首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Affinity constants (k(d), k(a), and K(D)) can be determined by methods that apply immobilized ligands such as immunoassays and label-free biosensor technologies. This article outlines a new surface plasmon resonance (SPR) array imaging method that yields affinity constants that can be considered as the best estimate of the affinity constant for single biomolecular interactions. Calculated rate (k(d) and k(a)) and dissociation equilibrium (K(D)) constants for various ligand densities and analyte concentrations are extrapolated to the K(D) at the zero response level (K(D)(R0)). By applying this method to an LGR5-exo-Fc-RSPO1-FH interaction couple, the K(D)(R0) was determined as 3.1 nM.  相似文献   

2.
The cell surface molecules CD4 and CD8 greatly enhance the sensitivity of T-cell antigen recognition, acting as "co-receptors" by binding to the same major histocompatibility complex (MHC) molecules as the T-cell receptor (TCR). Here we use surface plasmon resonance to study the binding of CD8alphaalpha to class I MHC molecules. CD8alphaalpha bound the classical MHC molecules HLA-A*0201, -A*1101, -B*3501, and -C*0702 with dissociation constants (K(d)) of 90-220 microm, a range of affinities distinctly lower than that of TCR/peptide-MHC interaction. We suggest such affinities apply to most CD8alphaalpha/classical class I MHC interactions and may be optimal for T-cell recognition. In contrast, CD8alphaalpha bound both HLA-A*6801 and B*4801 with a significantly lower affinity (>/=1 mm), consistent with the finding that interactions with these alleles are unable to mediate cell-cell adhesion. Interestingly, CD8alphaalpha bound normally to the nonclassical MHC molecule HLA-G (K(d) approximately 150 microm), but only weakly to the natural killer cell receptor ligand HLA-E (K(d) >/= 1 mm). Site-directed mutagenesis experiments revealed that variation in CD8alphaalpha binding affinity can be explained by amino acid differences within the alpha3 domain. Taken together with crystallographic studies, these results indicate that subtle conformational changes in the solvent exposed alpha3 domain loop (residues 223-229) can account for the differential ability of both classical and nonclassical class I MHC molecules to bind CD8.  相似文献   

3.
Higher-affinity RNA aptamers to GTP are more informationally complex than lower-affinity aptamers. Analog binding studies have shown that the additional information needed to improve affinity does not specify more interactions with the ligand. In light of those observations, we would like to understand the structural characteristics that enable complex aptamers to bind their ligands with higher affinity. Here we present the solution structure of the 41-nt Class I GTP aptamer (K(d) = 75 nM) as determined by NMR. The backbone of the aptamer forms a reverse-S that shapes the binding pocket. The ligand nucleobase stacks between purine platforms and makes hydrogen bonds with the edge of another base. Interestingly, the local modes of interaction for the Class I aptamer and an RNA aptamer that binds ATP with a K(d) of 6 microM are very much alike. The aptamers exhibit nearly identical levels of binding specificity and fraction of ligand sequestered from the solvent (81%-85%). However, the GTP aptamer is more informationally complex (approximately 45 vs. 35 bits) and has a larger recognition bulge (15 vs. 12 nucleotides) with many more stabilizing base-base interactions. Because the aptamers have similar modes of ligand binding, we conclude that the stabilizing structural elements in the Class I aptamer are responsible for much of the difference in K(d). These results are consistent with the hypothesis that increasing the number of intra-RNA interactions, rather than adding specific contacts to the ligand, is the simplest way to improve binding affinity.  相似文献   

4.
The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D(9k) reconstitution was measured in the presence of Ca(2+) using surface plasmon resonance and isothermal titration calorimetry. Whereas surface charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold) observed for the double mutant K25E+K29E. At low net charge, detailed charge distribution is important, and charges remote from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (K(A) = 1.3 x 10(10) M(-1); K(D) = 80 pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.  相似文献   

5.
Retrocyclin,an antiretroviral theta-defensin,is a lectin   总被引:13,自引:0,他引:13  
Theta-defensins are circular octadecapeptides that contain an internal tridisulfide ladder. Because retrocyclin-1, an ancestral hominid theta-defensin, can protect human cells in vitro from infection by T- and M-tropic strains of HIV-1, we used surface plasmon resonance techniques to study its binding to glycoproteins and glycolipids implicated in HIV-1 entry. Retrocyclin-1 bound with high affinity to gp120 (K(d), 35.4 nM), CD4 (K(d), 31 nM), and galactosylceramide (K(d), 24.1 nM). Neither a circular form of retrocyclin without its tridisulfide ladder nor its beta-hairpin precursor with these disulfides intact bound gp120 or CD4 effectively. Retrocyclin also bound fetuin, an extensively glycosylated protein, with high affinity, but it did not bind nonglycosylated gp120 or BSA. However, retrocyclin did bind to a neoglycoprotein, BSA, with covalently attached sugar residues. Experiments with glycosidase-treated fetuin, gp120, and CD4 revealed that both O-linked and N-linked sugars were used as binding sites. In a panel of retrocyclin variants, binding to immobilized gp120 and CD4 were highly correlated to each other and to the peptide's ability to protect human PBMCs from infection by HIV-1. Although small, cysteine-rich antimicrobial peptides with lectin-like properties exist in plants, theta-defensins are the first such molecules to be identified in vertebrates. Retrocyclin's ability to recognize and bind carbohydrate-containing surface molecules is integrally related to its ability to protect cells from HIV-1 infection.  相似文献   

6.
The beta-dystroglycan/Grb2 interaction was investigated and a proline-rich region within beta-dystroglycan that binds Grb2-src homology 3 domains identified. We used surface plasmon resonance (SPR), fluorescence analysis, and solid-phase binding assay to measure the affinity constants between Grb2 and the beta-dystroglycan cytoplasmic tail. Analysis of the data obtained from SPR reveals a high-affinity interaction (K(D) approximately 240 nM) between Grb2 and the last 20 amino acids of the beta-dystroglycan carboxyl-terminus, which also contains a dystrophin-binding site. A similar K(D) value (K(D) approximately 280 nM) was obtained by solid-phase binding assay and in solution by fluorescence. Both Grb2-SH3 domains bind beta-dystroglycan but the N-terminal SH3 domain binds with an affinity approximately fourfold higher than that of the C-terminal SH3 domain. The Grb2-beta-dystroglycan interaction was inhibited by dystrophin in a range of concentration of 160-400 nM. These data suggest a highly regulated and dynamic dystrophin/dystroglycan complex formation and that this complex is involved in cell signaling.  相似文献   

7.
Carbohydrate-carbohydrate interactions between Gg3 trisaccharide-carrying polystyrene (PN(Gg3)) and monolayers of several glycosphingolipids (GSLs) were quantitatively investigated by surface plasmon resonance techniques. PN(Gg3) was adsorbed onto a GM3 monolayer strongly and specifically with an apparent affinity constant of K(a) = 2.5 x 10(6) M(-1), and the apparent affinity constants onto GSLs decreased in the following order: GM3 > LacCer > (KDN)GM3 approximately GlcCer > GM2 approximately GD3 approximately GM4 > GM1 approximately 2,6-isoGM3 > ceramide. These results suggest that PN(Gg3) recognizes not only some specified portions of GM3 but also the trisaccharide as a whole. On the other hand, PN(Lac) and PN(Cel) were bound to GSLs less strongly (K(a) approximately 10(4) M(-1)) and less selectively. The kinetic analysis revealed that the selectivity in the adsorption of PN(Gg3) onto the GM3 monolayer is dominated by the faster adsorption rate.  相似文献   

8.
Mannose-binding lectins, such as dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN), are expressed at the surface of human dendritic cells (DCs) that capture and transmit human immunodeficiency virus type-1 (HIV-1) to CD4(+) cells. With the goal of reducing viral trans-infection by targeting DC-SIGN, we have designed a new class of mannoside glycolipid conjugates. We report the synthesis of amphiphiles composed of a mannose head, a hydrophilic linker essential for solubility in aqueous media, and a lipid chain of variable length. These conjugates presented unusual properties based on a cooperation between the mannoside head and the lipid chain, which enhanced the affinity and decreased the need for multivalency. With an optimal lipid length, they exhibited strong binding affinity for DC-SIGN (K(d) in the micromolar range) as assessed by surface plasmon resonance. The most active molecules were branched trimannoside conjugates, able to inhibit the interaction of the HIV-1 envelope with DCs, and to drastically reduce trans-infection of HIV-1 mediated by DCs (IC(50s) in the low micromolar range). This new class of compounds may be of potential use for prevention of HIV-1 dissemination, and also of infection by other DC-SIGN-binding human pathogens.  相似文献   

9.
10.
The physiologic activator of factor X consists of a complex of factor IXa, factor VIIIa, Ca(2+) and a suitable phospholipid surface. In one study, helix 330 (162 in chymotrypsin) of the protease domain of factor IXa was implicated in binding to factor VIIIa. In another study, residues 558-565 of the A2 subunit of factor VIIIa were implicated in binding to factor IXa. We now provide data, which indicate that the helix 330 of factor IXa interacts with the 558-565 region of the A2 subunit. Thus, the ability of the isolated A2 subunit was severely impaired in potentiating factor X activation by IXa(R333Q) and by a helix replacement mutant (IXa(helixVII) in which helix 330-338 is replaced by that of factor VII) but it was normal for an epidermal growth factor 1 replacement mutant (IXa(PCEGF1) in which epidermal growth factor 1 domain is replaced by that of protein C). Further, affinity of each 5-dimethylaminonaphthalene-1-sulfonyl (dansyl)-Glu-Gly-Arg-IXa (dEGR-IXa) with the A2 subunit was determined from its ability to inhibit wild-type IXa in the tenase assay and from the changes in dansyl fluorescence emission signal upon its binding to the A2 subunit. Apparent K(d(A2)) values are: dEGR-IXa(WT) or dEGR-IXa(PCEGF1) approximately 100 nm, dEGR-IXa(R333Q) approximately 1.8 micrometer, and dEGR-IXa(helixVII) >10 micrometer. In additional experiments, we measured the affinities of these factor IXa molecules for a peptide comprising residues 558-565 of the A2 subunit. Apparent K(d(peptide)) values are: dEGR-IXa(WT) or dEGR-IXa(PCEGF1) approximately 4 micrometer, and dEGR-IXa(R333Q) approximately 62 micrometer. Thus as compared with the wild-type or PCEGF1 mutant, the affinity of the R333Q mutant for the A2 subunit or the A2 558-565 peptide is similarly reduced. These data support a conclusion that the helix 330 of factor IXa interacts with the A2 558-565 sequence. This information was used to model the interface between the IXa protease domain and the A2 subunit, which is also provided herein.  相似文献   

11.
Fully characterizing the interactions involving biomolecules requires information on the assembly state, affinity, kinetics, and thermodynamics associated with complex formation. The analytical technologies often used to measure biomolecular interactions include analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR). In order to evaluate the capabilities of core facilities to implement these technologies, the Association of Biomolecular Resource Facilities (ABRF) Molecular Interactions Research Group (MIRG) developed a standardized model system and distributed it to a panel of AUC, ITC, and SPR operators. The model system was composed of a well-characterized enzyme-inhibitor pair, namely bovine carbonic anhydrase II (CA II) and 4-carboxybenzenesulfonamide (CBS). Study participants were asked to measure one or more of the following: (1) the molecular mass, homogeneity, and assembly state of CA II by AUC; (2) the affinity and thermodynamics for complex formation by ITC; and (3) the affinity and kinetics of complex formation by SPR. The results from this study provide a benchmark for comparing the capabilities of individual laboratories and for defining the utility of the different instrumentation.  相似文献   

12.
Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and FcRn affinity chromatography. The combination of experimental results demonstrates that differences between an IgG and its cognate YTE mutant vary with their pH-sensitive dynamics prior to binding FcRn. The conformational dynamics of these two molecules are nearly indistinguishable upon binding FcRn. We present evidence that pH-induced destabilization in the CH2/3 domain interface of IgG increases binding affinity by breaking intramolecular H-bonds and increases side-chain adaptability in sites that form intermolecular contacts with FcRn. Our results provide new insights into the mechanism of pH-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors.  相似文献   

13.
Optical sensors based on the excitation of surface plasmons, referred to as surface plasmon resonance (SPR) sensors, have become a central analytical tool for characterizing and quantifying a wide variety of macromolecular interactions, like receptor–ligand contacts. Besides this classical field of application, in the last 15 years, the development of SPR sensors aiming for the detection and analysis of ligand/cell or host/pathogen interactions, cell/cell contacts, and cellular reactions gained considerable momentum. The number of publications reporting about applications of SPR sensors implementing vital prokaryotic or eukaryotic cells as biorecognition elements for medical diagnostics, environmental monitoring, or biological safety is steadily growing. This review gives a short introduction to the technique of surface plasmon resonance and the parameters that are important for its application in the field of vital cell sensors. Furthermore, the publications concerning the application of such sensors in the analysis of cellular interactions and cellular reactions to extra- and intracellular stimuli are summarized.  相似文献   

14.
The second Ig module (IgII) of the neural cell adhesion molecule (NCAM) is known to bind to the first Ig module (IgI) of NCAM (so-called homophilic binding) and to interact with heparan sulfate and chondroitin sulfate glycoconjugates. We here show by NMR that the heparin and chondroitin sulfate-binding sites (HBS and CBS, respectively) in IgII coincide, and that this site overlaps with the homophilic binding site. Using NMR and surface plasmon resonance (SPR) analyses we demonstrate that interaction between IgII and heparin indeed interferes with the homophilic interaction between IgI and IgII. Accordingly, we show that treatment of cerebellar granule neurons (CGNs) with heparin inhibits NCAM-mediated outgrowth. In contrast, treatment with heparinase III or chondroitinase ABC abrogates NCAM-mediated neurite outgrowth in CGNs emphasizing the importance of the presence of heparan/chondroitin sulfates for proper NCAM function. Finally, a peptide encompassing HBS in IgII, termed the heparin-binding peptide (HBP), is shown to promote neurite outgrowth in CGNs. These observations indicate that neuronal differentiation induced by homophilic NCAM interaction is modulated by interactions with heparan/chondroitin sulfates.  相似文献   

15.
A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surface-based method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions.  相似文献   

16.
Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin   总被引:2,自引:0,他引:2  
Type 1 plasminogen activator inhibitor (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA), circulates as a complex with the abundant plasma glycoprotein, vitronectin. This interaction stabilizes the inhibitor in its active conformation In this report, the effects of vitronectin on the interactions of PAI-1 with fibrin clots were studied. Confocal microscopic imaging of platelet-poor plasma clots reveals that essentially all fibrin-associated PAI-1 colocalizes with fibrin-bound vitronectin. Moreover, formation of platelet-poor plasma clots in the presence of polyclonal antibodies specific for vitronectin attenuated the inhibitory effects of PAI-1 on t-PA-mediated fibrinolysis. Addition of vitronectin during clot formation markedly potentiates PAI-1-mediated inhibition of lysis of (125)I-labeled fibrin clots by t-PA. This effect is dependent on direct binding interactions of vitronectin with fibrin. There is no significant effect of fibrin-associated vitronectin on fibrinolysis in the absence of PAI-1. The binding of PAI-1 to fibrin clots formed in the absence of vitronectin was characterized by a low affinity (K(d) approximately 3.5 micrometer) and rapid loss of PAI-1 inhibitory activity over time. In contrast, a high affinity and stabilization of PAI-1 activity characterized the cooperative binding of PAI-1 to fibrin formed in the presence of vitronectin. These findings indicate that plasma PAI-1.vitronectin complexes can be localized to the surface of fibrin clots; by this localization, they may modulate fibrinolysis and clot reorganization.  相似文献   

17.
Cell adhesion molecules (CAMs) sense the extracellular microenvironment and transmit signals to the intracellular compartment. In this investigation, we addressed the mechanism of signal generation by ectodomains of single-pass transmembrane homophilic CAMs. We analyzed the structure and homophilic interactions of carcinoembryonic antigen (CEA)–related CAM 1 (CEACAM1), which regulates cell proliferation, apoptosis, motility, morphogenesis, and microbial responses. Soluble and membrane-attached CEACAM1 ectodomains were investigated by surface plasmon resonance–based biosensor analysis, molecular electron tomography, and chemical cross-linking. The CEACAM1 ectodomain, which is composed of four glycosylated immunoglobulin-like (Ig) domains, is highly flexible and participates in both antiparallel (trans) and parallel (cis) homophilic binding. Membrane-attached CEACAM1 ectodomains form microclusters in which all four Ig domains participate. Trans-binding between the N-terminal Ig domains increases formation of CEACAM1 cis-dimers and changes CEACAM1 interactions within the microclusters. These data suggest that CEACAM1 transmembrane signaling is initiated by adhesion-regulated changes of cis-interactions that are transmitted to the inner phase of the plasma membrane.  相似文献   

18.
The NMR solution structure of a highly stable coiled-coil IAAL-E3/K3 has been solved. The E3/K3 coiled-coil is a 42-residue de novo designed coiled-coil comprising three heptad repeats per subunit, stabilized by hydrophobic contacts within the core and electrostatic interactions at the interface crossing the hydrophobic core which direct heterodimer formation. This E3/K3 domain has previously been shown to have high alpha-helical content as well as possessing a low dissociation constant (70 nM). The E3/K3 structure is completely alpha-helical and is an archetypical coiled-coil in solution, as determined using a combination of (1)H-NOE and homology based structural restraints. This structure provides a structural framework for visualizing the important interactions for stability and specificity, which are key to protein engineering applications such as affinity purification and de novo design.  相似文献   

19.
Structural biology of NCAM homophilic binding and activation of FGFR   总被引:10,自引:0,他引:10  
In this review, we analyse the structural basis of the homophilic interactions of the neural cell adhesion molecule (NCAM) and the NCAM-mediated activation of the fibroblast growth factor receptor (FGFR). Recent structural evidence suggests that NCAM molecules form cis-dimers in the cell membrane through a high affinity interaction. These cis-dimers, in turn, mediate low affinity trans-interactions between cells via formation of either one- or two-dimensional 'zippers'. We provide evidence that FGFR is probably activated by NCAM very differently from the way by which it is activated by FGFs, reflecting the different conditions for NCAM-FGFR and FGF-FGFR interactions. The affinity of FGF for FGFR is approximately 10(6) times higher than that of NCAM for FGFR. Moreover, in the brain NCAM is constantly present on the cell surface in a concentration of about 50 microm, whereas FGFs only appear transiently in the extracellular environment and in concentrations in the nanomolar range. We discuss the structural basis for the regulation of NCAM-FGFR interactions by two molecular 'switches', polysialic acid (PSA) and adenosine triphosphate (ATP), which determine whether NCAM acts as a signalling or an adhesion molecule.  相似文献   

20.
Binding interactions between several vancomycin tracers and (N,N'-diacetyl)KDADA in solution were evaluated in a competition format using a surface plasmon resonance instrument. Tracers derivatized from the carboxy terminus or the N-vancosaminyl sugar moiety of vancomycin bind the peptide with an affinity similar to that of underivatized vancomycin. In contrast, N-methylleucyl derivatized vancomycin tracers bind the peptide with a reduced affinity relative to vancomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号