首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Abstract: Eastern red bats (Lasiurus borealis) have been found to overwinter in areas that can experience severe fluctuations in temperature. We examined the red bat's use of winter roosts in southwest Missouri, USA, for 2 winters (2003–2005). We found tree roosts in eastern red cedars (Juniperus virginiana) and hardwoods. Tree roost sites were located on the south side of trees, and we found roost trees on south-facing slopes. Roost sites occurred more frequently in the location with least canopy cover. Bats switched from tree roosts to leaf litter roosts when ambient temperatures approached or fell below freezing. We found habitat characteristics and aspect to be determining factors in the selection of leaflitter roosts. Management of overwintering red bats requires a diverse forest structure, including canopy gaps, stand-density variation, and leaf-bearing trees, including oaks (Quercus spp.).  相似文献   

2.
Although roost choice in bats has been studied previously, little is known about how opposing roost colours affect the expression of torpor quantitatively. We quantified roost selection and thermoregulation in a captive Australian insectivorous bat, Nyctophilus gouldi (n=12) in winter when roosting in black and white coloured boxes using temperature-telemetry. We quantified how roost choice influences torpor expression when food was provided ad libitum or restricted in bats housed together in an outdoor aviary exposed to natural fluctuations of ambient temperature. Black box temperatures averaged 5.1 °C (maximum 7.5 °C) warmer than white boxes at their maximum daytime temperature. Bats fed ad libitum chose black boxes on most nights (92.9%) and on 100% of nights when food-restricted. All bats used torpor on all study days. However, bats fed ad libitum and roosting in black boxes used shorter torpor and spent more time normothermic/active at night than food-restricted bats and bats roosting in white boxes. Bats roosting in black boxes also rewarmed passively more often and to a higher skin temperature than those in white boxes. Our study suggests that N. gouldi fed ad libitum select warmer roosts in order to passively rewarm to a higher skin temperature and thus save energy required for active midday rewarming as well as to maintain a normothermic body temperature for longer periods at night. This study shows that colour should be considered when deploying bat boxes; black boxes are preferable for those bats that use passive rewarming, even in winter when food availability is reduced.  相似文献   

3.
Many North American bat species hibernate in both natural and artificial roosts. Although hibernacula can have high internal climate stability, they still retain spatial variability in their thermal regimes, resulting in various “microclimates” throughout the roost that differ in their characteristics (e.g., temperature and air moisture). These microclimate components can be influenced by factors such as the number of entrances, the depth of the roost, and distance to the nearest entrance of the roost. Tri‐colored bats are commonly found roosting in caves in winter, but they can also be found roosting in large numbers in culverts, providing the unique opportunity to investigate factors influencing microclimates of bats in both natural and artificial roost sites. As tri‐colored bats are currently under consideration for federal listing, information of this type could be useful in aiding in the conservation and management of this species through a better understanding of what factors affect the microclimate near roosting bats. We collected data on microclimate temperature and microclimate actual water vapor pressure (AWVP) from a total of 760 overwintering tri‐colored bats at 18 caves and 44 culverts. Using linear mixed models analysis, we found that variation in bat microclimate temperatures was best explained by external temperature and distance from nearest entrance in both caves and culverts. External temperature had a greater influence on microclimate temperatures in culverts than caves. We found that variation in microclimate AWVP was best explained by external temperature, distance from nearest entrance, and proportion from entrance (proportion of the total length of the roost from the nearest entrance) in culvert‐roosting bats. Variation in microclimate AWVP was best explained by external temperature and proportion from entrance in cave‐roosting bats. Our results suggest that bat microclimate temperature and AWVP are influenced by similar factors in both artificial and natural roosts, although the relative contribution of these factors differs between roost types.  相似文献   

4.
Hibernation by tree-roosting bats   总被引:1,自引:1,他引:0  
In summer, long-eared bats (Nyctophilus spp.) roost under bark and in tree cavities, where they appear to benefit from diurnal heating of roosts. In contrast, hibernation is thought to require a cool stable temperature, suggesting they should prefer thermally insulated tree cavities during winter. To test this prediction, we quantified the winter thermoregulatory physiology and ecology of hibernating tree-roosting bats, Nyctophilus geoffroyi and N. gouldi in the field. Surprisingly, bats in winter continued to roost under exfoliating bark (65%) on the northern, sunny side of trees and in shallow tree cavities (35%). Despite passive re-warming of torpid bats by 10-20 degrees C per day, torpor bouts lasted up to 15 days, although shorter bouts were also common. Arousals occurred more frequently and subsequent activity lasted longer on warmer nights, suggesting occasional winter foraging. We show that, because periodic arousals coincide with maximum roost temperatures, when costs of rewarming and normothermic thermoregulation are minimal, exposure to a daily temperature cycle could largely reduce energy expenditure during hibernation. Our study provides further evidence that models of torpor patterns and energy expenditure from hibernators in cold temperate climates are not directly applicable in milder climates, where prolonged torpor can be interspersed with more frequent arousals and occasional foraging.  相似文献   

5.
Little is known about the use of heterothermy by wild bats during summer, especially for tree-roosting species. Because thermal conditions within tree roosts can fluctuate widely with ambient temperature, which affects thermoregulatory energy expenditure during diurnal roosting, we measured skin temperatures of free-ranging male Nyctophilus geoffroyi (8 g) to quantify the relation between summer torpor use and roost thermal conditions. Bats roosted under bark on the northern (sunny) side of trees and entered torpor every day, usually near sunrise. Bats exhibited two bouts of torpor on most days: the first occurred in the morning, was terminated by partially passive rewarming, and was followed by a period of normothermy during the warmest part of the day; a second torpor bout occurred in the late afternoon, with arousal near sunset. On the warmest days, bats had only a single, short morning bout. On the coolest days, bats remained torpid throughout the day, and one 2-d bout was observed. Thus, presumably owing to their poorly insulated roosts and the high energetic cost of normothermy at temperatures below 30 degrees C, the extent and timing of heterothermy was closely related to the cycle of diurnal temperatures. Our study indicates that torpor use is important for energy maintenance during summer diurnal roosting of N. geoffroyi and likely of other small, tree-roosting bats.  相似文献   

6.
Abstract: Understanding year-round roost-site selection is essential for managing forest bat populations. From January to March, 2004 to 2006, we used radiotelemetry to investigate winter roost-site selection by Seminole bats (Lasiurus seminolus) on an intensively managed landscape with forested corridors in southeastern South Carolina, USA. We modeled roost-site selection with logistic regression and used Akaike's Information Criterion for small samples (AICc) and Akaike weights to select models relating roost-site selection to plot- and landscape-level variables. We tracked 20 adult male bats to 71 individual roosts. Bats used a variety of roosting structures, including the canopy of overstory trees, understory vegetation, pine (Pinus spp.) needle clusters, and leaf litter. Roost height, structure type, and habitat type were influenced by changes in minimum nightly temperature. On warmer nights, bats selected taller trees in mature forest stands, but when minimum nightly temperatures were <4° C, bats typically were found roosting on or near the forest floor in mid-rotation stands. We recommend avoiding prescribed burning in mid-rotation stands on days when the previous night's temperature is <4 °C to minimize potential disturbance and direct mortality of bats roosting on or near the forest floor. We encourage forest managers to incorporate seasonal changes in roost-site selection to create year-round management strategies for forest bats in managed landscapes.  相似文献   

7.
White-browed sparrow-weavers (Plocepasser mahali, body mass 40 g) are group-living passerines adapted to the semi-arid environment of north-eastern and south-western Africa. During winter, the nocturnal ambient temperature of these regions often falls below 0 degrees C. imposing conditions demanding an increase in thermoregulatory heat production. Individuals roost throughout the year in inverted U-shaped roost nests. We investigated the energetic advantages of roosting by measuring nest and ambient temperatures in the field, as well as the resting metabolic rate (RMR) of the birds. The sparrow-weavers exhibited a wide thermoneutral zone (13 degrees C - 32 degrees C). Although RMR at thermoneutrality (40.2 J g.h(-1)) conforms with those of other passerines. the value at 0 degrees C (74.8 J g.h(-1)) is significantly lower than expected. The slope of the line below the lower critical temperature is unexpectedly steep, however, and appears to cause the physiological requirement for nest roosting due to a high cost of thermoregulation at low temperatures, perhaps due to shivering or non-shivering thermogenesis. The nest temperature at 0 degrees C ambient is 5 degrees C. resulting in a saving of some 7% in the energy spent during winter nights when food resources are in short supply compared with the rest of the year.  相似文献   

8.
High environmental temperatures pose significant physiological challenges related to energy and water balance for small endotherms. Although there is a growing literature on the effect of high temperatures on birds, comparable data are scarcer for bats. Those data that do exist suggest that roost microsite may predict tolerance of high air temperatures. To examine this possibility further, we quantified the upper limits to heat tolerance and evaporative cooling capacity in three southern African bat species inhabiting the same hot environment but using different roost types (crevice, foliage or cave). We used flow-through respirometry and compared heat tolerance limits (highest air temperature (Ta) tolerated before the onset of severe hyperthermia), body temperature (Tb), evaporative water loss, metabolic rate, and maximum cooling capacity (i.e., evaporative heat loss/metabolic heat production). Heat tolerance limits for the two bats roosting in more exposed sites, Taphozous mauritianus (foliage-roosting) and Eptesicus hottentotus (crevice-roosting), were Ta = ~44 °C and those individuals defended maximum Tb between 41 °C and 43 °C. The heat tolerance limit for the bat roosting in a more buffered site, Rousettus aegyptiacus (cave-roosting), was Ta = ~38 °C with a corresponding Tb of ~38 °C. These interspecific differences, together with a similar trend for higher evaporative cooling efficiency in species occupying warmer roost microsites, add further support to the notion that ecological factors like roost choice may have profound influences on physiological traits related to thermoregulation.  相似文献   

9.
(1) The energy savings associated with the roosting behaviour of barn owls (Tyto alba) were determined with a biophysical model using measurements of microclimate from a roost and nest site in SW Scotland (55 degrees 10' N 3 degrees 12' W) from April 1991-March 1992. (2) The roost building provided complete shelter from wind and precipitation. Air temperature inside the roost building was 1.4 degrees C greater than ambient and matched the seasonal change in temperature. Air temperature inside the nest box was on average only 0.8 degrees C greater than ambient but was 2-3 degrees C warmer when adults and chicks were in the nest during the breeding season. (3) Estimated metabolic heat production was significantly different between locations and averaged 67.9, 68.1, 75.5 and 84.2Wm(-2) for a barn owl roosting in the building, nest box, spruce tree and in the open, respectively. At night metabolic heat production was greater by 4-12% compared with daytime, depending on location. (4) Heat loss was 30% greater in winter months than in the summer in all locations. By roosting in the building an owl would make savings of 21.6Wm(-2) in March but only 12.9Wm(-2) in August. In a tree roost a barn owl would save 11.8Wm(-2) in March and 5.8Wm(-2) in August. (5) Barn owls were estimated to reduce metabolic heat production by 19% by roosting in the building and by 10% by roosting in a tree. In the building and tree savings of 21 and 9% occurred during the day compared with 17 and 12% at night. (6) Metabolic savings were strongly dependent on weather conditions with average metabolic savings of 26% occurring in wet and windy conditions compared with only 12% on dry-calm days. Maximum savings of 29-36% occurred on wet days. (7) Barn owls appear to compensate for high metabolic demands for heat production by taking advantage of better thermal conditions within buildings, especially during the day when metabolic savings are greatest.  相似文献   

10.
Several species of Nearctic-Neotropical migratory songbirds appear to form roosting aggregations while on their wintering grounds but little is understood about the ecology of this behavior. We studied roosting behavior and patterns of roost habitat selection in the northern waterthrush Seiurus noveboracensis , during three winter years (2002–2004) in Puerto Rico using radio telemetry. Overall, red mangrove was selected for roosting disproportionately to its availability. Regardless of diurnal habitat used, 87% (n=86) of northern waterthrush selected dense stands of coastal red mangrove for roost sites. Individuals traveled up to 2 km to access roost sites in this habitat on a daily basis. The majority (8 of 14) of individuals roosted alone, while others roosted in loose aggregations near communal roosts of gray kingbirds Tyrannus dominicensis . Patterns of roost site selection did not vary by sex. Individuals showing aggressive response to playback during the day, however, selected roost sites significantly closer to the coast. Several additional migratory and resident bird species also used red mangrove for night-time roosting habitat. Red mangrove may be a critical nocturnal roosting habitat for bird populations that live in proximity to coastal areas in the Neotropics. The benefits of nocturnal roosting behavior as well as why individuals appear to select red mangrove remain poorly understood.  相似文献   

11.
Social calls in bats have many functions, including mate attraction and maintaining contact during flight. Research suggests that social calls may also be used to transfer information about roosts, but no studies have yet demonstrated that calls are used to actively attract conspecifics to roosting locations. We document the social calls used by Spix''s disc-winged bat (Thyroptera tricolor) to actively recruit group members to roosts. In acoustic trials, we recorded two sets of calls; one from flying individuals termed ‘inquiry calls’, and another from roosting bats termed ‘response calls’. Inquiry calls were emitted by flying bats immediately upon release, and quickly (i.e. 178 ms) elicited production of response calls from roosting individuals. Most flying bats entered the roost when roosting individuals responded, while few bats entered the roost in the absence of a response. We argue that information transfer concerning roost location may facilitate sociality in T. tricolor, given the ephemeral nature of roosting structures used by this species.  相似文献   

12.
We studied the roosting ecology of the long-tailed bat (Chalinolobus tuberculatus) during the springautumn months from 1998–2002 at Hanging Rock in the highly fragmented landscape of South Canterbury, South Island, New Zealand. We compared the structural characteristics and microclimates of roost sites used by communally and solitary roosting bats with those of randomly available sites, and roosts of C. tuberculatus occupying unmodified Nothofagus forest in the Eglinton Valley, Fiordland. Roosting group sizes and roost residency times were also compared. We followed forty radio-tagged bats to 94 roosts (20% in limestone crevices, 80% in trees) at Hanging Rock. Roosts were occupied for an average of 1 day and 86% were only used once during the study period. Colony size averaged 9.8 ± 1.1 bats (range 2–38) and colonies were dominated by breeding females and young. Indigenous forest, shrubland remnants and riparian zones were preferred roosting habitats. Communally roosting bats selected roosts in split trunks of some of the largest trees available. Selection of the largest available trees as roost sites is similar to behaviour of bat species occupying unmodified forested habitats. Temperatures inside 12 maternity roosts measured during the lactation period were variable. Five roosts were well insulated from ambient conditions and internal temperatures were stable, whereas the temperatures inside seven roosts fluctuated in parallel with ambient temperature. Tree cavities used by bats at Hanging Rock were significantly nearer ground level, had larger entrance dimensions, were less well insulated, and were occupied by fewer bats than roosts in the Eglinton Valley. These characteristics appear to expose their occupants to unstable microclimates and to a higher risk of threats such as predation. We suggest that roosts at Hanging Rock are of a lower quality than those in the Eglinton Valley, and that roost quality may be one of the contributory factors in the differential reproductive fitness observed in the two bat populations. The value of introduced willows (especially Salix fragilis) as bat roosts should be acknowledged. We recommend six conservation measures to mitigate negative effects of deterioration of roosting habitat: protection and enhancement of the quality of existing roosts, replanting within roosting habitat, provision of high quality artificial roosts, predator control, and education of landowners and statutory bodies.  相似文献   

13.
Roost microclimate plays an important role in the survival, growth and reproduction in microbats. Entering torpor is one of the main energy saving mechanisms commonly used by microbats. The use of torpor is affected by roost microclimate and seasonally differs between the two sexes in relation to their reproductive condition. Consequently, thermal properties of male and female roosts should differ. To test this hypothesis, we compared temperature parameters of two anthropogenic day roosts of Daubenton’s bats with a different structure of the population inhabiting them. In accordance with our predictions, the roost occupied by a male-dominated colony was colder and more fluctuant than the maternity roost with a female-dominated population. However, using of the two roosts changed during the season in response to changing energetic demands of the two sexes. While males were almost absent in the warmer maternity roost during pregnancy and lactation, they appeared in this roost during the post-lactation when mating starts. In contrast, females did not use the colder (male) roost until the time of weaning of juveniles, i.e., the time when their thermoregulatory needs change and they may benefit from using colder roost. Our study provides the evidence that the same roost may be used by individuals of different sex and reproductive state in different periods of the year. Generalizations about roost selection without knowledge of temporal variation in roost use and microclimatic conditions should be taken with caution. Anthropogenic roosts may be advantageous to Daubenton’s bats as these can provide a variety of suitable microclimates and/or more space for roosting than tree cavities.  相似文献   

14.
At a site in the northwestern Sonoran Desert the percent groundcover for the C3subshrubEncelia farinosawas eight-times higheron more arid 20° south-facing slopes than on 20° north-facingslopes at 820 m elevation, and was six-times higher on north-facingslopes at a 300-m-lower elevation, also the more arid condition.The ground cover of the C4bunchgrassPleuraphis rigidadecreasedover 50% from 20° north-facing slopes to the more arid conditionsof a 36° north-facing slope, a 20° south-facing slopeand a 20° north-facing slope at a 300-m-lower elevation.The CAM leaf succulentAgave desertialso had greater ground coverfor the 20° north-facing slopes at 820 m compared with 520m. For these three codominants that averaged 58% of the totalground cover, the key for the relative frequency ofE. farinosawasapparently its greater root growth on the warmer slopes duringthe winter. The key for the other two species was most likelysoil water availability, especially during the seedling stageforA. deserti. The wetter soil conditions on 20° north-facingslopes at 820 m apparently led to individual plants ofP. rigidathatwere twice as large as on south-facing slopes. Thus root propertiesmay exert the primary influence on relative plant frequencyin this desert ecosystem for which soil temperature and wateravailability are crucial.Copyright 1997 Annals of Botany Company Agave deserti; Encelia farinosa; Pleuraphis rigida; rooting patterns; soil temperature; Sonoran Desert; water availability  相似文献   

15.
Extreme temperatures impose energy costs on endotherms through thermoregulation and different adaptations help individuals to cope with these conditions. In social species, communal roosting and huddling are thought to decrease the energetic requirement of thermoregulation under low temperatures. This is likely to represent an important mechanism by which individuals save energy during the coldest parts of the year and hence to represent a non‐breeding benefit of sociality. Here, we investigate the potential thermoregulatory benefits of group living in roosting groups of sociable weavers Philetairus socius, a colonial cooperatively breeding passerine that builds communally a massive nest structure with several independent chambers wherein individuals breed and roost throughout the year. To investigate the benefits of sociality during the non‐breeding season, we studied the thermal environment during roosting in relation to group size. In addition, to understand the link between non‐breeding and breeding sociality in this species we studied group size stability between the pre‐breeding and breeding periods. As expected, we found that the nest chamber's night‐time temperature is strongly related to the number of birds roosting together, especially during cold nights. Specifically, birds in larger groups spent less time below the critical thermal minimum temperature (i.e. the temperature below which energy expenditure increases substantially). They were less exposed to external temperature variations. We also found a positive relationship between the number of birds roosting during winter and the breeding group size, indicating breeding group size predictability. In cooperative breeders such as the sociable weaver, the costs and benefits of sociality are usually studied during the breeding period. This study shows that a better understanding of non‐breeding benefits of group membership and group dynamics between the non‐breeding and breeding periods are necessary for a comprehensive understanding of the benefits of sociality.  相似文献   

16.
Understanding the ephemerality of trees used as roosts by wildlife, and the number of roost trees needed to sustain their populations, is important for forest management and wildlife conservation. Several studies indicate that roosts are limiting to bats, but few studies have monitored longevity of roost trees used by bats over several years. From 2004–2007 in Cypress Hills Interprovincial Park, Saskatchewan, Canada, several big brown bats (Eptesicus fuscus) from a maternity group roosted in cavities in trembling aspen (Populus tremuloides) trees approximately 7 km southeast away from their original known roosting area (RA1). Using a long-term data set of the roost trees used by bats in this area from 2000–2007, we evaluated whether the movement of bats to the new roosting area (RA4) corresponded with annual and cumulative losses of roost trees. We also determined whether longevity of the roosts from the time we discovered bats first using them differed between the 2 roosting areas based on Kaplan-Meier estimates. Bats began using RA4 in addition to RA1 in 2004, when the cumulative loss of roost trees in RA1 over 3 consecutive years reached 18%. Most bats exclusively roosted in RA4 in 2007, when the cumulative loss of roost trees over 6 consecutive years had reached 46% in RA1. Annual survival for roost trees, from when we first discovered bats using them, was generally lower in RA1 than in RA4. Our results suggest that the movement of bats to the new roosting area corresponded with high losses of roost trees in RA1. This provides additional evidence that to maintain high densities of suitable roost trees for bats in northern temperature forests over several decades, management plans need to recruit live and dead trees in multiple age classes and stages of decay that will be suitable for the formation of new cavities. © 2019 The Wildlife Society.  相似文献   

17.
In summer, many temperate bat species use daytime torpor, but breeding females do so less to avoid interferences with reproduction. In forest‐roosting bats, deep tree cavities buffer roost microclimate from abrupt temperature oscillations and facilitate thermoregulation. Forest bats also switch roosts frequently, so thermally suitable cavities may be limiting. We tested how barbastelle bats (Barbastella barbastellus), often roosting beneath flaking bark in snags, may thermoregulate successfully despite the unstable microclimate of their preferred cavities. We assessed thermoregulation patterns of bats roosting in trees in a beech forest of central Italy. Although all bats used torpor, females were more often normothermic. Cavities were poorly insulated, but social thermoregulation probably overcomes this problem. A model incorporating the presence of roost mates and group size explained thermoregulation patterns better than others based, respectively, on the location and structural characteristics of tree roosts and cavities, weather, or sex, reproductive or body condition. Homeothermy was recorded for all subjects, including nonreproductive females: This probably ensures availability of a warm roosting environment for nonvolant juveniles. Homeothermy may also represent a lifesaver for bats roosting beneath loose bark, very exposed to predators, because homeothermic bats may react quickly in case of emergency. We also found that barbastelle bats maintain group cohesion when switching roosts: This may accelerate roost occupation at the end of a night, quickly securing a stable microclimate in the newly occupied cavity. Overall, both thermoregulation and roost‐switching patterns were satisfactorily explained as adaptations to a structurally and thermally labile roosting environment.  相似文献   

18.
Summary Energy metabolism, thermoregulation, and water flux ofMacrotus californicus, the most northerly representative of the Phyllostomidae, were studied in the laboratory using standard methods, and energy metabolism and water fluxes were studied in the field using the doubly labelled water method together with a time budget. Daily energy expenditures of free-living bats averaged 22.8 kJ during the winter study period. Approximately 60% of this was allocated to resting metabolism costs while in the primary roosts (22 h/day).Macrotus californicus is unable to use torpor. The thermoneutral zone (TNZ) in this species is narrow (33 to 40 °C) and metabolic rate increased rapidly as ambient temperature decreased below the TNZ. Basal metabolic rate was 1.25 ml O2/g·h, or 24 J/g·h. Total thermal conductance below the TNZ. was 1.8 mW/g·°C, similar to values measured for other bats. Evaporative water loss showed a hyperbolic increase with increasing ambient temperature, and was approximately 1% of total body mass/h in the TNZ. The success of these bats as year-round residents in deserts in the southwestern United States is probably not due to special physiological adaptations, but to roosting and foraging behavior. They use geothermally-heated winter roost sites (stable year-round temperatures of approximately 29 °C) which minimize energy expenditures, and they have an energetically frugal pattern of foraging that relies on visual prey location. These seem to be the two major factors which have allowedM. californicus to invade the temperate zone.Abbreviations BMR basal metabolic rate - FMR field metabolic rate - T a ambient temperature - T b body temperature - T lc,T uc lower and upper critical temperature, respectively - TBW total body water - TNZ thermoneutral zone  相似文献   

19.
Forest roosting bats use a variety of ephemeral roosts such as snags and declining live trees. Although conservation of summer maternity habitat is considered critical for forest-roosting bats, bat response to roost loss still is poorly understood. To address this, we monitored 3 northern long-eared bat (Myotis septentrionalis) maternity colonies on Fort Knox Military Reservation, Kentucky, USA, before and after targeted roost removal during the dormant season when bats were hibernating in caves. We used 2 treatments: removal of a single highly used (primary) roost and removal of 24% of less used (secondary) roosts, and an un-manipulated control. Neither treatment altered the number of roosts used by individual bats, but secondary roost removal doubled the distances moved between sequentially used roosts. However, overall space use by and location of colonies was similar pre- and post-treatment. Patterns of roost use before and after removal treatments also were similar but bats maintained closer social connections after our treatments. Roost height, diameter at breast height, percent canopy openness, and roost species composition were similar pre- and post-treatment. We detected differences in the distribution of roosts among decay stages and crown classes pre- and post-roost removal, but this may have been a result of temperature differences between treatment years. Our results suggest that loss of a primary roost or ≤ 20% of secondary roosts in the dormant season may not cause northern long-eared bats to abandon roosting areas or substantially alter some roosting behaviors in the following active season when tree-roosts are used. Critically, tolerance limits to roost loss may be dependent upon local forest conditions, and continued research on this topic will be necessary for conservation of the northern long-eared bat across its range.  相似文献   

20.
One proposed advantage of communal roosting in birds is a reduction in the costs of thermoregulation. As thermoregulatory benefits are directly linked to the distance between roosting birds, we examined whether temperature is related to inter‐bird spacing in roosting chimney swifts Chaetura pelagica. To test the hypothesis that huddling is used to reduce the costs of thermoregulation, we predicted that swifts would cluster more at colder temperatures. We mounted an all‐weather camera atop a 61 m tall industrial masonry chimney, one of the largest swift roosts in the study region. We deployed temperature loggers inside the chimney and obtained ambient air temperature from a nearby weather station. From 16 May–24 July 2013, we captured hourly images of the positions of roosting swifts at night. We used image analysis software to mark the angular positions of all roosting swifts, and calculated mean angles of orientation (preferred direction) inside the roost and the circular variance (i.e. the concentration of swifts around the mean angle). We used a Gamma regression to relate temperature inside and outside the roost to the clustering of swifts around the mean angle for 3 time periods (pre‐nesting, nesting, and post‐nesting). Converse to our prediction, swifts were closer together when ambient air temperatures were warmer in all periods (pre‐nesting (p < 0.001, n = 168), nesting (p < 0.001, n = 224), and post‐nesting (p < 0.001, n = 135)). Our findings suggest that swifts do not increase clustering intensity in response to colder temperatures, but instead they increase clustering intensity in response to the warmest ambient temperatures. This likely a metabolic response to reduced prey availability at higher temperatures and/or an attempt to reduce evaporative water loss. We suggest clustering may be used by chimney swifts as an energy saving mechanism during periods of lowered food availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号