首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In order to investigate the effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, production of reactive oxygen species (ROS) and lipid peroxidation in broiler chickens, 128 six-week-old broiler chickens were kept in a controlled-environment chamber. The broiler chickens were initially kept at 25 °C (relative humidity, RH, 70 ± 5%) for 6 d and subsequently exposed to 35 °C (RH, 70 ± 5%) for 3 h, then the heat stress was removed and the temperature returned to 25 °C (RH, 70 ± 5%). Blood and liver samples were obtained before heat exposure and at 0 (at the end of the three-hour heating episode, this group is also abbreviated as the HT group), 1, 2, 4, 8, 12 h after the stress was removed. The results showed that acute heat stress induced a significant production of ROS, function of the mitochondrial respiratory chain, antioxidative enzymes [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px)] activity, and formation of malondialdehybe (MDA). Within the first 12 h after removal of the heat stress, the acute modification of the above parameters induced by heat stress gradually approached to pre-heat levels. The results of the present study suggest that acute exposure to high temperatures may depress the activity of the mitochondrial respiratory chain. This leads to over-production of ROS, which ultimately results in lipid peroxidation and oxidative stress. When the high temperature was removed, the production of ROS, mitochondrial respiratory function and oxidative injury that were induced by acute heat exposure gradually approached the levels observed before heating, in a time-dependent manner.  相似文献   

2.
The tropical tasar silkworm, Antheraea mylitta, is a semi-domesticated vanya silk-producing insect of high economic importance. To date, no molecular marker associated with cocoon and shell weights has been identified in this species. In this report, we identified a randomly amplified polymorphic DNA (RAPD) marker and examined its inheritance, and also developed a stable diagnostic sequence-characterized amplified region (SCAR) marker. Silkworms were divided into groups with high (HCSW) and low (LCSW) cocoon and shell weights, and the F2 progeny of a cross between these two groups were obtained. DNA from these silkworms was screened by PCR using 34 random primers and the resulting RAPD fragments were used for cluster analysis and discriminant function analysis (DFA). The clustering pattern in a UPGMA-based dendogram and DFA clearly distinguished the HCSW and LCSW groups. Multiple regression analysis identified five markers associated with cocoon and shell weights. The marker OPW16905 bp showed the most significant association with cocoon and shell weights, and its inheritance was confirmed in F2 progeny. Cloning and sequencing of this 905 bp fragment showed 88% identity between its 134 nucleotides and the Bmc-1/Yamato-like retroposon of A. mylitta. This marker was further converted into a diagnostic SCAR marker (SCOPW 16826 bp). The SCAR marker developed here may be useful in identifying the right parental stock of tasar silk-worms for high cocoon and shell weights in breeding programs designed to enhance the productivity of tasar silk.  相似文献   

3.
High levels of reactive oxygen species (ROS), which may be related to reduced semen quality, are detected during semen cryopreservation in some species. The objectives of this study were to measure the oxidative stress during ram semen cryopreservation and to evaluate the effect of adding 2 antioxidant mimics of superoxide dismutase (Tempo and Tempol) during the cooling process on sperm motility, viability, acrosomal integrity, capacitation status, ROS levels, and lipid peroxidation in frozen and/or thawed ram spermatozoa. Measuring of ROS levels during the cooling process at 35, 25, 15, and 5 °C and after freezing and/or thawing showed a directly proportional increase (P < 0.05) when temperatures were lowering. Adding antioxidants at 10 °C confered a higher motility and sperm viability after cryopreservation in comparison with adding at 35 °C or at 35 °C/5 °C. After freezing and/or thawing, sperm motility was significantly higher (P < 0.05) in Tempo and Tempol 1 mM than that in control group. Percentage of capacitated spermatozoa was lower (P < 0.05) in Tempo and Tempol 1 mM in comparison with that in control group. In addition, ROS levels and lipid peroxidation in group Tempo 1 mM were lower (P < 0.05) than those in control group. These results demonstrate that ram spermatozoa are exposed to oxidative stress during the cooling process, specifically when maintained at 5 °C and that lipid peroxidation induced by high levels of ROS decreases sperm motility and induces premature sperm capacitation. In contrast, the addition of Tempo or Tempol at 0.5 to 1 mM during the cooling process (10 °C) protects ram spermatozoa from oxidative stress.  相似文献   

4.
A new scientific survey elucidates the preferred attack of stink bug Canthecona furcellata (Wolff.) (Hemiptera: Pentatomidae) on the spinning stage of the tropical tasar silkworm, Antheraea mylitta (Drury) (Lepidoptera: Saturniidae). The silkworm A. mylitta produces an excellent quality of wild silk; however, due to predation by C. furcellata, tasar silk production is reduced. The bug C. furcellata is the most invasive larval predator of A. mylitta and predation is high during early instars as well as the molting stage of the larvae. However, for the first time it is reported that the spinning stage is also preferable for attack by the stink bug. Both the nymphs and adults of C. furcellata attack the spinning silkworm; moreover, stink bug attack is observed in groups under field conditions. It is postulated that feeding preference is due to the concealed, non‐movable and less defensive stage of the tasar larvae during spinning. The predation of C. furcellata includes its approach on target larva of the tasar silkworm during spinning, where it inserts the proboscis inside the larval skin through the moist silk network of newly forming or formed cocoon. Most of the spinning larvae die from the attack and the normal seed cocoon fails to form. The mechano‐ and chemoreceptors, present on the antenna and proboscis of C. furcellata, play an important role in prey locating and the feeding mechanism. The life cycle of C. furcellata is also discussed in the present study.  相似文献   

5.
Octopus mimus is an important cephalopod species in the coastal zone of Peru and Chile that is exposed to temperature variations from time to time due to El Niño/Southern Oscillation (ENSO) episodes when surface temperatures can reach 24 °C, 6 °C above typical temperatures in their habitat. The relationships between temperature and food availability are important factors that determine the recruitment of juveniles into the O. mimus population. The present study was to evaluate the relationship between thermoregulatory behavior and the age of paralarvae (summer population) to determine whether changes in this behavior occur during internal yolk consumption, making larvae more vulnerable to environmental temperature change. Oxygen consumption of paralarvae when 1–4 d old was determined to establish if respiration could be used to monitor the physiological changes that occur during yolk consumption. Horizontal thermal selection (17–30 °C), critical thermal maxima (CTMax), minima (CTMin), and oxygen consumption experiments were conducted with fasting paralarvae 1–4 d old at 20 °C. Preferred temperatures were dependent on the age of O. mimus paralarvae. One day old paralarvae selected a temperature 1.1 °C (23·4 °C) higher than 2 – 4 d old paralarvae (22·3 °C). The CTMax of paralarvae increased with age with values of 31·9±1.1 °C in 1-d-olds and 33·4±0.3 to 4-d-olds. CTMin also changed with age with low values in 2-d-old paralarvae (9.1±1·3 °C) and 11·9±0·9 °C in 4-d-old animals. The temperature tolerance range of paralarvae was age-dependent (TTD=difference between CTMax and CTMin) with higher values in 2 and 3 d old paralarvae (25–26 °C) as compared to 1 d old (23·1 °C) and 4 d old animals (22.7 °C). Oxygen consumption was not affected by the age of paralarvae, suggesting that mechanisms exist that compensate their metabloism until at least 4 d of age. The temperature tolerance range of a planktonic paralarvae of octopus species is presented for the first time. This range was dependent on the age of paralarvae, and so rendered the paralarvae more vunerable to a combination of high temperature and food deprivation during first days of life. Results in the present study provide evidence that O. mimus could be under ecological pressure if a climate change causes increased or decreased temperatures into their distribution range.  相似文献   

6.
Antioxidants may be useful for supplementing sperm extenders. We have tested dehydroascorbic acid (DHA), TEMPOL, N-acetyl-cysteine (NAC) and rutin on epididymal spermatozoa from red deer, during incubation at 37 °C. Cryopreserved spermatozoa were thawed, washed and incubated with 1 mm or 0.1 mm of each antioxidant, including oxidative stress (Fe2+/ascorbate). Motility (CASA and clustering of subpopulations), viability, mitochondrial membrane potential, and acrosomal status were assessed at 2 and 4 h. Lipoperoxidation, intracellular reactive oxygen species (ROS) and DNA damage (DNA) status (TUNEL) were checked at 4 h. Oxidative stress increased ROS, lipoperoxidation and DNA damage. Overall, antioxidants negatively affected motility and physiological parameters. Only DHA 1 mm protected motility, increasing the fast and progressive subpopulation. However, it had a detrimental effect on acrosomal and DNA status, in absence of oxidative stress. Tempol and rutin efficiently reduced lipoperoxidation, ROS, and DNA damage in presence of oxidative stress. NAC was not as efficient as TEMPOL or rutin reducing lipoperoxidation or protecting DNA, and did not reduce ROS, but its negative effects were lower than the other antioxidants when used at 1 mm, increasing the subpopulation of hyperactivated-like spermatozoa at 2 h. Our results show that these antioxidants have mixed effects when spermatozoa are incubated at physiological temperatures. DHA may not be suitable because of prooxidant effects, but TEMPOL, NAC and rutin may be considered for cryopreservation trials. In general, exposure of red deer spermatozoa to these antioxidants should be limited to low temperatures, when only protective effects may develop.  相似文献   

7.
Formation of reactive oxygen species (ROS) in mitochondrial isolates from gill tissues of the Antarctic polar bivalve Laternula elliptica was measured fluorimetrically under in vitro conditions. When compared to the rates measured at habitat temperature (1 degrees C), significantly elevated ROS formation was found under temperature stress of 7 degrees C and higher. ROS formation correlated significantly with oxygen consumption in individual mitochondrial preparations over the entire range of experimental temperatures (1-12 degrees C). ROS generation per mg of mitochondrial protein was significantly higher in state 3 at maximal respiration and coupling to energy conservation, than in state 4+, where ATPase-activity is inhibited by oligomycin and only proton leakage is driving the residual oxygen consumption. The percent conversion of oxygen to the membrane permeant hydrogen peroxide amounted to 3.7% (state 3) and 6.5% (state 4+) at habitat temperature (1 degrees C), and to 7% (state 3) and 7.6% (state 4+) under experimental warming to 7 degrees C. This is high compared to 1-3% oxygen to ROS conversion in mammalian mitochondrial isolates and speaks for a comparatively low control of toxic oxygen formation in mitochondria of the polar bivalve. However, low metabolic rates at cold Antarctic temperatures keep absolute rates of mitochondrial ROS production low and control oxidative stress at habitat temperatures. Mitochondrial coupling started to fall beyond 3 degrees C, closely to pejus temperature (4 degrees C) of the bivalve. Accordingly, the proportion of state 4 respiration increased from below 30% at 1 degrees C to over 50% of total oxygen consumption at 7 degrees C, entailing reduced ADP/O ratios under experimental warming. Progressive mitochondrial uncoupling and formation of hazardous ROS contribute to bias mitochondrial functioning under temperature stress in vitro. Deduced from a pejus temperature, heat stress commences already at 5 degrees C, and is linked to progressive loss of phosphorylation efficiency, increased mitochondrial oxygen demand and elevated oxidative stress above pejus temperatures.  相似文献   

8.
Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38–0.78 g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30 °C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4 °C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (P<0.05) with increasing acclimation temperatures. The endpoint for CTMax was ink release and for CTMin was tentacles curled, respectively. A thermal tolerance polygon over the range of 18–30 °C resulted in a calculated area of 210.0 °C2. The oxygen consumption rate increased significantly α=0.05 with increasing acclimation temperatures between 18 and 30 °C. Maximum and minimum temperature quotients (Q10) were observed between 26–30 °C and 22–26 °C as 3.03 and 1.71, respectively. These results suggest that O. maya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México.  相似文献   

9.
To investigate bleaching mechanisms in coral-zooxanthella symbiotic systems, it is important to study the cellular- or tissue-level responses of corals to stress. We established an experimental system to study the stress responses of coral cells using coral cell aggregates. Dissociated coral cells aggregate to form spherical bodies, which rotate by ciliary movement. These spherical bodies (tissue balls) stop rotating and disintegrate when exposed to a thermal stress. Tissue balls prepared from dissociated cells of Fungia sp. and Pavona divaricata were exposed to either elevated temperature (31 °C, with 25 °C as the control) or elevated temperature in the presence of exogenous antioxidants (ascorbic acid and catalase, or mannitol). The survival curves of tissue balls were markedly different between 31 and 25 °C. At 31 °C, most tissue balls disintegrated within 24 h, whereas at 25 °C, most tissue balls survived for more than 24 h. There was a negative correlation between survival time and the zooxanthella density of tissue balls at 31 °C, but no significant relationship was found at 25 °C. Antioxidants extended the survival time of tissue balls at high temperature, suggesting that zooxanthellae produce reactive oxygen species under stress. These results indicate that zooxanthellae produce harmful substances and damage coral cells under high-temperature stress. Tissue balls provide a good experimental system with which to study the effects of stress and various chemical reagents on corals cells.  相似文献   

10.
Ethylene is a stress hormone involved in early senescence and abscission of vegetative and reproductive organs under stress conditions. Ethylene perception inhibitors can minimize the impact of ethylene-mediated stress. The effects of high temperature (HT) stress during flowering on ethylene production rate in leaf, flower and pod and the effects of ethylene inhibitor on ethylene production rate, oxidative damage and physiology of soybean are not understood. We hypothesize that HT stress induces ethylene production, which causes premature leaf senescence and flower and pod abscission, and that application of the ethylene perception inhibitor 1-Methyl cyclopropene (1-MCP) can minimize HT stress induced ethylene response in soybean. The objectives of this study were to (1) determine whether ethylene is produced in HT stress; (2) quantify the effects of HT stress and 1-MCP application on oxidative injury; and (3) evaluate the efficacy of 1-MCP at minimizing HT-stress-induced leaf senescence and flower abscission. Soybean plants were exposed to HT (38/28 °C) or optimum temperature (OT; 28/18 °C) for 14 d at flowering stage (R2). Plants at each temperature were treated with 1-MCP (1 μg L−1) gas for 5 h or left untreated (control). High temperature stress increased rate of ethylene production in leaves, flowers and pods, production of reactive oxygen species (ROS), membrane damage, and total soluble carbohydrate content in leaves and decreased photosynthetic rate, sucrose content, Fv/Fm ratio and antioxidant enzyme activities compared with OT. Foliar spray of 1-MCP decreased rate of ethylene production and ROS and leaf senescence traits but enhanced antioxidant enzyme activities (e.g. superoxide dismutase and catalase). In conclusion, HT stress increased ethylene production rates, caused oxidative damage, decreased antioxidant enzyme activity, caused premature leaf senescence, increased flower abscission and decreased pod set percentage. Application of 1-MCP lowered ethylene and ROS production, enhanced antioxidant enzyme activity, increased membrane stability, delayed leaf senescence, decreased flower abscission and increased pod set percentage. The beneficial effects of 1-MCP were greater under HT stress compared to OT in terms of decreased ethylene production, decreased ROS production, increased antioxidant protection, decreased flower abscission and increased pod set percentage.  相似文献   

11.
Ecosystem resilience to climate anomalies is related to the physiological plasticity of organisms. To characterize the physiological response of some common Mediterranean gorgonians to fluctuations in temperature, four species (Paramuricea clavata, Eunicella singularis, Eunicella cavolinii and Corallium rubrum) were maintained in aquaria, in which the temperature was increased every ten days with increments of 2-3 °C, starting at 14 °C, ending at 25 °C. Oxygen consumption, number of open/closed polyps and percentage of necrotic tissue were monitored. All species showed similar activity patterns with increasing temperature. P. clavata and E. singularis showed the highest respiration rate at 18 °C, E. cavolinii and C. rubrum at 20 °C. Above these temperatures, both oxygen consumption and polyp reactivity decreased in all species. The present data confirm a reduction of the metabolic activity in Mediterranean gorgonians during periods of high temperature. At temperatures above 18 °C, the percentage of open polyps (considered as a parameter to evaluate polyps reactivity) decreased, thus mirroring the trend of oxygen consumption. The average values of Q10 indicated that gorgonians have a definite temperature limit over which the metabolism (oxygen consumption) stop to follow the temperature increase. After three days at 25 °C, metabolic activity in E. cavolinii, C. rubrum and P. clavata further decreased and the first signs of necrosis were observed. At this temperature, activity remained unchanged in E. singularis. This species seems to more resistant to thermal stress. The symbiotic zooxanthellae present in this species are likely to provide an alternative source of energy when polyps reduce their feeding activity.  相似文献   

12.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

13.
The in vitro tissue culture and micropropagation studies for Morus spp., a pivotal sericulture plant, are well established. The rapid and reproducible in vitro response to plant growth regulator treatments has emerged as an essential complement of transformation studies for this plant species. A major area of study is the use of protoplast culture and fusion techniques where advantages to mulberry improvement can be applied. The advancements in genetic transformation of mulberry are reviewed, and a section on strategy for transforming plastids (chloroplasts) of mulberry is included. A role for mulberry in “molecular farming” is envisioned. The conclusions and future prospects for improvement of this economically important tree species are proposed.Key words: molecular farming, Morus spp., plastid transformation, protoplast electrofusion, sericultureThe importance of silk production is well recognized in sericulture industry that involves cultivation of host plants for silkworm rearing. India is one of the countries where sericulture is an important agro-based cottage industry involved in production of five different silk types—mori, muga, eri, tasar and oak types. This classification comes from type of host plant that act as feed for silkworm, and thus sericulture industry largely depends on the availability of host plant species. Bombyx mori (mulberry silkworm) feeds on mulberry leaves, Philosomia ricini (eri silkworm) on castor leaves, Anthraea assama (muga silkworm) on som and soalu leaves, Anthraea proylei (temperate/oak tasar silkworm) on oak leaves, and Anthraea mylitta (tropical tasar silkworm) on Terminalia leaves. A systematic and proper cultivation of novel primary and/or secondary host plants showing high yield, suitability to silkworm rearing, and resistance to different abiotic stress conditions i.e., tolerance to water stress, alkalinity and salinity are recommended for sericulture improvement.The genus Morus (commonly known as mulberry) belongs to the family Moraceae, is a group of dioecious woody trees/shrubs. Many varieties of these species are cultivated on a commercial scale in India, China, Japan and Korea for the sericulture industry.1 In India, six species are found, namely, M. alba L., M. indica L., M. nigra L., M. atropurpurea Roxb., M. serrata Roxb. and M. laevigata Wall.2 Due to higher economic return and greater employment potential, attempts are been made to increase productivity by developing high yielding mulberry varieties. At present, Mysore local, Bomaypiasbari, Kanva-2 (K2), Bilidevalaya, Kajli, Sujanpur-1 (S1), BC (2) 59, C776, RFS-175, S36 and Victory-1 are being cultivated extensively in different parts of India.  相似文献   

14.
Relatively low or high temperatures are responsible for a variety of physiological stress responses in insects and mites. Induced thermal stress was recently associated with increased reactive oxygen species (ROS) generation, which caused oxidative damage. In this study, we examined the time-related effect of the relatively low (0, 5, 10, and 15 °C) or high (32, 35, 38, and 41 °C) temperatures on the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidases (POX), and glutathione-S-transferase (GST), and the total antioxidant capacity (TEAC) of the citrus red mite, Panonychus citri (McGregor). The malondialdehyde (MDA) concentration, as a marker of lipid peroxidation in organisms, was also measured in the citrus red mite under thermal stress conditions. Results showed that SOD and GST activities were significantly increased and play an important role in the process of antioxidant response to thermal stress. Lipid peroxidation levels increased significantly (P < 0.001) and changed in a time-dependent manner. CAT and POX activity, as well as TEAC, did not vary significantly and play a minor role to remove the ROS generation. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play an important role in reducing oxidative damage in the citrus red mite.  相似文献   

15.
Summary

Estradiol from the haemolymph and ovaries of tasar silkworm, Antheraea mylitta, was assayed using radio immunoassay. The estimated concentration of estradiol was 143 pg/mg in the ovaries and 102 pg/ml in the haemolymph.  相似文献   

16.
We have characterized and studied the biological functions of a terpenoid derivative in the Indian tropical tasar silkworm, Antheraea mylitta reared on the primary host plant Arjun, Terminalia arjuna. The compound from insect cocoon turned out to be a terpenoid derivative which resembled oleanane type triterpene (Arjunolic acid) present in the host plant. The plant and cocoon compounds were anti-oxidative as determined by bleaching of beta carotene in vitro. UV-exposure is the major form of peroxidative insult encountered by this wild tropical silkworm. The life cycle comprising five larval stages and the cocoon stage lasts for about 30–45 days. Hence the sequestration of antioxidant and UV-protectant molecule from the host plant commands great biological significance.  相似文献   

17.
The present study examined the effect of salinity and temperature on the rate of oxygen consumption and total body osmolality of the triclad turbellarian Procerodes littoralis, a common marine flatworm normally found in areas where freshwater streams run out over intertidal areas. Extremes in environmental factors encountered by P. littoralis were recorded at the study site. These were salinity (0-44 psu), temperature (2.7-24.9 °C) and oxygen concentration (2.8-16.1 mg l−1). Respirometry experiments showed minimal oxygen consumption rates at the salinity extremes encountered by the study species (0 and 40 psu). Further experiments showed relatively constant oxygen consumption rates over the temperature range 5-20 °C and elevated consumption rates at temperatures above 25 °C. Total body osmolality of P. littoralis increased with increasing salinity. The study illustrates how a marine flatworm uses integrated physiological and behavioural mechanisms to successfully inhabit an environment that is predominantly freshwater for up to 75% of the tidal cycle.  相似文献   

18.
The major cuticular components of Indian tasar silkworm,Antheraea mylitta Drury, were sequentially extracted and estimated to ascertain preferential utilization of these components for growth by the entomopathogenic fungusPenicillium citrinum Thom. Proteins which constituted 61.64% dry weight of cuticule were found to play a key role in the growth ofP. citrinum whereas lipids (7.15%) and chitin (30.02%) were least involved. Also, this study suggests absence of any mycocidal substance in the cuticle ofA. mylitta.  相似文献   

19.
An inverse and unusual relationship was found between preferred temperature and acclimation temperature in the bullseye puffer, Sphoeroides annulatus. The final preferendum temperature (PT) was 26.8 °C. The critical thermal maxima (CTMax) were 37.7, 38.8, 40.0, 40.8 and 41.3 °C where the temperatures of acclimation were 19, 22, 25, 28 and 31 °C±1 °C, respectively, and the endpoint of CTMax was loss of the righting response. The acclimation response ratio presented an interval of 0.22-0.38; these values are in agreement with results for other subtropical and tropical fishes. The temperature significantly affected the oxygen consumption of bullseye puffer juveniles. The oxygen consumption rate (OCR) increased significantly with an increment in the temperature from 19 to 31 °C. The range of the temperature coefficient Q10 in bullseye puffer individuals was lowest between 25 and 28 °C, at 1.37. The optimal temperature for growth was 26 °C. The results of this study will be useful for optimizing the culture of bullseye puffer juveniles in controlled conditions.  相似文献   

20.
The effects of temperature changes on oxygen consumption of Chinese shrimp (Fenneropenaeus chinensis Osbeck) were studied. The response of oxygen consumption to a temperature rise was conformed to partial metabolic compensation. No compensatory response was observed at lower temperature. A sudden temperature increase by 12 °C resulted an overshoot in oxygen consumption in shrimp adapted to 19 °C, while a sudden decrease by 12 °C in shrimp adapted to 19 °C resulted in an undershoot in oxygen consumption. The shrimp adapted to 31 °C responded with an undershoot in oxygen consumption when a sudden temperature drop by 12 °C occurred. But overshoot in oxygen consumption did not occur when the shrimps were transferred back from 19 to 31 °C. The amplitude of oxygen consumption was reduced in shrimp during the process of acclimation to the temperature diel fluctuation. After the shrimp had adapted to the temperature fluctuation, the daily mean oxygen consumption of shrimp at diel temperature fluctuation from 24 to 30 °C was significantly lower than those adapted to the constant temperature at 27 °C (P<0.05). The decrease in metabolic rate may account for the increase in the growth rate of shrimp at a diel fluctuating thermal regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号