首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport of glutamine into isolated pea chloroplasts   总被引:4,自引:2,他引:2  
Abstract. Uptake of [14C] glutamine into isolated pea chloroplasts has been examined by using a centrifugal filtration technique. Competition experiments showed that glutamine uptake is mediated by a dicarboxylate carrier with Km 1.10 mM and V max. 118 nmol of glutamine min−1 per mg of chlorophyll. Isolated pea chloroplasts accumulated glutamine in the sucrose-impermeable space to concentrations higher than that present in the external solution when the latter was below 0.5 mM. It is suggested that glutamine accumulation is driven by exchange (utilizing the dicarboxylate carrier) with the endogenous pool of dicarboxylates in the chloroplasts. Increasing pH stimulated glutamine uptake but inhibited that of glutamate and 2-oxoglu-tarate. The hypothesis is advanced that when molecules of different charge are exchanged across the chloroplast envelope via the dicarboxylate carrier, electroneutrality is maintained by transport of protons, and that this explains the observed effects of increasing pH. The low rates of glutamine transport coupled with the strong competition of other dicarboxylates for the carrier suggest that export in vivo from the chloroplast of nitrogen in the form of glutamine is not of major importance.  相似文献   

2.
Alanine metabolism, transport, and cycling in the brain   总被引:2,自引:1,他引:1  
Brain glutamate/glutamine cycling is incomplete without return of ammonia to glial cells. Previous studies suggest that alanine is an important carrier for ammonia transfer. In this study, we investigated alanine transport and metabolism in Guinea pig brain cortical tissue slices and prisms, in primary cultures of neurons and astrocytes, and in synaptosomes. Alanine uptake into astrocytes was largely mediated by system L isoform LAT2, whereas alanine uptake into neurons was mediated by Na+-dependent transporters with properties similar to system B0 isoform B0AT2. To investigate the role of alanine transport in metabolism, its uptake was inhibited in cortical tissue slices under depolarizing conditions using the system L transport inhibitors 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid and cycloleucine (1-aminocyclopentanecarboxylic acid; cLeu). The results indicated that alanine cycling occurs subsequent to glutamate/glutamine cycling and that a significant proportion of cycling occurs via amino acid transport system L. Our results show that system L isoform LAT2 is critical for alanine uptake into astrocytes. However, alanine does not provide any significant carbon for energy or neurotransmitter metabolism under the conditions studied.  相似文献   

3.
Uptake of amino acids and peptides by developing barley embryos   总被引:1,自引:0,他引:1  
Developing embryos of barley ( Hordeum vulgare L. cv. Bomi) detached 21–27 days after anthesis took up 1 mM [14C]-glutamine at pH 5 and 30°C at a rate of about 20 nmol embryo−l h−1 (5 μol g−1h−1). The uptake was inhibited by about 50% by di-nitrophenol and by about 80% by 300 m M unlabelled glutamine or alanine. The bulk of the uptake appeared, therefore, to be due to carrier-mediated active transport. The pH optimum of the uptake was 4.5. Leucine, proline, lysine, arginine and as-paragine were taken up at approximately similar rates as glutamine, and they also inhibited the uptake of glutamine. This, suggests that the uptake of glutamine was at least partly due to an unspecific carrier(s) also shared by other amino acids. The embryos also took up the dipepti.de glycykarcosine; the rate was about 6 nmol embryo−1h−1 (1.5 μol g−1h−1) (2 mM glycylsarcosine, pH 4.5, 30°C). The uptake was inhibited by about 70% by dinitrophenol or by 300 m M glycylglycine. This indicates that the bulk of the uptake was due to carrier-mediated active transport. The pH optimum of the uptake was about 4.5.
The rates of glutamine and glycylsarcosine uptake increased during the early and middle stages of embryo development (until day 28 after anthesis), but decreased towards the end of the maturation of the grain. These changes, as well as the relatively high activities, suggest that carrier-mediated active uptake of amino acids, and possibly also that of peptides, plays a role in the nutrition of the developing embryo.  相似文献   

4.
Abstract: Glutamine is a primary precursor for the biosynthesis of the neurotransmitters glutamate and γ-aminobutyric acid. It is proposed that glutamine, synthesized and released by astrocytes, is transported into the neuron for subsequent conversion to neurotransmitters. To provide a more complete characterization of this process, we have delineated the transport systems for glutamine uptake in primary cultures of brain neuronal cells from 1-day-old rats. The Na+-dependent glutamine entry is mediated by system A, system ASC, and a third, previously unidentified, activity that has been tentatively designated as system Nb. System Nb activity can be monitored by assaying Na+-dependent [3H]glutamine uptake in the presence of 2 m M concentrations of both 2-(methylamino)isobutyric acid and threonine to block uptake by systems A and ASC, respectively. The newly identified transport activity exhibits an apparent substrate specificity that is unique compared with the hepatic system N, because it is inhibited by glutamine and asparagine, but not by histidine. Also, the affinity of system Nb for glutamine, as estimated from K m values, is significantly greater than that observed for the hepatic and muscle Na+-dependent glutamine transporters, systems N and Nm. In sharp contrast to the hepatic system N transporter, system Nb exhibits a relative insensitivity to pH and does not permit Li+ substitution for Na+ as the cosubstrate. The substrate specificity, kinetic analysis, pH sensitivity, and cation dependence of this transport activity indicate that it represents a glutamine transport system not previously identified.  相似文献   

5.
N-System Amino Acid Transport at the Blood-CSF Barrier   总被引:1,自引:1,他引:0  
Abstract: Despite l -glutamine being the most abundant amino acid in CSF, the mechanisms of its transport at the choroid plexus have not been fully elucidated. This study examines the role of L-, A-, ASC-, and N-system amino acid transporters in l -[14C]glutamine uptake into isolated rat choroid plexus. In the absence of competing amino acids, approximately half the glutamine uptake was via a Na+-dependent mechanism. The Na+-independent uptake was inhibited by 2-amino-2-norbornane carboxylic acid, indicating that it is probably via an L-system transporter. Na+-dependent uptake was inhibited neither by the A-system substrate α-(methylamino)isobutyric acid nor by the ASC-system substrate cysteine. It was inhibited by histidine, asparagine, and l -glutamate γ-hydroxamate, three N-system substrates. Replacement of Na+ with Li+ had little effect on uptake, another feature of N-system amino acid transport. These data therefore indicate that N-system amino acid transport is present at the choroid plexus. The V max and K max for glutamine transport by this system were 8.1 ± 0.3 nmol/mg/min and 3.3 ± 0.4 m M , respectively. This system may play an important role in the control of CSF glutamine, particularly when the CSF glutamine level is elevated as in hepatic encephalopathy.  相似文献   

6.
Glutamine Transport in Mouse Cerebral Astrocytes   总被引:1,自引:0,他引:1  
Abstract: We measured initial influx and exchange of [14C]glutamine in primary astrocyte cultures in the presence and absence of Na+. Kinetic analysis of transport in Na+-free solution indicated two saturable Na+-independent components, one of which was identifiable functionally as system L1 transport. In the presence of Na+, multiple hyperbolic components were not resolvable from the kinetic data. Nevertheless, other evidence supported participation by at least three Na+-dependent neutral amino acid transporters (systems A, ASC, and N). System A transport of glutamine was usually absent or minimal, based on lack of inhibition by α-(methylamino)isobutyric acid. However, vigorous system A-mediated transport emerged after derepression by substrate deprivation. Participation by system ASC was indicated by trans-acceleration of Na+-dependent uptake, preferential inhibition of an Li+-intolerant component of uptake by cysteine, and inhibition by cysteine of a component resistant to inhibition by histidine and α-(methylamino)isobutyric acid. Because nonsaturable transport of glutamine appeared negligible, and system L transport of glutamine was suppressed in the presence of Na+, low-affinity system ASC transport may be the major route of export of glutamine from astrocytes. At 700 µ M glutamine, the primary uptake route was system N transport, identified on the basis of selective inhibition by histidine and asparagine, pH sensitivity, and tolerance of Li+ in place of Na+.  相似文献   

7.
Abstract Thermoanaerobacter thermohydrosulfuricus Rt8.B1 catabolized xylose by the pentose phosphate pathway, and xylose isomerase and xylulokinase were inducible. The uptake of xylose was by two low-affinity, inducible systems. Both systems were resistant to the protonophore, tetrachlorosalicylanilide, the F1F0-ATPase inhibitor, N , N -dicyclohexylcarboiimide, and the sodium/proton antiporter, monensin. The high capacity system (100 nmol min−1 (mg protein)−1) was only expressed when the bacterium was grown with a high concentration of xylose (50 mM). It took more than 60 mM xylose to saturate the high capacity system. When T. thermohydrosulfuricus was grown with a low concentration of xylose (5 mM), xylose uptake was saturated by as little as 10 mM xylose (18 nmol min−1 (mg protein)−1). Cells grown with 50 mM xylose could not transport glucose, and high capacity xylose transport was not inhibited by glucose or non-metabolizable glucose analogues. Cells grown with 5 mM xylose transported glucose at a rapid rate (30 nmol min−1 (mg protein)−1), and low capacity xylose uptake was competitively inhibited by either glucose or 2-deoxy-glucose. Because the glucose uptake of cells grown on 5 mM xylose was competitively inhibited by xylose, it appeared that the low capacity xylose uptake system was a glucose/xylose carrier.  相似文献   

8.
Abstract: Tryptophan uptake by membrane vesicles derived from rat brain was investigated. The uptake is dependent on the Na+ gradient [Na+] outside > [Na+] inside and is maximal when both Na+ and Cl are present. The uptake represents transport into an os-motically active space and not a binding artifact, as indicated by the effect of increasing the medium osmo-larity. The uptake of tryptophan is stimulated by a membrane potential (interior negative) as demonstrated by the effects of the ionophores valinomycin and carbonyl cyanide m-chlorophenylhydrazone and anions with different permeabilities. Kinetic data show that tryptophan is accumulated by two systems with different affinities. Ouabain, an inhibitor of Na+, K+-activated ATPase, does not affect tryptophan transport. The uptake of tryptophan is inhibited by high concentrations of phenylalanine, tyrosine, leucine and 3, 4-dihydroxyphenylalanine.  相似文献   

9.
Uptake of Rb+ from a complete nutrient solution with 2.0 mM Rb+ was studied in roots of spring wheat seedlings ( Triticum aestivum L. cv. Svenno) with different K+ levels. The relationship between Rb+ uptake and concentration of K+ in the roots indicated a negative feedback mechanism operating through allosteric control. The Rb+ uptake process in root cells was divided into two steps: (1) binding of the ion in the free space, and (ii) transmembrane transport into the cytoplasm. Metabolic and non-metabolic components of uptake were separated by addition of the metabolic inhibitor 2,4-dinitrophenol (DNP) to the nutrient solution. It is suggested that metabolic Rb+ uptake requires energy in two uptake steps (for binding to the carrier entity in the free space and for transmembrane transport) or in one step only (for transmembrane transport), dependent on the K+ status of the roots. The change from metabolic to non-metabolic binding in the free space is accomplished by changing the conformational state of the carrier (slow/fast transitions). There may be a hysteretic effect on metabolic Rb+ uptake through a slow transition between carrier states. This is superimposed on the negative cooperativity, strengthening further cooperativity at intermediate K+ levels in the roots. Non-metabolic Rb+ uptake probably consists of two components, a carrier-mediated (facilitated diffusion) and a parallel diffusive component.  相似文献   

10.
New macro and microelement solutions were formulated for stimulation of growth and embryogenesis in white and chlorophyllous megagametophyte and embryo callus lines of Picea abies (L.) Karst. Macroelement media with different NH4+ and NO3 ratios (1:2 and 1:4), the increased level of several microelements and the effect of organic nitrogen (100 mg 1−1 casein hydrolysate, 0.25 m M arginine and 0.5 m M glutamine) were tested with 4 combinations of growth regulators (2,4-dichlorophe-noxyacefic acid or indole-3-butyric acid, kinetin). Green chlorophyll-containing, in contrast to white callus lines, grew quite well without exogeneously added organic nitrogen. The ratio between NH4+ and NO3 was not significant. The increased levels (μ M ) of several microelements: B (200), Zn (50), I (25), Cu (1), Co (0.5) and in addition Ni (0.1) improved callus growth in some lines more than 50% (DW) compared to cultures grown on the micronutrients of Murashige and Skoog. The response of different callus lines varied with the combinations of growth regulators. Embryogenesis did not occur in chlorophyllous callus lines in any of the 24 media combinations tested, but some very good media could be found for white megagametophyte and embryo callus lines. Microelements, favourable combination of growth regulators and organic nitrogen were especially important. A megagametophyte callus subcultured for 4 years was also able to form numerous proembryos.  相似文献   

11.
The rate of fermentation of glucose by a polyploid strain of Saccharomyces cerevisiae growing in a defined salts medium depends on the availability of NH4++. Its decline after exhaustion of the nitrogen source corresponded with the ability of the cells to accumulate the glucose analogue 2-deoxyglucose. Addition of NH4++to a nitrogen-depleted culture stimulated both glucose utilization and 2-deoxyglucose uptake. Since stimulation was inhibited by cycloheximide, maintenance of glucose transport during fermentation is dependent on protein synthesis.  相似文献   

12.
Abstract Whole cells of the dinitrogen-fixing cyanobacterium Anabaena sp. PCC7120 exhibited K m values for l -glutamine and l -glutamate of 33 μM and 0.5 mM, respectively. V max of uptake was ca. 30 nmol mg−1 (chlorophyll) min−1 for both amino acids. The similar pattern of sensitivity to other amino acids exhibited by both transport activities suggests that a common transport system is involved in glutamine and glutamate uptake by this cyanobacterium.  相似文献   

13.
Salt stress in cultured rice cells: effects of proline and abscisic acid   总被引:4,自引:0,他引:4  
Abstract. The presence of 1 and 10 mol m−3 proline in media containing 100 and 200 mol m−3 of NaCl, had little effect on the growth of salt-adapted callus of rice. However, in such callus proline accumulation was stimulated by 10 mol m−3 proline in the presence of 100 mol m−3 NaCl. On the other hand, with 100 mol m−3 NaCl, both 1 and 10 mol m−3 proline significantly increased both the growth and proline content of salt-unadapted callus. On replacing NaCl with KCl (100 and 200 mol m−3), growth of saltadapted as well as unadapted callus was inhibited, but the presence of 10 mol m−3 proline had an ameliorating effect. Abscisic acid (ABA) supressed the growth of both salt-adapted and unadapted callus of rice in the absence of salt stress. ABA inhibited the growth of callus adapted to and grown in 100 and 200 mol m−3 of NaCl or when it was replaced by equimolar concentrations of KCl. Growth of 100 mol m−3 NaCl adapted cells was inhibited when they were transferred to a medium containing 200 mol m−3 of NaCl, but in the presence of ABA it was stimulated. ABA increased the growth of unadapted cells when subjected to different salts. Also, ABA accelerated the adaptation of cells exposed to salt but not to water deficits imposed by nonionic solutes.  相似文献   

14.
Abstract: Brain sodium uptake in vivo was studied using a modified intracarotid bolus injection technique in which the uptake of 22Na + was compared with that of the relatively impermeable molecule, [3H]l-glucose. At a Na + concentration of 1.4 m M , Na + uptake was 1.74 ± 0.07 times greater than l -glucose uptake. This decreased to 1.34 ± 0.04 at 140 m M Na +, indicating saturable Na + uptake. Relative Na + extraction was not affected by pH but was inhibited by amiloride ( K i= 3 ± 10−7 M ) and by 1 m M furosemide. The effects of these two inhibitors were additive. Brain uptake of 86Rb +, a K + analogue, was measured to study interaction of K + with Na + transport systems. Relative 86Rb + extraction was also inhibited by amiloride; however, it was not inhibited by furosemide. The results suggest the presence of two distinct transport systems that allow Na + to cross the luminal membrane of the brain capillary endothelial cell. These transport systems could play an important role in the movement of Na + from blood to brain.  相似文献   

15.
Abstract: The characteristics of β-alanine transport at the blood-brain barrier were studied by using primary cultured bovine brain capillary endothelial cells. Kinetic analysis of the β-[3H]alanine transport indicated that the transporter for β-alanine functions with Kt of 25.3 ± 2.5 µ M and J max of 6.90 ± 0.48 nmol/30 min/mg of protein in the brain capillary endothelial cells. β-[3H]Alanine uptake is mediated by an active transporter, because metabolic inhibitors (2,4-dinitrophenol and NaN3) and low temperature reduced the uptake significantly. Furthermore, the uptake of β-[3H]alanine required Na+ and Cl in the external medium. Stoichiometric analysis of the transport demonstrated that two sodium ions and one chloride ion are associated with one β-alanine molecule. The Na+ and Cl-dependent uptake of β-[3H]alanine was stimulated by a valinomycin-induced inside-negative K+-diffusion potential. β-Amino acids (β-alanine, taurine, and hypotaurine) inhibited strongly the uptake of β-[3H]alanine, whereas α- and γ-amino acids had little or no inhibitory effect. In ATP-depleted cells, the uptake of β-[3H]alanine was stimulated by preloading of β-alanine or taurine but not l -leucine. These results show that β-alanine is taken up by brain capillary endothelial cells, via the secondary active transport mechanism that is common to β-amino acids.  相似文献   

16.
17.
The human gene MRS2L encodes a mitochondrial protein distantly related to CorA Mg2+ transport proteins. Constitutive shRNA-mediated knockdown of hMRS2 in human HEK-293 cell line was found here to cause death. To further study its role in Mg2+ transport, we have established stable cell lines with conditionally expressing shRNAs directed against hMRS2L . The cells expressing shRNA for several generations exhibited lower steady-state levels of free mitochondrial Mg2+ ([Mg2+]m) and reduced capacity of mitochondrial Mg2+ uptake than control cells. Long-term expression of shRNAs resulted in loss of mitochondrial respiratory complex I, decreased mitochondrial membrane potential and cell death. We conclude that hMrs2 is the major transport protein for Mg + uptake into mitochondria and that expression of hMrs2 is essential for the maintenance of respiratory complex I and cell viability.  相似文献   

18.
Abstract: Agmatine (decarboxylated arginine), an endogenous ligand for imidazoline receptors, has been identified in brain where it is synthesized from arginine by arginine decarboxylase. Here we report a mechanism for the transport of agmatine into rat brain synaptosomes. The uptake of agmatine was energy- and temperature-dependent and saturable with a K m of 18.83 ± 3.31 m M and a V max of 4.78 ± 0.67 nmol/mg of protein/min. Treatment with ouabain (Na+,K+-ATPase inhibitor) or removal of extracellular Na+ did not attenuate the uptake rate. Agmatine transport was not inhibited by amino acids, polyamines, or monoamines, indicating that the uptake is not mediated by any amino acid, polyamine, or monoamine carriers. When we examined the effects of some ion-channel agents on agmatine uptake, only Ca2+-channel blockers inhibited the uptake, whereas a reduction in extracellular Ca2+ increased it. In addition, some imidazoline drugs, such as idazoxan and phentolamine, were strong noncompetitive inhibitors of agmatine uptake. Thus, a selective, Na+-independent uptake system for agmatine exists in brain and may be important in regulating the extracellular concentration of agmatine.  相似文献   

19.
Abstract: To study mechanisms of K+ transport in peripheral nerve, uptake of rubidium (Rb+), a K+ tracer, was characterized in rat tibial nerve myelinated axons and glia. Isolated nerve segments were perfused with zero-K+ Ringer's solutions containing Rb+ (1–20 m M ) and x-ray microanalysis was used to measure water content and concentrations of Rb, Na, K, and Cl in internodal axoplasm, mitochondria, and Schwann cell cytoplasm and myelin. Both axons and Schwann cells were capable of removing extracellular Rb+ (Rb+o) and exchanging it for internal K+. Uptake into axoplasm, Schwann cytoplasm, and myelin was a saturable process over the 1–10 m M Rb+o concentration range, although corresponding axoplasmic uptake rates were higher than respective glial velocities. Mitochondrial accumulation was a linear function of axoplasmic Rb+ concentrations, which suggests involvement of a nonenzymatic process. At 20 m M Rb+o, a differential stimulatory response was observed; i.e., axoplasmic Rb+ uptake velocities increased more than fivefold relative to the 10 m M rate, and glial cytoplasmic uptake rose almost threefold. Finally, Rb+o uptake rate into axons and glia was completely inhibited by ouabain (2–4 m M ) exposure or incubation at 4°C. These results suggest that Rb+ uptake into peripheral nerve internodal axons and Schwann cells is mediated by Na+,K+-ATPase activity and implicate the presence of axonal- and glial-specific Na+ pump isozymes.  相似文献   

20.
Abstract: Nations were found to inhibit the uptake of L-tryptophan into synaptosomes with a shallow dose-response curve. Almost maximal inhibition was obtained with 10 mM-Na+. The divalent cations Ca2+ and Mg2+ were shown to be responsible for the increased uptake of L-tryptophan in the absence of Na+ ions. Other divalent cations also promoted tryptophan uptake under this condition (Ca2+ < Mg2+ < Mn2+ < Fe2+ < Zn2+ < Cu2+). It was concluded that monovalent chelate complexes were responsible for this enhancing effect. The measured L-tryptophan uptake was the net product of membrane bound and unbound tryptophan. Both bound and unbound tryptophan were increased in the presence of divalent cations. If no divalent cations were added to the incubation medium, Na+ ions decreased the unbound tryptophan but were without effect on bound tryptophan. Under these circumstances D-tryptophan had no effect on binding of the L-isomer and affected the transport of 1.-tryptophan only at very high does (100 x conc. L-tryptophan). These results suggest that I -tryptophan binds to a stereospecific transport carrier located in the synaptosomal membrane and that Na+ ions prevent the translocation of this carrier amino acid complex from the outer to the inner site of the neuronal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号