首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Summary Liver connective tissue cells have been characterized as perisinusoidal myofibroblasts and hepatic lipocytes (Ito cells, fat-storing cells). A concept of a single mesenchymal cell population that may be modulated between these two phenotypes has been postulated. We have previously established a continuous murine cell line, GRX, obtained from fibrotic granulomatous lesions induced by schistosomal infection in mouse liver. This cell line is considered to represent liver myofibroblasts. In the present study we have induced the conversion of these cells into lipocyte (fat storing) phenotype by treatment with insulin and indomethacin. We have quantified the lipid synthesis and the increase of activity of involved enzymes during the induction of the fat-storing phenotype and described modifications of cell organization along this modulation of cell functions. This work was supported by FINEP and CNPq (Brazil).  相似文献   

3.
Sphingolipids play a relevant role in cell-cell interaction, communication, and migration. We studied the sphingolipid content in the murine hepatic stellate cell line GRX, which expresses the myofibroblast phenotype, and can be induced in vitro to display the fat-storing phenotype. Lipid modifications along this induction were investigated by labeling sphingolipids with [(14)C]galactose, [(14)C]serine, or [(14)C]choline, and determination of fatty acid composition of sphingomyelin. The total ganglioside content and the GM2 synthase activity were lower in myofibroblasts. Both phenotypes presented similar gangliosides of the a-pathway: GM2, GM1, and GD1a as well as their precursor GM3. Sphingomyelin and all the gangliosides were expressed as doublets; the upper/lower band ratio increased in lipocytes, containing more long-chain fatty acids in retinol-induced lipocytes as compared to the insulin/indomethacin induced ones. Time-course experiments indicated a transfer of metabolic precursors from phosphatidylcholine to sphingomyelin in the two phenotypes. Taken together, these results indicate that myofibroblast and lipocytes can use distinct ceramide pools for sphingolipid synthesis. Differential ganglioside expression and presence of the long-chain saturated fatty acids suggested that they may participate in formation of distinct membrane microdomains or rafts with specific functions on the two phenotypes of GRX-cells.  相似文献   

4.
Connective tissue cells of liver parenchyma (perisinusoidal myofibroblasts) can be induced to express the lipocyte (Ito cell) phenotype. We have studied phospholipid synthesis and phosphate incorporation during this in vitro conversion, induced by insulin and/or indomethacin, in the established murine cell line GRX. Phospholipid synthesis, measured by [14C]acetate incorporation, was increased after a full induction of the lipocyte phenotype. The 32Pi incorporation into phospholipids was increased from the beginning of induction. Phosphatidic acid and phosphatidylinositol synthesis were increased early in the induction, whilst the increase of major constitutive phospholipids was significant only after the full lipocyte phenotype induction. The presence of unsaturated fatty acids in phospholipids was increased in lipocytes. Linoleic acid was present only in diacylglycerols and in phosphatidylinositol. Since we have shown previously that linoleic acid was not present in triacylglycerols, this result indicates the importance of future studies on activation of phosphatidylinositol cycles in induction of lipocyte phenotype in liver connective tissue cells.  相似文献   

5.
We have examined retinol esterification in the established GRX cell line, representative of hepatic stellate cells, and in primary cultures of ex vivo purified murine hepatic stellate cells. The metabolism of [3H]retinol was compared in cells expressing the myofibroblast or the lipocyte phenotype, under the physiological retinol concentrations. Retinyl esters were the major metabolites, whose production was dependent upon both acyl-CoA:retinol acyltransferase (ARAT) and lecithin:retinol acyltransferase (LRAT). Lipocytes had a significantly higher esterification capacity than myofibroblasts. In order to distinguish the intrinsic enzyme activity from modulation of retinol uptake and CRBP-retinol content of the cytosol in the studied cells, we monitored enzyme kinetics in the purified microsomal fraction. We found that both LRAT and ARAT activities were induced during the conversion of myofibroblasts to lipocytes. LRAT induction was dependent upon retinoic acid, while that of ARAT was dependent upon the overall induction of the fat storing phenotype. The fatty acid composition of retinyl-esters suggested a preferential inclusion of exogenous fatty acids into retinyl esters. We conclude that both LRAT and ARAT participate in retinol esterification in hepatic stellate cells: LRAT's activity correlates with the vitamin A status, while ARAT depends upon the availability of fatty acyl-CoA and the overall lipid metabolism in hepatic stellate cells.  相似文献   

6.
Retinol is stored in liver, and the dynamic balance between its accumulation and mobilization is regulated by hepatic stellate cells (HSC). Representing less than 1% total liver protein, HSC can reach a very high intracellular retinoid (vitamin-A and its metabolites) concentration, which elicits their conversion from the myofibroblast to the fat-storing lipocyte phenotype. Circulating retinol is associated with plasma retinol-binding protein (RBP) or bovine serum albumin (BSA). Here we have used the in vitro model of GRX cells to compare incorporation and metabolism of BSA versus RBP associated [(3)H]retinol in HSC. We have found that lipocytes, but not myofibroblasts, expressed a high-affinity membrane receptor for RBP-retinol complex (KD = 4.93 nM), and both cell types expressed a low-affinity one (KD = 234 nM). The RBP-retinol complex, but not the BSA-delivered retinol, could be dislodged from membranes by treatments that specifically disturb protein-protein interactions (high RBP concentrations). Under both conditions, treatments that disturb the membrane lipid layer (detergent, cyclodextrin) released the membrane-bound retinol. RBP-delivered retinol was found in cytosol, microsomal fraction and, as retinyl esters, in lipid droplets, while albumin-delivered retinol was mainly associated with membranes. Disturbing the clathrin-mediated endocytosis did not interfere with retinol uptake. Retinol derived from the holo-RBP complex was differentially incorporated in lipocytes and preferentially reached esterification sites close to lipid droplets through a specific intracellular traffic route. This direct influx pathway facilitates the retinol uptake into HSC against the concentration gradients, and possibly protects cell membranes from undesirable and potentially noxious high retinol concentrations.  相似文献   

7.
In granulation tissue the myofibroblast, a specialized fibroblast characterized by cytoplasmic stress fibres with alpha smooth muscle actin (SMA), develops from mechano-tension between cells. In vitro the myofibroblast phenotype can be induced in the absence of obvious tension by plating human dermal fibroblasts at low density (LD). Upon reaching confluence the LD-plated cells express alpha SMA within stress fibres. In contrast, few cells express alpha SMA when those same fibroblasts are plated at high density (HD). Cadherins, trans-membrane proteins, and link cells tie the cytoskeletal stress fibres of neighbouring cells together. By immunohistology myofibroblasts (LD-plated fibroblasts) are shown to express cadherin-11 on their surface and between cells, while HD-plated fibroblasts expressed less cadherin-11 on their surface. Western blot analysis revealed elevated concentrations of cadherin-11 and alpha SMA in confluent LD-plated cell lysates. Reduced amounts of both proteins were found in confluent HD-plated cell lysates. Plating fibroblasts on collagen inhibits alpha SMA synthesis. When confluent LD-plated myofibroblasts were covered with a collagen lattice for 24 h, both the expression of cadherin-11 and alpha SMA were reduced by 50%. There is the possibility that direct linkage of the cytoskeleton stress fibres by cell surface cadherins maintains tension between neighbouring cells, which induces alpha SMA expression in stress fibres. Cell contact with collagen reduces cadherin expression, which may eliminate the generation of mechano-tension between fibroblasts. The other possibility is that the myofibroblast phenotype may be induced by factors other than mechano-tension.  相似文献   

8.
Molecular mechanisms of lipid synthesis and their controls in hepatic stellate cells are not known. We have previously proposed that, in contrast to other fat storing cells, hepatic stellate cells are not involved in energy storage, but they represent a particular cell population specialized in storage of lipid-soluble substances, the major one being probably retinol. In agreement with this hypothesis, induction of the lipocyte phenotype in stellate cells is not under the control of insulin, but responds to retinoids and other molecules that modify the gene expression program in these cells. In the present study we have monitored the activity of the two major enzymes involved in lipid synthesis during the induction of the lipocyte phenotype in hepatic stellate cells: glycerol-3-phosphate dehydrogenase (GPDH) that mediates the de novo lipid synthesis, and lipoprotein lipase that mediates incorporation of plasma lipids. In early stages of lipocyte induction, both pathways of lipid synthesis are activated. When lipocytes have already constituted the lipid droplets, lipoprotein lipase pathway is downregulated, while GPDH activity remains high. Adult liver has been reported to lack lipoprotein lipase, but under stress, lipase activity was detected around and at the surface of the intrahepatic vasculature. We have now shown that the lipase activity can be induced in the hepatic stellate cells, located in the Disse's space. The high lipoprotein lipase activity under acute induction of lipocyte phenotype, followed by the low activity under conditions of metabolic equilibrium, are in compass with the increased activity of this enzyme under stress, and its low activity in adult liver parenchyma under normal conditions.  相似文献   

9.
Divergent regulation of the sarcomere and the cytoskeleton   总被引:1,自引:0,他引:1  
The existence of a feedback mechanism regulating the precise amounts of muscle structural proteins, such as actin and the actin-associated protein tropomyosin (Tm), in the sarcomeres of striated muscles is well established. However, the regulation of nonmuscle or cytoskeletal actin and Tms in nonmuscle cell structures has not been elucidated. Unlike the thin filaments of striated muscles, the actin cytoskeleton in nonmuscle cells is intrinsically dynamic. Given the differing requirements for the structural integrity of the actin thin filaments of the sarcomere compared with the requirement for dynamicity of the actin cytoskeleton in nonmuscle cells, we postulated that different regulatory mechanisms govern the expression of sarcomeric versus cytoskeletal Tms, as key regulators of the properties of the actin cytoskeleton. Comprehensive analyses of tissues from transgenic and knock-out mouse lines that overexpress the cytoskeletal Tms, Tm3 and Tm5NM1, and a comparison with sarcomeric Tms provide evidence for this. Moreover, we show that overexpression of a cytoskeletal Tm drives the amount of filamentous actin.  相似文献   

10.
GRX cell line represents hepatic stellate cell and can be transformed from an actively proliferation myofibroblast phenotype into a quiescent fat-storing lipocyte phenotype. Both express the same gangliosides (GM3, GM2, GM1 and GD1a), which are resolved as doublets on HPTLC. Upper/lower band ratio is increased in lipocyte-like cells and the upper band is composed by ceramides with long-chain fatty acids. This study evaluated the contribution of de novo synthesis, sphingosine and Golgi recycling pathways on ganglioside biosynthesis, in both phenotypes. Cells were preincubated with 5 mM β-chloroalanine (SPT: serine palmitoyltransferase inhibitor) or with 25 μM fumonisin B1 (ceramide synthase inhibitor) and then radiolabeled with [U-14C]galactose in the continued presence of inhibitors. Gangliosides were extracted, purified and analyzed by HPTLC. In myofibroblast-like cells, simple gangliosides use the de novo pathway while complex gangliosides are mainly synthesized by recycling pathways. In lipocyte-like cells, de novo pathway has a lesser contribution and this is in agreement with the lower activity of the committed enzyme of sphingolipid synthesis (SPT) detected in this phenotype. SPT mRNA has an identical expression in both phenotypes. It was also observed that gangliosides doublets from myofibroblast-like cells have the same distribution between triton soluble and insoluble fractions (upper band > lower band) while the gangliosides doublets from lipocyte-like cells show an inversion in the insoluble fraction (lower band > upper band) in comparison to soluble fraction. These results indicate that myofibroblast- and lipocyte-like cells have important differences between the glycosphingolipid biosynthetic pathways, which could contribute with the respective glycosphingolipid-enriched membrane microdomain’s composition.  相似文献   

11.
Signaling by the transforming growth factor‐β (TGF‐β) is an essential pathway regulating a variety of cellular events. TGF‐β is produced as a latent protein complex and is required to be activated before activating the receptor. The mechanical force at the cell surface is believed to be a mechanism for latent TGF‐β activation. Using β‐actin null mouse embryonic fibroblasts as a model, in which actin cytoskeleton and cell‐surface biophysical features are dramatically altered, we reveal increased TGF‐β1 activation and the upregulation of TGF‐β target genes. In β‐actin null cells, we show evidence that the enhanced TGF‐β signaling relies on the active utilization of latent TGF‐β1 in the cell culture medium. TGF‐β signaling activation contributes to the elevated reactive oxygen species production, which is likely mediated by the upregulation of Nox4. The previously observed myofibroblast phenotype of β‐actin null cells is inhibited by TGF‐β signaling inhibition, while the expression of actin cytoskeleton genes and angiogenic phenotype are not affected. Together, our study shows a scenario that the alteration of the actin cytoskeleton and the consequent changes in cellular biophysical features lead to changes in cell signaling process such as TGF‐β activation, which in turn contributes to the enhanced myofibroblast phenotype.  相似文献   

12.
Hepatic stellate cells (HSC) play a critical role in the development and maintenance of liver fibrosis. HSC are lipocytes that displayed the capacity to develop into myofibroblast-like cells. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate the concentration of extracellular nucleotides, signaling molecules that play a role in the pathogenesis of hepatic fibrosis. In the present study, we identified and compared the expressions of E-NTPDase family members in two different phenotypes of the mouse hepatic stellate cell line (GRX) and evaluated the nucleotide hydrolysis by these cells. We show that both phenotypes of GRX cell line expressed NTPDase 3 and 5. However, only activated cells expressed NTPDase 6. In quiescent-like cells, the hydrolysis of triphosphonucleosides was significantly higher, and was related to an increase in Entpd3 mRNA expression. The diphosphonucleosides were hydrolyzed at a similar rate by two phenotypes of GRX cells. We suggest that up-regulation of Entpd3 mRNA expression modulates the extracellular concentration of nucleotides/nucleosides and affect P2-receptor signaling differently in quiescent-like cells and may play a role in the regulation of HSC functions.  相似文献   

13.
To understand the role of the actin cytoskeleton in cell physiology, and how actin-binding proteins regulate the actin cytoskeleton in vivo, we and others previously identified actin-binding proteins in Saccharomyces cerevisiae and studied the effect of null mutations in the genes for these proteins. A null mutation of the actin gene (ACT1) is lethal, but null mutations in the tropomyosin (TPM1), fimbrin (SAC6), Abp1p (ABP1), and capping protein (CAP1 and CAP2) genes have relatively mild or no effects. We have now constructed double and triple mutants lacking 2 or 3 of these actin-binding proteins, and studied the effect of the combined mutations on cell growth, morphology, and organization of the actin cytoskeleton. Double mutants lacking fimbrin and either Abp1p or capping protein show negative synthetic effects on growth, in the most extreme case resulting in lethality. All other combinations of double mutations and the triple mutant lacking tropomyosin, Abp1p, and capping protein, are viable and their phenotypes are similar to or only slightly more severe than those of the single mutants. Therefore, the synthetic phenotypes are highly specific. We confirmed this specificity by overexpression of capping protein and Abp1p in strains lacking fimbrin. Thus, while overexpression of these proteins has deleterious effects on actin organization in wild-type strains, no synthetic phenotype was observed in the absence of fimbrin. We draw two important conclusions from these results. First, since mutations in pairs of actin-binding protein genes cause inviability, the actin cytoskeleton of yeast does not contain a high degree of redundancy. Second, the lack of structural and functional homology among these genetically redundant proteins (fimbrin and capping protein or Abp1p) indicates that they regulate the actin cytoskeleton by different mechanisms. Determination of the molecular basis for this surprising conclusion will provide unique insights into the essential mechanisms that regulate the actin cytoskeleton.  相似文献   

14.
Caveolin-1 (Cav-1) expression is increased in hepatic stellate cells (HSC) upon liver cirrhosis and it functions as an integral membrane protein of lipid rafts and caveolae that regulates and integrates multiple signals as a platform. This study aimed to evaluate the role of Cav-1 in HSC. Thus, the effects of exogenous expression of Cav-1 in GRX cells, a model of activated HSC, were determined. Here, we demonstrated through evaluating well-known HSC activation markers – such as α-smooth muscle actin, collagen I, and glial fibrillary acidic protein – that up regulation of Cav-1 induced GRX to a more activated phenotype. GRXEGFP-Cav1 presented an increased migration, an altered adhesion pattern, a reorganization f-actin cytoskeleton, an arrested cell cycle, a modified cellular ultrastructure, and a raised endocytic flux. Based on this, GRX EGFP-Cav1 represents a new cellular model that can be an important tool for understanding of events related to HSC activation. Furthermore, our results reinforce the role of Cav-1 as a molecular marker of HSC activation.  相似文献   

15.
Hepatic fibrosis is a common response to chronic liver injury and is characterized by increased production of extracellular matrix components, whose major part is produced by hepatic stellate cells activated by inflammatory mediators to proliferate and migrate into the injured regions. GRX cells are a model of hepatic stellate cells characterized as myofibroblasts by morphological and biochemical criteria. We have recently shown that they respond to inflammatory mediators and cytokines present in the concanavalin A-activated spleen cell supernatant (SCS) by quantitative changes in the expression of intermediate filaments. The present study investigated the effects of SCS and TNF-alpha on the GRX cell proliferation and on the organization of the actin cytoskeleton. SCS and TNF-alpha diminished the culture cell density, with an increase of cell [(3)H]thymidine incorporation and of cellular protein content, indicating an arrest in the G2/M phase of the cell cycle, which was reversible 48 h after removal of SCS. This effect was abrogated by dibutiryl-cAMP. Actin cytoskeleton reorganization was observed after 24 h treatment, indicating increased cell motility. Our results suggest that inflammation-dependent activation of stellate cells occurs in ordered interaction and coordination of proinflammatory agents. The increase of cAMP levels activates the conversion of lipocytes into myofibroblasts and increases the number of cells that can participate in repair. Since cAMP retains cells in the G1 phase, cytokines of the TNF-alpha group are required for cell proliferation inducing the entry into the S phase. The progression through the G2/M checkpoint is mediated again by increased cAMP levels.  相似文献   

16.
Tendons consist of parallel longitudinal rows of cells separated by collagen fibres. The cells are in intimate contact longitudinally within rows, and laterally via sheet-like lateral cell processes between rows. At points of contact, they are linked by gap junctions. Since tendons stretch under load, such cell contacts require protection. Here we describe the organisation of the actin cytoskeleton and actin-based cell-cell interactions in vivo and examine the effect of cyclic tensile loading on tendon cells in vitro. Cells within longitudinal rows contained short longitudinally running actin stress fibres. Each fibre was aligned with similar fibres in the cells longitudinally on either side, and fibres appeared to be linked via adherens junctions. Overall, these formed long oriented rows of stress fibres running along the rows of tendon cells. In culture, junctional components n-cadherin and vinculin and the stress fibre component tropomyosin increased in strained cultures, whereas actin levels remained constant. These results suggest that: (1) cells are linked via actin-associated adherens junctions along the line of principal strain; and (2) under load, cells appear to attach themselves more strongly together, and assemble more of their cytoplasmic actin into stress fibres with tropomyosin. Taken together, this suggests that cell-cell contacts are protected during stretch, and also that the stress fibres, which are contractile, may provide an active mechanism for recovery from stretch. In addition, stress fibres are ideally oriented to monitor tensile load and thus may be important in mechanotransduction and the generation of signals passed via the gap junction network.  相似文献   

17.
To determine if a living cell is necessary for the incorporation of actin, alpha-actinin, and tropomyosin into the cytoskeleton, we have exposed cell models to fluorescently labeled contractile proteins. In this in vitro system, lissamine rhodamine-labeled actin bound to attachment plaques, ruffles, cleavage furrows and stress fibers, and the binding could not be blocked by prior exposure to unlabeled actin. Fluorescently labeled alpha-actinin also bound to ruffles, attachment plaques, cleavage furrows, and stress fibers. The periodicity of fluorescent alpha-actinin along stress fibers was wider in gerbil fibroma cells than it was in PtK2 cells. The fluorescent alpha-actinin binding in cell models could not be blocked by the prior addition of unlabeled alpha-actinin suggesting that alpha-actinin was binding to itself. While there was only slight binding of fluorescent tropomyosin to the cytoskeleton of interphase cells, there was stronger binding in furrow regions of models of dividing cells. The binding of fluorescently labeled tropomyosin could be blocked by prior exposure of the cell models to unlabeled tropomyosin. If unlabeled actin was permitted to polymerize in the stress fibers in cell models, fluorescently labeled tropomyosin stained the fibers. In contrast to the labeled contractile proteins, fluorescently labeled ovalbumin and BSA did not stain any elements of the cytoskeleton. Our results are discussed in terms of the structure and assembly of stress fibers and cleavage furrows.  相似文献   

18.
After activation of T cells with either CD3 antibodies or phorbol esters, we have found that T cell-cell aggregation, integrin-dependent actin reorganisation and cell spreading are strongly suppressed by any of three structurally different calmodulin antagonists, without any effect on the amount of CD11/CD18 integrin binding to the actin cytoskeleton. However, only T cell receptor-induced, and not phorbol ester-induced, aggregation and cell spreading are prevented by inhibitors of phosphatidylinositide (PI) 3-kinase. These results suggest that PI 3-kinase lies upstream of calmodulin in the signalling pathway leading to T cell aggregation, cell spreading and actin reorganisation and that cell spreading and actin reorganisation are essential for T cell adhesion.  相似文献   

19.
Liver is a major site of retinoid metabolism and storage, and more than 80% of the liver retinoids are stored in hepatic stellate cells. These cells represent less than 1% of the total liver protein, reaching a very high relative intracellular retinoid concentration. The plasma level of retinol is maintained close to 2 M, and hepatic stellate cells have to be able both to uptake or to release retinol depending upon the extracellular retinol status. In view of their paucity in the liver tissue, stellate cells have been studied in primary cultures, in which they loose rapidly the stored lipids and retinol, and convert spontaneously into the activated myofibroblast phenotype, turning a long-term study of their retinol metabolism impossible. We have analyzed the retinol metabolism in the established GRX cell line, representative of stellate cells. We showed that this cell line behaves very similarly, with respect the retinol uptake and release, to primary cultures of hepatic stellate cells. Moreover, we showed that the cellular retinol binding protein (CRBP-I) expression in these cells, relevant for both uptake and esterification of retinol, responds to the extracellular retinol status, and is correlated to the retinol binding capacity of the cytosol. Its expression is not associated with the overall induction of the lipocyte phenotype by other agents. We conclude that the GRX cell line represents an in vitro model of hepatic stellate cells, and responds very efficiently to wide variations of the extracellular retinol status by autonomous controls of its uptake, storage or release.  相似文献   

20.
Hepatic lipocytes, the retinoid-storing cells of the liver, share several characteristics with vascular smooth muscle cells. To determine whether they also share the characteristic of apolipoprotein E secretion, we have compared the relative mRNA expression and protein secretion of apolipoprotein E, apolipoprotein A-I, and apolipoprotein A-IV in early primary cultures of lipocytes, hepatocytes, and Kupffer cells. Expression of apolipoprotein mRNAs was detected using the polymerase chain reaction and oligonucleotide primers specific for apolipoprotein E, apolipoprotein A-I, and apolipoprotein A-IV. Cellular mRNA concentrations were compared by dot blot analysis, and apolipoprotein secretion was assessed by immunoblot analysis of culture media. Apolipoprotein E mRNA was found in all three cell types, whereas apolipoprotein A-I and A-IV mRNAs were detected only in hepatocytes. Hepatocyte, lipocyte, and Kupffer cell media all contained a Mr approximately 36,000 protein identified by an antibody specific for rat apolipoprotein E. The relative concentration of apolipoprotein E mRNA per microgram of total cellular RNA in lipocytes, hepatocytes, and Kupffer cells was 1.0, 3.0, and 1.6, respectively. The relative secretion of apolipoprotein E per cell was also lowest in lipocytes, being twofold greater in hepatocytes and 1.4-fold greater in Kupffer cells. The secretion of apolipoprotein E by lipocytes is not only an additional smooth muscle cell-like characteristic of the hepatic lipocyte, but also raises the possibility of retinol mobilization upon apolipoprotein secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号