reforestation and management projects. Based on results, the trees were classified into four groups: (I), Mimosa caesalpiniifolia had low leaf water potential (Ψw) at predawn and no significant decrease at midday. Stomatal conductance (gs) analyses indicates that plants have reached its lowest Ψw; (II), Caesalpinia pyramidalis and Auxemma oncocalyx had low Ψw at predawn and significant decrease at midday. For these species the recuperation of water status at night may have been sufficient for maintaining stomata open during the day; (III), Caesalpinia ferrea and Calliandra spinosa had relatively high Ψw at predawn and a significant decrease at midday. These species might maintain their water status similar to individuals of group II, but they might also have deeper root systems; and (IV), Tabebuia caraiba with the highest Ψw at predawn and no significant decrease at midday, possibly indicating a combination of good stomatal control of water loss and a deeper root system. Moreover, except for individuals of group I, both in species with lower and higher Ψw at predawn it was not observed strong inhibition of gs.  相似文献   

11.
Torpor is thought to slow age-related processes and to sustain growth and fattening of young individuals. Energy allocation into these processes represents a challenge for juveniles, especially for those born late in the season. We tested the hypothesis that late-born juvenile garden dormice (Eliomys quercinus) fed ad libitum (‘AL’, n = 9) or intermittently fasted (‘IF’, n = 9) use short torpor bouts to enhance growth and fat accumulation to survive winter. IF juveniles displayed more frequent and longer torpor bouts, compared with AL individuals before hibernation. Torpor frequency correlated negatively with energy expenditure and water turnover. Hence, IF juveniles gained mass at the same rate, reached similar pre-hibernation fattening and displayed identical hibernating patterns and mass losses as AL animals. We found no group differences in relative telomere length (RTL), an indicator of ageing, during the period of highest summer mass gain, despite greater torpor use by IF juveniles. Percentage change in RTL was negatively associated with mean and total euthermic durations among all individuals during hibernation. We conclude that torpor use promotes fattening in late-born juvenile dormice prior to hibernation. Furthermore, we provided the first evidence for a functional link between time spent in euthermy and ageing processes over winter.  相似文献   

12.
Three major forms of dormancy in mammals have been classified: hibernation in endotherms is characterised by reduced metabolic rate (MR) and body temperature (T b) near ambient temperature (T a) over prolonged times in the winter. Estivation is a similar form of dormancy in a dry and hot environment during summertime. Daily torpor is defined as reduced MR and T b lower than 32 °C, limited to a duration of less than 24 h. The edible dormouse (Glis glis) is capable for all three distinct forms of dormancy. During periods of food restriction and/or low T a, daily torpor is displayed throughout the year, alternating with hibernation and estivation in winter and summer respectively. We recorded T b, O2-consumption and CO2-production in unrestrained dormice at different T a's for periods of up to several months. Cooling rate and rate of metabolic depression during entrance into the torpid state was identical in all three forms of dormancy. The same was true for thermal conductance, maximum heat production, duration of arousal and cost of an arousal. The only difference between hibernation and daily torpor was found in the bout duration. A daily torpor bout lasted 3–21 h, a hibernation bout 39–768 h. As a consequence of prolonged duration, MR, T b and also the T b − T a gradient decreased to lower values during hibernation bouts when compared to daily torpor bouts. Our findings suggest that all three forms of dormancy are based on the same physiological mechanism of thermal and metabolic regulation. Accepted: 27 June 2000  相似文献   

13.
Fibroblast growth factor 21 (FGF21) is a hormone released from the liver that mediates many of the physiological responses of fasting, such as lipolysis and ketogenesis. FGF21 is induced by the nuclear receptor PPARα when bound to its endogenous agonist, free fatty acid, or to the synthetic agonist, bezafibrate. To determine whether PPARα agonists mediate the metabolic suppression and accompanying fall in body temperature (Tb) in a bout of torpor that occurs in mice in response to fasting, C57Bl/6J mice (wildtype) and PPARα −/− mice were implanted with temperature telemeters and fed either a control (CON) diet or one containing a PPARα agonist, bezafibrate (BEZA), for 2 weeks, followed by a fast. Wildtype mice on the BEZA diet had a striking phenotype: most entered spontaneous torpor bouts without caloric restriction towards the end of the 2 weeks. This is the first demonstration that an additive to food could induce spontaneous bouts of daily torpor. However, PPARα −/− did not express this phenotype. Moreover, wildtype mice on the BEZA diet had twice the length of torpor bouts in response to a fast as did wildtype mice on the CON diet. PPARα −/− mice did enter bouts of fasting-induced torpor, but these were unaffected by the BEZA diet. The BEZA diet induced the level of FGF21 in the blood to fasting levels only in wildtype mice. Collectively, these findings suggest that a BEZA diet mimics the fasted state in both induction of FGF21 and in thermoregulation and does so in a pathway dependent on PPARα.  相似文献   

14.
Cannabinoid CB1 receptor antagonists exhibit pharmacologic properties favorable for the treatment of metabolic disease. CP-945,598 (1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylamino piperidine-4-carboxylic acid amide hydrochloride) is a recently discovered selective, high affinity, competitive CB1 receptor antagonist that inhibits both basal and cannabinoid agonist-mediated CB1 receptor signaling in vitro and in vivo. CP-945,598 exhibits sub-nanomolar potency at human CB1 receptors in both binding (Ki = 0.7 nM) and functional assays (Ki = 0.2 nM). The compound has low affinity (Ki = 7600 nM) for human CB2 receptors. In vivo, CP-945,598 reverses four cannabinoid agonist-mediated CNS-driven responses (hypo-locomotion, hypothermia, analgesia, and catalepsy) to a synthetic cannabinoid receptor agonist. CP-945,598 exhibits dose and concentration-dependent anorectic activity in two models of acute food intake in rodents, fast-induced re-feeding and spontaneous, nocturnal feeding. CP-945,598 also acutely stimulates energy expenditure in rats and decreases the respiratory quotient indicating a metabolic switch to increased fat oxidation. CP-945,598 at 10 mg/kg promoted a 9%, vehicle adjusted weight loss in a 10 day weight loss study in diet-induced obese mice. Concentration/effect relationships combined with ex vivo brain CB1 receptor occupancy data were used to evaluate efficacy in behavioral, food intake, and energy expenditure studies. Together, these in vitro, ex vivo, and in vivo data indicate that CP-945,598 is a novel CB1 receptor competitive antagonist that may further our understanding of the endocannabinoid system.  相似文献   

15.
A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (PZn), the accessory Zn-BChl a (BZn), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from PZn*, measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from BZn* to PZn, and the latter, the electron transfer from PZn to H. The angle between the transition dipoles of BZn and PZn was estimated to be 36° based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies PZn.  相似文献   

16.
Seasonal cold temperatures require mammals to use morphological, behavioural, or physiological traits to survive periods of extreme cold and food shortage. Torpor is a physiological state that minimizes energy requirements by decreasing resting metabolic rate (MR) and body temperature (Tb). Many rodent species are capable of torpor, however, evidence in northern and southern flying squirrels (Glaucomys sabrinus and Glaucomys volans, respectively) has remained anecdotal. We experimentally attempted to induce torpor in wild-caught flying squirrels by lowering ambient temperature (Ta) and measuring MR using open-flow respirometry. We also studied seasonal differences in MR and Tb at various Ta. Both MR and Tb provided evidence for torpor in flying squirrels, but only infrequent, shallow torpor. MR decreased infrequently and any decreases were rarely sustained for longer than one hour. We found a significant positive relationship between Ta and Tb only in G. volans, which suggests that G. volans is more susceptible to low Ta compared with G. sabrinus, possibly due to their small body size. We observed no substantive seasonal or interspecific differences in the relation between MR and Ta, with the exception that northern flying squirrels expended more energy at cold Ta during warm season trials than other species-season combinations. The infrequency of torpor use in our experiments suggests that other energy-saving strategies, such as social thermoregulation, may limit the reliance on torpor in this lineage.  相似文献   

17.
The bacterial PEP:sugar PTS consists of a cascade of several proteins involved in the uptake and phosphorylation of carbohydrates, and in signal transduction pathways. Its uniqueness in bacteria makes the PTS a target for new antibacterial drugs. These drugs can be obtained from peptides or protein fragments able to interfere with the first reaction of the protein cascade: the phosphorylation of the HPr by the first enzyme, the so-called enzyme EI. To that end, we designed a peptide, HPr9-30, spanning residues 9 to 30 of the intact HPr protein, containing the active site histidine (His-15) and the first α-helix of HPr of Streptomyces coelicolor, HPrsc. By using fluorescence and circular dichroism, we first determined qualitatively that HPrsc and HPr9-30 did bind to EIsc, the enzyme EI from S. coelicolor. Then, we determined quantitatively the binding affinities of HPr9-30 and HPrsc for EIsc by using ITC and STD-NMR. The STD-NMR experiments indicate that the epitope region of HPr9-30 was formed by residues Leu-14, His-15, Ile-21, and Val-23. The binding reaction between EIsc and HPrsc is enthalpy driven and in other species is entropy driven; further, the affinity of HPrsc for EIsc was smaller than in other species. However, the affinity of HPr9-30 for EIsc was only moderately lower than that of EIsc for HPrsc, suggesting that this peptide could be considered a promising hit compound for designing new inhibitors against the PTS.  相似文献   

18.
The dark recovery kinetics of the Chl a fluorescence transient (OJIP) after 15 min light adaptation were studied and interpreted with the help of simultaneously measured 820 nm transmission. The kinetics of the changes in the shape of the OJIP transient were related to the kinetics of the qE and qT components of non-photochemical quenching. The dark-relaxation of the qE coincided with a general increase of the fluorescence yield. Light adaptation caused the disappearance of the IP-phase (20-200 ms) of the OJIP-transient. The qT correlated with the recovery of the IP-phase and with a recovery of the re-reduction of P700+ and oxidized plastocyanin in the 20-200 ms time-range as derived from 820 nm transmission measurements. On the basis of these observations, the qT is interpreted to represent the inactivation kinetics of ferredoxin-NADP+-reductase (FNR). The activation state of FNR affects the fluorescence yield via its effect on the electron flow. The qT therefore represents a form of photochemical quenching. Increasing the light intensity of the probe pulse from 1800 to 15000 μmol photons m−2 s−1 did not qualitatively change the results. The presented observations imply that in light-adapted leaves, it is not possible to ‘close’ all reaction centers with a strong light pulse. This supports the hypothesis that in addition to QA a second modulator of the fluorescence yield located on the acceptor side of photosystem II (e.g., the occupancy of the QB-site) is needed to explain these results. Besides, some of our results indicate that in pea leaves state 2 to 1 transitions may contribute to the qI-phase.  相似文献   

19.
Physiological variables of torpor are strongly temperature dependent in placental hibernators. This study investigated how changes in air temperature affect the duration of torpor bouts, metabolic rate, body temperature and weight loss of the marsupial hibernator Burramys parvus (50 g) in comparison to a control group held at a constant air temperature of 2°C. The duration of torpor bouts was longest (14.0±1.0 days) and metabolic rate was lowest (0.033±0.001 ml O2·g-1·h-1) at2°C. At higher air temperatures torpor bouts were significantly shorter and the metabolic rate was higher. When air temperature was reduced to 0°C, torpor bouts also shortened to 6.4±2.9 days, metabolic rate increased to about eight-fold the values at 2°C, and body temperature was maintained at the regulated minimum of 2.1±0.2°C. Because air temperature had such a strong effect on hibernation, and in particular energy expenditure, a change in climate would most likely increase winter mortality of this endangered species.Abbreviationst STP standard temperature and pressure - T a air temperature - T b body temperature - VO2 rate of oxygen consumption  相似文献   

20.
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0°C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb. (Chronobiology International, 17(2), 103–128, 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号