首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Understanding the factors that may affect behavioural thermoregulation of endangered reptiles is important for their conservation because thermoregulation determines body temperatures and in turn physiological functions of these ectotherms. Here we measured seasonal variation in operative environmental temperature (Te), body temperature (Tb), and microhabitat use of endangered crocodile lizards (Shinisaurus crocodilurus) from a captive population, within open and shaded enclosures, to understand how they respond to thermally challenging environments. Te was higher in open enclosures than in shaded enclosures. The Tb of lizards differed between the open and shaded enclosures in summer and autumn, but not in spring. In summer, crocodile lizards stayed in the water to avoid overheating, whereas in autumn, crocodile lizards perched on branches seeking optimal thermal environments. Crocodile lizards showed higher thermoregulatory effectiveness in open enclosures (with low thermal quality) than in shaded enclosures. Our study suggests that the crocodile lizard is capable of behavioural thermoregulation via microhabitat selection, although overall, it is not an effective thermoregulator. Therefore, maintaining diverse thermal environments in natural habitats for behavioural thermoregulation is an essential measure to conserve this endangered species both in the field and captivity.  相似文献   

2.
Historically, studies of reptilian thermal biology have compared ambient temperatures (Ta) to body temperatures (Tb) from the animal under study, with Tb usually taken from the cloaca and various instruments being used to measure Tb. The advent of surgically implanted miniature temperature loggers has offered the opportunity to test the efficacy of cloacal Tb as a measurement in thermoregulatory studies. We expected that there was a difference between skin, cloacal, and core Tb's. Temperatures were measured from various positions on leopard tortoises (Stigmochelys pardalis) using thermocouples and miniature temperature loggers, including surgically implanted temperature loggers. Measurements of temperature from various positions on and in the tortoise were significantly different from Ta. Cloacal Tb's were significantly lower than all other body temperatures measured, and core Tb's were significantly different from cloacal Tb, skin and carapace temperatures. In addition, significant differences were found between measures of temperature from other parts of the body. The variations between core Tb, cloacal Tb and other measures of Tb indicated that there are large thermal gradients within the body of a relatively large tortoise at any given time with cloacal Tb not an accurate measure of core Tb.  相似文献   

3.
We monitored behaviour and environmental and body temperatures (Tb) in summer and winter in 11 salt-water crocodiles (Crocodylus porosus), of body mass 32 to 1010kg, free-ranging in naturalistic captivity in northern Australia. We found pronounced daily cycles in air and water temperatures in both winter (16 to 33 degrees C and 20 to 31degrees C, respectively) and summer (21 to 45 degrees C and 24 to 36 degrees C, respectively). In winter, crocodiles exposed themselves to the sun during the day and stayed in the water at night. In summer, they remained in the water during the day and emerged onto land at night. Body temperature showed a daily cycle the amplitude of which decreased with increasing mass, from 3.5 degrees C (mass 32kg) to 1.0 degrees C (660kg) in summer, and from 3.5 degrees C (42kg) to 1.4 degrees C (1010kg) in winter. Underlying the daily cycles in Tb were intermediate (10 to 13 day, tidal?) and seasonal cycles. Overall, values of modal Tb ranged from 25.1 to 28.7 degrees C in winter and from 28.4 to 33.6 degrees C in summer, trending upwards with body size. This pattern of continuous oscillations in Tb, with no daily plateau, is conspicuously different from that seen in crocodilians of small sizes and from the pattern usually regarded as typical of reptiles in general.  相似文献   

4.
Thermoregulation is of great importance for the survival and fitness of ectotherms as physiological functions are optimized within a narrow range of body temperature (T b). The precision with which reptiles thermoregulate has been proposed to be related to the thermal quality of their environments. Although a number of studies have looked at the effect of thermal constraints imposed by diel, seasonal and altitudinal variation on thermoregulatory strategies, few have addressed this question in a laboratory setting. We conducted a laboratory experiment to test whether tuatara, Sphenodon punctatus (order Rhynchocephalia), a cold-adapted reptile endemic to New Zealand, modify their thermoregulatory behaviour in response to different thermal environments. We provided tuatara with three thermal treatments: high-quality habitat [preferred T b (T sel) could be reached for 8 h/day], medium-quality habitat (T sel available for 5 h/day) and low-quality habitat (T sel available for 3 h/day). All groups maintained body mass, but tuatara in the low-quality habitat thermoregulated more accurately and tended to maintain higher T bs than tuatara in the high-quality habitat. This study thus provides experimental evidence that reptiles are capable of adjusting their thermoregulatory behaviour in response to different thermal constraints. This result also has implications for the conservation of tuatara. A proposed translocation from their current habitat to a higher latitudinal range within New Zealand (similar to the shift from our 8 h/day to our 5 h/day regime) is unlikely to induce thermoconformity; rather, tuatara will probably engage in more effective thermoregulatory behaviour.  相似文献   

5.
Locomotor and physiological performance of ectotherms are affected by temperature. Thermoregulation is achieved by changes in behavior and the selection of micro-habitats with adequate temperatures to maintain the body temperature (Tb) within a range of preference. Apart from this temperature dependence at spatial scales, ectotherms are also affected by temperature at temporal scale. For instance, ectotherms can only be active some months of the year, particularly in temperate environments. Tarantulas are ectotherms that live in burrows most of their life. Nevertheless, after the sexual maturation molt, males leave their refugia and start a wandering life searching for females to mate. The reproductive period varies among species. In some species walking males are seen in late spring or early summer, while in other species males are only seen during fall or winter. Apart from the differences in lifestyles after maturation, tarantulas exhibit sexual dimorphisms in longevity and body mass, having smaller, shorter-lived males. Thus, to optimize energetic budgets, decreasing thermoregulation costs, we hypothesize and examine a putative correlation between an individual's preferred body temperature (Tpref) and the environmental temperature during the reproductive period. Hence, we characterize Tpref in seven tarantula species and analyze which factors (i.e., time of day, body mass, and sex) correlated with it. Furthermore, we assess putative correlated evolution of Tpref with ambient temperature (minima, mean, and maxima) during the reproductive period by means of phylogenetic independent contrasts. We did not find differences in thermal preferences between sexes; and only one species, Acanthoscurria suina, exhibited diel differences in Tpref. We found evidence of correlated evolution between Tpref and minimum temperature during the reproductive period among all seven species studied herein. Our results show that the reproductive period is constrained by thermal preferences, dictating when males can start their wandering life to mate.  相似文献   

6.
Global warming is occurring at an alarming rate and predictions are that air temperature (Ta) will continue to increase during this century. Increases in Ta as a result of unabated production of greenhouse gases in our atmosphere pose a threat to the distribution and abundance of wildlife populations worldwide. Although all the animals worldwide will likely be affected by global warming, diurnal animals in the deserts will be particularly threatened in the future because Tas are already high, and animals have limited access to water. It is expected that Saudi Arabia will experience a 3–5 °C in Ta over the next century. For predicting the consequences of global warming for animals, it is important to understand how individual species will respond to higher air temperatures. We think that populations will not have sufficient time to make evolutionary adjustments to higher Ta, and therefore they will be forced to alter their distribution patterns, or make phenotypic adjustments in their ability to cope with high Ta. This report examines how increases in Ta might affect body temperature (Tb) in the animals of arid regions. We chose three taxonomic groups, mammals, birds, and reptiles (Arabian oryx, Arabian spiny-tailed lizard, vultures, and hoopoe larks) from Saudi Arabia, an area in which Ta often reaches 45 °C during midday in summer. When Ta exceeds Tb, animals must resort to behavioral and physiological methods to control their Tb; failure to do so results in death. The observations of this study show that in many cases Tb is already close to the upper lethal limit of around 47° C in these species and therefore allowing their Tb to increase as Ta increases are not an option. We conclude that global warming will have a detrimental impact on a wide range of desert animals, but in reality we know little about the ability of most animals to cope with change in Ta. The data presented should serve as base-line information on Tb of animals in the Kingdom for future scientists in Saudi Arabia as they explore the impact of global warming on animal species.  相似文献   

7.
Aspects of the thermal ecology of two sympatric hinge‐back tortoises, Kinixys erosa and Kinixys homeana, were studied in the rainforest zone of south‐eastern Nigeria (West Africa). There were no significant differences in mean body temperatures (Tb) among K. homeana males, K. homeana females, K. erosa males and K. erosa females. In both species, there was a significant correlation between Tb and air temperature (Ta), and the regression line of Ta plotted against Tb differed significantly from the line of ideal poikilothermy. These regressions did not differ significantly between sexes in either species. There were no significant differences in terms of mean Tb in K. homeana during the various day‐hour intervals, whereas the mean Tb of K. erosa varied significantly among the various daytime intervals, attaining the higher values at 11.01–15.00 and 15.01–19.00 hours. In both species, Tbs were nearly always below Tas, and the negative difference ‘TbTa’ increased with increasing Ta. The hourly‐time course of the difference between Tb and Ta showed significant differences in K. homeana (with the higher negative differences at 11.01–15.00 and 15.01–19.00 hours), whereas no such difference was observed in K. erosa. In general, tortoises of both species showed behavioural thermoregulation in their avoidance of overheating in tropical environments, taking advantage of shady forest environments.  相似文献   

8.
Birds exposed to seasonal environments are faced with the problem of maintaining thermogenic homoeostasis. Previous studies have established that birds native to the Holarctic increase their Resting Metabolic Rate at different ambient temperatures (RMRTa) and Basal Metabolic Rate (BMR) in winter as an adaptation to cold temperature since winters are more severe, while their non-Holarctic counterparts generally decrease their winter BMR as an energy saving mechanism during unproductive and dry winter months. In this study, we examined seasonal thermoregulation in the burrowing parrot (Cyanoliseus patagonus), a colonial psittacine native to the Patagonian region of Argentina, a region with an unpredictable environment. We found significantly higher mass specific RMRTa and BMR in summer than in winter. Both summer and winter BMR of the species fell within the predicted 95% confident interval for a parrot of its size. Body mass was significantly higher in winter than in summer. The burrowing parrot had broad thermo-neutral zones in winter and summer. The circadian rhythm of core body temperature (Tb) of burrowing parrots was not affected by season, showing that this species regulated its Tb irrespective of season. These results suggest that the burrowing parrots' seasonal thermoregulatory responses represent that of energy conservation which is important in an unpredictable environment.  相似文献   

9.
We measured body temperature (Tb) in free-ranging individuals of two species of elephant shrews, namely western rock elephant shrews (Elephantulus rupestris) and Cape rock elephant shrews (E. edwardii), during winter in a winter-rainfall region of western South Africa. These syntopic species have similar ecologies and morphologies and thus potential for large overlaps in diet and habitat use. Unexpectedly, they displayed different Tb patterns. Western rock elephant shrews were heterothermic, with all individuals decreasing Tb below 30 °C on at least 34% of nights. The level of heterothermy expressed was similar to other species traditionally defined as daily heterotherms and was inversely related to Ta, as is commonly seen in small heterothermic endotherms. In contrast, Cape rock elephant shrews rarely allowed their Tb to decrease below 30 °C. The level of heterothermy was similar to species traditionally defined as homeotherms and there was no relationship between the level of heterothermy expressed and Ta. In both species, the minimum daily Tb was recorded almost exclusively at night, often shortly before sunrise, although in some individuals minimum Tb occasionally occurred during the day. The interspecific variation in Tb patterns among Elephantulus species recorded to date reiterates the importance of ecological determinants of heterothermy that interact with factors such as body mass and phylogeny.  相似文献   

10.
Invasive species are a major threat to global biodiversity. Rose-ringed parakeets Psittacula krameri are widely established outside their native range and are successful invaders in many countries, including South Africa. Physiological and behavioral responses to environmental conditions are considered to be major factors that influence the abundance and distribution of birds. As rose-ringed parakeets are able to tolerate wide varieties of climatic conditions as invaders, it is important to understand their physiological responses to these. This study examined the effects of seasonal changes in ambient temperatures (Ta) on metabolic rate and body temperature (Tb) of captive-bred rose-ringed parakeets. Resting metabolic rate at various Ta and basal metabolic rate were significantly lower in winter compared to summer, and the thermo-neutral zone was broader in winter than in summer. There was no significant difference in body mass (Mb) between seasons. These parakeets showed seasonal thermoregulatory responses that represented energy conservation as expected, rather than cold tolerance. They were relatively tolerant of low Ta and showed no hypothermia at 5 °C. Our results suggest that this species is physiologically and behaviorally equipped to cope with a range of climatic situations and this partly explains their global success as an invader species.  相似文献   

11.
The mountain hare (Lepus timidus) is a year-round active herbivore adapted to survive the boreal winter. Captive mountain hares (N = 4) were implanted with intraabdominal thermosensitive loggers to record their core body temperature (Tb) for a year and during food deprivation (8–48 h) in summer and winter. The average Tb was 38.7 ± 0.01 °C in summer and 38.3 ± 0.01 °C in winter. The yearly Tb correlated positively with the ambient temperature. The 24-h Tb was the highest from late scotophase to early photophase in summer and winter and the lowest during middle-late photophase in summer or during early-middle scotophase in winter. The range of the 24-h oscillations in Tb increased in three animals in winter. Food deprivation did not induce hypothermia in summer or winter. These preliminary data suggest that the mountain hare can spare a modest amount of energy with the wintertime reduction in Tb.  相似文献   

12.
Basal metabolic rate (BMR) of birds is beginning to be viewed as a highly flexible physiological trait influenced by environmental fluctuations, and in particular changes in ambient temperatures (Ta). Southern Africa is characterized by an unpredictable environment with daily and seasonal variation. This study sought to evaluate the effects of seasonal changes in Ta on mass-specific resting metabolic rate (RMR), BMR and body temperature (Tb) of Red-winged Starlings (Onychognathus morio). They have a broad distribution, from Ethiopia to the Cape in South Africa and are medium-sized frugivorous birds. Metabolic rate (VO2) and Tb were measured in wild caught Red-winged Starlings after a period of summer and winter acclimatization in outdoor aviaries. RMR and BMR were significantly higher in winter than summer. Body mass of Starlings was significantly higher in winter compared with summer. The increased RMR and BMR in winter indicate improved ability to cope with cold and maintenance of a high Tb. These results show that the metabolism of Red-winged Starlings are not constant, but exhibit a pronounced seasonal phenotypic flexibility with maintenance of a high Tb.  相似文献   

13.
Ectotherms in water experience rates of heat transfer at least two orders of magnitude greater than in air, seriously constraining their thermoregulatory capabilities. Yet, even in water, individuals may exert control over body temperature (Tb) via behaviors such as selecting thermally favorable microhabitats. The interactions among body size, physiology, and behavior on the thermal biology of large, entirely aquatic, ectotherms is poorly understood. We tested the hypothesis that alligator snapping turtles (Macroclemmys temminckii) selected microhabitats based on temperature by comparing temperatures at sites used by turtles to temperatures at randomly selected sites. These large turtles selected a narrow range of microhabitats that were significantly warmer and less variable in temperature than random sites. Cooling trials in the laboratory indicated larger turtles equilibrated more slowly to ambient temperature (Ta) than smaller turtles. We recorded Ta and body temperature (Tb) of turtles in the field continuously throughout the year. The Tb generally conformed to Ta but there were periods when TbTa differences were great. These results suggest that while physiology and size of aquatic turtles can affect Tb transiently, microhabitat selection may be the only meaningful mechanism for large, entirely aquatic, turtles to control Tb.  相似文献   

14.
The ability to thermoregulate in reptilians is often through behavioural modification. We investigated body temperature (Tb) patterns during winter in the amphibious Nile crocodile (Crocodylus niloticus) and its relationship to basking behaviour at the St. Lucia Crocodile Centre, St. Lucia, South Africa. It was found that crocodiles had no daily plateaus in Tb but rather continuous oscillations in Tb within a range of mean minimum Tb 18.8–19.6 °C to mean maximum Tb 26.9–29.2 °C. Crocodile Tb increased during the day, usually after 10:00 irrespective of body size. Behavioural data showed that the crocodiles usually left the water to bask around 10:00. It is suggested that basking behaviour is important for elevating Tb rather than attaining a preferred Tb. The increased Tb may allow them to perform optimally when they return to water. The basking occurrence has management implications as it suggests that the best time to conduct aerial censuses of the St. Lucia crocodiles is during winter after 10:00 when most of the individuals are basking and hence most easily seen.  相似文献   

15.
We examined the thermoregulatory behaviour (TRB) of roosting Humboldt penguins (Spheniscus humboldti) in north central Chile during summer and winter, when ambient temperatures (Ta) are most extreme. Each body posture was considered to represent a particular TRB, which was ranked in a sequence that reflected different degrees of thermal load and was assigned an arbitrary thermoregulatory score. During summer, birds exhibited eight different TRBs, mainly oriented to heat dissipation, and experienced a wide range of Ta (from 14 to 31°C), occasionally above their thermoneutral zone (TNZ, from 2 to 30°C), this being evident by observations of extreme thermoregulatory responses such as panting. In winter, birds exhibited only three TRBs, mainly oriented to heat retention, and experienced a smaller range of Ta (from 11 to 18°C), always within the TNZ, even at night. The components of behavioural responses increased directly with the heat load which explains the broader behavioural repertoire observed in summer. Since penguins are primarily adapted in morphology and physiology to cope with low water temperatures, our results suggest that behavioural thermoregulation may be important in the maintenance of the thermal balance in Humboldt penguins while on land.  相似文献   

16.
Seasonal changes in weather and food availability differentially impact energy budgets of small mammals such as bats. While most thermal physiological research has focused on species that experience extreme seasonal temperature variations, knowledge is lacking from less variable temperate to subtropical climates. We quantified ambient temperature (T a) and skin temperature (T sk) responses by individuals from a population of New Zealand lesser short-tailed bats (Mystacina tuberculata) during summer and winter using temperature telemetry. During summer, communal roosts were more thermally stable than T a. During winter, solitary roosts were warmer than T a indicating significant thermal buffering. Communal roost trees were used on 83 % of observation days during summer, and individuals occupying them rarely entered torpor. Solitary roosts were occupied on 93 % of observation days during winter, and 100 % of individuals occupying them used torpor. During summer and winter, bats employed torpor on 11 and 95 % of observation days, respectively. Maximum torpor bout duration was 120.8 h and winter torpor bout duration correlated negatively with mean T a. Torpor bout duration did not differ between sexes, although female minimum T sk was significantly lower than males. The summer Heterothermy Index varied, and was also significantly affected by T a. Mean arousal time was correlated with sunset time and arousals occurred most frequently on significantly warmer evenings, which are likely associated with an increased probability of foraging success. We provide the first evidence that torpor is used flexibly throughout the year by M. tuberculata, demonstrating that roost choice and season impact torpor patterns. Our results add to the growing knowledge that even small changes in seasonal climate can have large effects on the energy balance of small mammals.  相似文献   

17.
To understand the adaptive capacity of a species in response to rapid habitat destruction and climate change, we investigated variation in body temperature (Tb) of three species of antelope, namely eland, blue wildebeest and impala, using abdominally-implanted temperature data loggers. The study was conducted at two climatically contrasting environments in South Africa, one with a less seasonal and mild winter (Mapungubwe National Park) and the other with a more seasonal, long and cold winter (Asante Sana Game Reserve). Since the habitat with long and cold winters would be suboptimal for these African antelopes, which evolved in less seasonal and hot environments, antelopes in Asante Sana were expected to exhibit a larger amplitude in Tb and a lower minimum body temperature (Min Tb) during winter to reduce Tb and the ambient temperature (TbTa) gradient to save energy. In both eland and impala, 24-h body temperature amplitude did not differ between the study sites, regardless of season. Conversely, wildebeest in Mapungubwe showed a higher variability in the 24-h amplitude of body temperature and also a lower Min Tb during winter and spring than the wildebeest in Asante Sana. This variation in Tb among Mapungubwe wildebeest was influenced by both the amplitude of ambient temperature (positive) and cumulative rainfall (negative), which was not the case for wildebeest in Asante Sana. We propose that the low Min Tb of wildebeest in Mapungubwe was the result of nutritional stress during winter and spring; an evident response even during a year of average rainfall. Therefore, these wildebeest apparently live in a physiologically stressful environment. With the predicted increase in the frequency and intensity of drought periods in southern Africa, wildebeest and other grazers, will likely experience greater nutritional stress in the future.  相似文献   

18.
Seasonal variations in ambient temperature (Ta) require changes in thermoregulatory responses of endotherms. These responses vary according to several factors including taxon and energy constraints. Despite a plethora of studies on chiropteran variations in thermoregulation, few have examined African species. In this study, we used the Wahlberg's epauletted fruit bat (Epomophorus wahlbergi, body mass≈115 g) to determine how the thermoregulatory abilities of an Afrotropical chiropteran respond to seasonal changes in Ta. Mass specific Resting Metabolic Rates (RMRTa) and basal metabolic rate (BMR) were significantly higher in winter than in summer. Furthermore, winter body mass was significantly higher than summer body mass. A broad thermoneutral zone (TNZ) was observed in winter (15–35 °C) compared with summer (25–30 °C). This species exhibited heterothermy (rectal and core body temperature) during the photophase (bats' rest-phase) particularly at lower Tas and had a low tolerance of high Tas. Overall, there was a significant seasonal variation in the thermoregulatory abilities of E. wahlbergi. The relative paucity of data relating to the seasonal thermoregulatory abilities of Afrotropical bats suggest further work is needed for comparison and possible effects of climate change, particularly extreme hot days.  相似文献   

19.
Seasonal cold temperatures require mammals to use morphological, behavioural, or physiological traits to survive periods of extreme cold and food shortage. Torpor is a physiological state that minimizes energy requirements by decreasing resting metabolic rate (MR) and body temperature (Tb). Many rodent species are capable of torpor, however, evidence in northern and southern flying squirrels (Glaucomys sabrinus and Glaucomys volans, respectively) has remained anecdotal. We experimentally attempted to induce torpor in wild-caught flying squirrels by lowering ambient temperature (Ta) and measuring MR using open-flow respirometry. We also studied seasonal differences in MR and Tb at various Ta. Both MR and Tb provided evidence for torpor in flying squirrels, but only infrequent, shallow torpor. MR decreased infrequently and any decreases were rarely sustained for longer than one hour. We found a significant positive relationship between Ta and Tb only in G. volans, which suggests that G. volans is more susceptible to low Ta compared with G. sabrinus, possibly due to their small body size. We observed no substantive seasonal or interspecific differences in the relation between MR and Ta, with the exception that northern flying squirrels expended more energy at cold Ta during warm season trials than other species-season combinations. The infrequency of torpor use in our experiments suggests that other energy-saving strategies, such as social thermoregulation, may limit the reliance on torpor in this lineage.  相似文献   

20.
Seasonal thermoregulatory responses that are associated with cold tolerance have been reported for many species that inhabit regions where winters are severe (e.g. Holarctic), but relatively few studies have focused on species from regions where the climate is more unpredictable (e.g. Southern Africa). In this study, metabolic rate (VO2) and body temperature (Tb) was measured during summer and winter in captive Southern White-faced Scops-owl (Ptilopsis granti), to test for thermoregulatory responses representing energy conservation in winter. During winter the Southern White-faced Scops-owls increased resting metabolic rate (RMR) by 45% to regulate a set point Tb—a result similar to what had been shown in small passerines from the Holarctic region. Increased RMR and increased conductance at cold Ta's are suggestive of improved cold tolerance. Basal metabolic rate (BMR) was 0.60 mL O2 g−1 h−1 and showed no seasonal flexibility. Thus, contrary to expectation, the Southern White-faced Scops-owls showed seasonal thermoregulatory responses that are unlikely to represent energy conservation which was expected for a medium-sized bird inhabiting unpredictable climates in Southern Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号