首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the xyn3 gene from the filamentous mesophilic fungus Trichoderma reesei (Hypocrea jecorina) PC-3-7 was cloned and sequenced. Analysis of the deduced amino acid sequence of XYN III revealed considerable homology with xylanases belonging to glycoside hydrolase family 10. These results show that XYN III is distinguishable from XYN I and XYN II, two other T. reesei xylanases that belong to the glycosidase family 11. When xyn3 was expressed in Escherichia coli, significant activity was observed in the cell-free extract, and higher activity (13.2 U/ml medium) was recovered from the inclusion bodies in the cell debris. The sequence of the 5′-upstream region of the gene in the parent strain QM9414 is identical to that of PC-3-7, although the expression level of xyn3 in PC-3-7 has been reported to be at least 1,000 times greater than in QM9414. These results suggest that xyn3 expression in T. reesei QM9414 is silenced. The consensus sequences for ACEI, ACEII, CREI, and the Hap2/3/5 protein complex are all present in the upstream region of xyn3. Deletion analysis of the upstream region revealed that two regions containing consensus sequences for the known regulatory elements play important roles for xyn3 expression.  相似文献   

2.
Monoclonal antibodies have been used to determine the presence of cellobiohydrolases I and II (CBH I and II), and endoglucanase I (EG I) on the surface of conidia from Trichoderma reesei QM 9414 and RUT C-30, and 8 other Trichoderma species. For this purpose, proteins were released from the conidial surface by treatment with a non-ionic detergent (Triton X-100 and -octylglucoside), followed by SDS-PAGE/Western blotting and immunostaining. Both CBH I and II were clearly present, but — unlike in extracellular culture fluids from Trichoderma — CBH II was the predominant cellulase. In T. reesei EG I could not be detected. The higher producer strain T. reesei RUT C-30 exhibited a higher conidial level of CBH II than T. reesei QM 9414. In order to assess the importance of the conidial CBH II level for cellulase induction by cellulose, multiple copies of the chb2 gene were introduced into the T. reesei genome by cotransformation using PyrG as a marker. Stable multicopy transformants secreted the 2- to 4-fold level of CBH II into the culture medium when grown on lactose as a carbon source, but their CBH I secretion was unaltered. Upon growth on cellulose, both CBH I and CBH II secretion was enhanced. Those strain showing highest cellulase activity on cellulose also appeared to contain the highest level of conidial bound CBH II. CBH II was also the predominant conidial cellulase in various other Trichoderma sp. However, roughly the same amount of conidial bound CBH II was detected in all strains, although their cellulase production differed considerably.  相似文献   

3.
Protoplasts obtained from mycelia of a single auxotrophic mutant of Trichoderma reesei QM 9414 were fused with those of T. reesei QM 9136 in the presence of 0.5 M glycine-NaOH buffer, pH 7.5, containing 0.05 M CaCl2 · 2H2O and 35% polyethylene glycol 4,000. The regeneration frequency of these protoplasts was 8.9–12.0% on a solid culture medium with soft agar overlay. The fused protoplasts successfully formed heterokaryons showing 3.33% of the fusion frequency. A heterozygous diploid was obtained from conidia of the heterokaryon by treatment with 0.1% d-camphor. The diploid showed a 1.9 fold DNA content per conidial nucleus compared to T. reesei QM 9414. The frequency of diploid formation was about 1.9 × 10−4 per conidium. Cellulase activities, such as filter paper degrading and CM-cellulose and Avicel saccharifying activities, and the xylanase activity of the diploid showed intermediate values between those of T. reesei QM 9414 and T. reesei QM 9136. However, the β-glucosidase, β-1,3-glucanase and chitinase activities of the diploid increased to levels equal to on above those of T. reesei QM 9414 and T. reesei QM 9136. The existence of a parasexual cycle of T. reesei and the possibility of its application to enhanced enzyme productivity were confirmed using the protoplast fusion technique.  相似文献   

4.
A third xylanase (Xyn III) from Trichoderma reesei PC-3–7 was purified to electrophoretic homogeneity by gel filtration and ion-exchange chromatographies. The enzyme had a molecular mass of 32 kDa, and its isoelectric point was 9.1. The pH optimum of Xyn III was 6.0, similar to that of Xyn II, another basic xylanase of  T. reesei. The purified Xyn III showed high activity with birchwood xylan but no activity with cellulose and aryl glycoside. The hydrolysis of birchwood xylan by Xyn III produced mainly xylobiose, xylotriose and other xylooligosaccharides. The amino acid sequences of the N-terminus and internal peptides of Xyn III exhibited high homology with the family F xylanases, showing that they were distinct from those of Xyn I and Xyn II of  T. reesei, which belong to family G. These results reveal that Xyn III is a new specific endoxylanase, differing from Xyn I and Xyn II in  T. reesei. It is noteworthy that this novel xylanase was induced only by cellulosic substrates and l-sorbose but not by xylan and its derivarives. Furthermore,  T. reesei PC-3-7 produced Xyn III in quantity when grown on Avicel or lactose as a carbon source, while  T. reesei QM9414 produced little or no Xyn III. Received: 7 November 1997 / Received last revision: 2 February 1988 / Accepted: 23 February 1998  相似文献   

5.
The combined effect of pH and temperature on carboxymethyl cellulase from two intergeneric fusants (M 14 and M 62) of Trichoderma reesei QM 9414/Saccharomyces cerevisiae NCIM 3288 was studied using response surface methodology. A central composite design for two variables was employed for the optimization studies. This study was compared with similar studies carried out with Trichoderma reesei QM 9414. The optimal pH and temperature for the enzymes derived from these organisms were: for the fusant M 14—pH 5.7 and 41.7°C, for the fusant M 62—pH 5.3 and 43°C, and for Trichoderma reesei QM 9414—pH 4.31 and 38.3°C. Received 5 May 1997/ Accepted in revised form 17 July 1998  相似文献   

6.
Xylanase III (Xyn III), a specific endoxylanase that belongs to family 10 of the glycoside hydrolases, was overexpressed in Trichoderma reesei QM9414 using a constitutive strong promoter of the gene encoding pyruvate decarboxylase (pdc). The maximum recombinant xylanase activity achieved was 817.2?±?65.2 U/mL in the transformant fermentation liquid. The productivities of Xyn III accounted for approximately 53 % of the total protein secreted by the recombinant. The enzyme was optimally active at 60 °C and pH 6. The recombinant Xyn III was stable at pH 5–8. This is the first report on the homologous expression of xyn3 in T. reesei QM9414. The properties of Xyn III make it promising in a variety of industrial use.  相似文献   

7.
Summary Trichoderma reesei QM 9414 was grown on wheat straw as the sole carbon source. The straw was pretreated by physical and chemical methods. The particle size of straw was less than 0.177 mm. Growth of T. reesei QM 9414 was maximal with alkali-pretreated straw whereas cellulase production was optimal when physically pretreated straw was used as substrate. Cellulase yields expressed as IU enzyme activity/g cellulose present in the cultures were considerably higher when alkali pretreatment of wheat straw was omitted. Cellulase yields of 666 IU/g cellulose for filter paper activity (FPA) are the highest described for cultures of T. reesei QM 9414 carried out in analogous conditions. Crystallinity index of the cellulose contained in wheat straw increased slightly after alkali pretreatment. This increase did not decrease cellulose accessibility to the fungus. Delignification of wheat straw was not necessary to achieve the best cellulase production.  相似文献   

8.
Eighteen strains of xylariaceous fungi have been screened for higher activities of cellulolytic enzymes,Trichoderma reesei QM 9414 was also examined for comparison. Strains ofXylaria anisopleura andX. regalis had higher endocellulase (CMCase) and exocellulase (Avicelase) activities after 2 weeks' incubation.Hypoxylon stygium produced the highest activity of -glucosidase 3 days after inoculation. The optimum pH for these cellulolytic enzymes was approx. 5.0 and the optimum temperatures ranged from 37 to 50°C. A mixed culture process usingT. reesei QM 9414 andH. stygium was developed to obtain enhanced synthesis of cellulase. -Glucosidase activities in the mixed culture increased within 48h whenH. stygium was introduced after 24h.  相似文献   

9.
The ascomycete Hypocrea jecorina, an industrial (hemi)cellulase producer, can efficiently degrade plant polysaccharides. At present, the biology underlying cellulase hyperproduction of T. reesei, and the conditions for the enzyme induction, are not completely understood. In the current study, three different strains of T. reesei, including QM6a (wild-type), and mutants QM9414 and RUT-C30, were grown on 7 soluble and 7 insoluble carbon sources, with the later group including 4 pure polysaccharides and 3 lignocelluloses. Time course experiments showed that maximum cellulase activity of QM6a and QM9414 strains, for the majority of tested carbon sources, occurred at 120 hrs, while RUT-C30 had the greatest cellulase activity around 72 hrs. Maximum cellulase production was observed to be 0.035, 0.42 and 0.33 µmol glucose equivalents using microcrystalline celluloses for QM6a, QM9414, and RUTC-30, respectively. Increased cellulase production was positively correlated in QM9414 and negatively correlated in RUT-C30 with ability to grow on microcrystalline cellulose.  相似文献   

10.
Summary Production and release of cellulolytic enzymes by Trichoderma reesei QM 9414 were studied under induced and non-induced conditions. For that purpose, a method was developmed to produce cellulases by Trichoderma reesei QM 9414 using the soluble inducer, cellobiose, as the only carbon source. The production was based on continuous feeding of cellobiose to a batch culture. For optimum production, the cellobiose supply had to be adjusted according to the consumption so that cellobiose was not accumulated in the culture. With a proper feeding program the repression and/or inactivation by cellobiose could be avoided and the cellulase production by Trichoderma reesei QM 9414 was at least equally as high as with cellulose as the carbon source.During the cultivation, specific activities against filter paper, carboxymethyl cellulose (CMC) and p-nitrophenyl glucoside were analyzed from the culture medium as well as from the cytosol and the cell debris fractions. There was a base level of cell debris bound hydrolytic activity against filter paper and p-nitrophenyl glucoside even in T. reesei grown non-induced on glycerol. T. reesei grown on cellobiose was induced to produce large amounts of extracellular filter paper and CMC hydrolyzing enzymes, which were actively released into the medium even in the early stages of cultivation. -Glucosidase was mainly detected in the cell debris and was not released unless the cells were autolyzing.  相似文献   

11.
Low rates of evolution in cnidarian mitochondrial genes such as COI and 16S rDNA have hindered molecular systematic studies in this important invertebrate group. We sequenced fragments of 3 mitochondrial protein-coding genes (NADH dehydrogenase subunits ND2, ND3 and ND6) as well as the COI-COII intergenic spacer, the longest noncoding region found in the octocoral mitochondrial genome, to determine if any of these regions contain levels of variation sufficient for reconstruction of phylogenetic relationships among genera of the anthozoan subclass Octocorallia. Within and between the soft coral families Alcyoniidae and Xeniidae, sequence divergence in the genes ND2 (539 bp), ND3 (102 bp), and ND6 (444 bp) ranged from 0.5% to 12%, with the greatest pairwise distances between the 2 families. The COI-COII intergenic spacer varied in length from 106 to 122 bp, and pairwise sequence divergence values ranged from 0% to 20.4%. Phylogenetic trees constructed using each region separately were poorly resolved. Better phylogenetic resolution was obtained in a combined analysis using all 3 protein-coding regions (1085 bp total). Although relationships among some pairs of species and genera were well supported in the combined analysis, the base of the alcyoniid family tree remained an unresolved polytomy. We conclude that variation in the NADH subunit coding regions is adequate to resolve phylogenetic relationships among families and some genera of Octocorallia, but insufficient for most species - or population-level studies. Although the COI-COII intergenic spacer exhibits greater variability than the protein-coding regions and may contain useful species-specific markers, its short length limits its phylogenetic utility.  相似文献   

12.
Summary We have cloned and sequenced over 9 kb of the mitochondrial genome from the sea starPisaster ochraceus. Within a continuous 8.0-kb fragment are located the genes for NADH dehydrogenase subunits 1, 2, 3, and 4L (ND1, ND2, ND3, and ND4L), cytochrome oxidase subunits I, II, and III (COI, COII, and COIII), and adenosine triphosphatase subunits 6 and 8 (ATPase 6 and ATPase 8). This large fragment also contains a cluster of 13 tRNA genes between ND1 and COI as well as the genes for isoleucine tRNA between ND1 and ND2, arginine tRNA between COI and ND4L, lysine tRNA between COII and ATPase 8, and the serine (UCN) tRNA between COIII and ND3. The genes for the other five tRNAs lie outside this fragment. The gene for phenylalanine tRNA is located between cytochrome b and the 12S ribosomal genes. The genes for tRNAglu and tRNAthr are 3 to the 12S ribosomal gene. The tRNAs for histidine and serine (AGN) are adjacent to each other and lie between ND4 and ND5. These data confirm the novel gene order in mitochondrial DNA (mtDNA) of sea stars and delineate additional distinctions between the sea star and other mtDNA molecules.  相似文献   

13.
Sugar cane bagasse was subjected to a mixed culture, solid substrate fermentation with Trichoderma reesei QM9414 and Aspergillus terreus SUK-1 to produce cellulase and reducing sugars. The highest cellulase activity and reducing sugar amount were obtained in mixed culture. The percentage of substrate degradation achieved employing mixed culture was 26% compared to 50% using separate cultures of the two molds. This suggests that the synergism of enzymes in mixed culture solid substrate fermentation have lower synergism than in pure culture.  相似文献   

14.
The stability and specific activity of endo-β-1,4-glucanase III from Trichoderma reesei QM9414 was enhanced, and the expression efficiency of its encoding gene, egl3, was optimized by directed evolution using error-prone PCR and activity screening in Escherichia coli RosettaBlue (DE3) pLacI as a host. Relationship between increase in yield of active enzyme in the clones and improvement in its stability was observed among the mutants obtained in the present study. The clone harboring the best mutant 2R4 (G41E/T110P/K173M/Y195F/P201S/N218I) selected in via second-round mutagenesis after optimal recombinating of first-round mutations produced 130-fold higher amount of mutant enzyme than the transformant with wild-type EG III. Mutant 2R4 produced by the clone showed broad pH stability (4.4–8.8) and thermotolerance (entirely active at 55°C for 30 min) compared with those of the wild-type EG III (pH stability, 4.4–5.2; thermostability, inactive at 55°C for 30 min). k cat of 2R4 against carboxymethyl-cellulose was about 1.4-fold higher than that of the wild type, though the K m became twice of that of the wild type.  相似文献   

15.
Thecre1 genes of the filamentous fungiTrichoderma reesei andT. harzianum were isolated and characterized. The deduced CREI proteins are 46% identical to the product of the glucose repressor genecreA ofAspergillus nidulans, encoding a DNA-binding protein with zinc fingers of the C2H2 type. Thecre1 promoters contain several sequence elements that are identical to the previously identified binding sites forA. nidulans CREA. Steady-state mRNA levels forcre1 of theT. reesei strain QM9414 varied depending on the carbon source, being low on glucose-containing media. These observations suggest thatcre1 expression may be autoregulated. TheT. reesei strain Rut-C30, a hyperproducer of cellulolytic enzymes, was found to express a truncated form of thecre1 gene (cre1-1) with an ORF corresponding to a protein of 95 amino acids with only one zinc finger. Unlike QM9414 the strain Rut-C30 produced cellulase mRNAs on glucose-containing medium and transformation of the full-lengthcre1 gene into this strain caused glucose repression ofcbh1 expression, demonstrating thatcre1 regulates cellulase expression.  相似文献   

16.
Summary The cellulolytic fungusTrichoderma reesei QM9414 can be cultivated on spent brewery grains for the production of cellulases. The levels of the cellulase components endoglucanase and exoglucanase synthesized, and the complexes filter paper cellulase and grain-hydrolyzing cellulase synthesized by the organism on spent grains were as high as 287, 182, 187, and 449 units per g available cellulose, respectively. Scaling up the spent grains fermentation system by up to 40-fold (200g dry substrate/tray) demonstrated that cellulase production was comparable to laboratory scale (5g dry substrate/flask) yields. Cultivation of the fungus was feasible on spent grains without pretreatment or further adjustment, although the enzyme yield was somewhat lower than that on dried grains moistened with water orTrichoderma medium. This suggested the possible reutilization of spent grains, with minimal pretreatment, in the cultivation ofT.reesei QM9414 for cellulase synthesis and for future incorporation into animal feed.  相似文献   

17.
The genes encoding the catalytic domains (CD) of the three endoglucanases (EG I; Cel7B, EG II; Cel5A, and EG III; Cel12A) from Trichoderma reesei QM9414 were expressed in Escherichia coli strains Rosetta-gami B (DE3) pLacI or Origami B (DE3) pLacI and were found to produce functional intracellular proteins. Protein production by the three endoglucanase transformants was evaluated as a function of growth temperature. Maximal productivity of EG I-CD at 15°C, EG II-CD at 20°C and EG III at 37°C resulted in yields of 6.9, 72, and 50 mg/l, respectively. The endoglucanases were purified using a simple purification method based on removing E. coli proteins by isoelectric point precipitation. Specific activity toward carboxymethyl cellulose was found to be 65, 49, and 15 U/mg for EG I-CD, EG II-CD, and EG III, respectively. EG II-CD was able to cleave 1,3–1,4-β-d-glucan and soluble cellulose derivatives. EG III was found to be active against cellulose, 1,3–1,4-β-d-glucan and xyloglucan, while EG I-CD was active against cellulose, 1,3–1,4-β-d-glucan, xyloglucan, xylan, and mannan.  相似文献   

18.
Summary The secretion of multiple forms of cellulolytic enzymes by a Trichoderma reesei QM 9414 selectant exhibiting high protease activity (T. reesei QM 9414/A 30) was investigated using monoclonal, domain-specific antibodies against cellobiohydrolase (CBH) I, CBH II and -glucosidase, and a polyclonal antibody against endoglucanase I. The pattern of appearance of these proteins was followed during growth of the fungus on Avicel cellulose, using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)/Western blotting/immunostaining. Evidence was obtained that, at late cultivation stages, CBH I and II became partially modified to lower molecular weight components, whereas -glucosidase and endoglucanase I appeared to remain largely intact. Modification of CBH I appeared to commence from the carboxy-terminal AB region, whereas CBH II appeared to become modified both from the amino- (ABB') and the carboxy-terminal. Evidence for a protease activity that modifies the already truncated cellobiohydrolases in the culture filtrate was obtained. These results show that proteolysis at late culture stages may contribute to the multiplicity of cellulases found in T. reesei culture fluids. Initial proteolytic cleavage of CBH I and II may, however, involve an unusual protease not detectable by the azocasein method.Offprint requests to: C. P. Kubicek  相似文献   

19.
【目的】构建多靶向siRNA表达载体对里氏木霉碳阻遏抑制因子CRE1、CRE2、CRE3和CRE4进行同时多靶向siRNA干扰,以研究其对里氏木霉纤维素酶基因表达的调控作用。【方法】根据此前研究筛选出沉默cre1、cre2、cre3和cre4基因的4个最佳siRNA序列,设计并构建了A多靶向表达载体,另根据cre1、cre2、cre3和cre4基因中所含有的5个共有序列设计并构建了B多靶向表达载体,将两者转化至里氏木霉QM9414。经筛选后分别在48 h和120 h对各转化子进行纤维素酶酶活力测试(CMC活力测试和滤纸酶酶活力测试)及利用qPCR检测相关基因的表达。【结果】通过RT-qPCR测定结果表明,两种表达载体均可同时抑制里氏木霉的分解代谢物阻遏基因cre1、cre2、cre3和cre4的表达,纤维素酶活力比出发菌株明显升高,多靶向抑制菌株的CMC酶活和滤纸酶活比出发菌株平均提高了1.95倍和2.66倍。纤维素酶基因cbh1和egl1的表达水平比出发菌株也有明显提升,平均提高了3.83倍和3.95倍。纤维素酶相关基因xyr1的表达水平与出发菌株相比也明显上升,平均提高了2.78倍。【结论】多靶向沉默里氏木霉的碳代谢阻遏蛋白有利于解除葡萄糖效应,提高非还原糖的利用,从而提高纤维素酶的产量,使纤维素酶的表达得到更大的提升,为里氏木霉表达纤维素酶在分解代谢物阻遏基因调控方面提供了实验依据和新的技术思路。  相似文献   

20.
Filamentous fungus Trichoderma reesei QM9414 was successfully transformed with Agrobacterium tumefaciens AGL-1 for random integration of transforming DNA (T-DNA). Co-cultivation of T. reesei conidia or protoplasts with A. tumefaciens in the presence of acetosyringone resulted in the formation of hygromycin B-resistant fungal colonies with high transformation frequency. Nine randomly selected resistant clones were proved to be stable through mitotic cell division. The integration of the hph gene into T. reesei genome was determined by PCR and dot blot analysis. Transgenic T. reesei strains were analyzed using TAIL-PCR for their T-DNA contents. The results showed that T-DNA inserts occurred evidently by fusing DNA at T-DNA borders via random recombination, which suggests that Agrobacterium-mediated transformation is a potentially powerful tool towards tagged mutagenesis and gene transfer technology for T. reesei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号