首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Immunologically distinct forms of Shiga toxin (Stx1 and Stx2) display different potencies and disease outcomes, likely due to differences in host cell binding. The glycolipid globotriaosylceramide (Gb3) has been reported to be the receptor for both toxins. While there is considerable data to suggest that Gb3 can bind Stx1, binding of Stx2 to Gb3 is variable.

Methodology

We used isothermal titration calorimetry (ITC) and enzyme-linked immunosorbent assay (ELISA) to examine binding of Stx1 and Stx2 to various glycans, glycosphingolipids, and glycosphingolipid mixtures in the presence or absence of membrane components, phosphatidylcholine, and cholesterol. We have also assessed the ability of glycolipids mixtures to neutralize Stx-mediated inhibition of protein synthesis in Vero kidney cells.

Results

By ITC, Stx1 bound both Pk (the trisaccharide on Gb3) and P (the tetrasaccharide on globotetraosylceramide, Gb4), while Stx2 did not bind to either glycan. Binding to neutral glycolipids individually and in combination was assessed by ELISA. Stx1 bound to glycolipids Gb3 and Gb4, and Gb3 mixed with other neural glycolipids, while Stx2 only bound to Gb3 mixtures. In the presence of phosphatidylcholine and cholesterol, both Stx1 and Stx2 bound well to Gb3 or Gb4 alone or mixed with other neutral glycolipids. Pre-incubation with Gb3 in the presence of phosphatidylcholine and cholesterol neutralized Stx1, but not Stx2 toxicity to Vero cells.

Conclusions

Stx1 binds primarily to the glycan, but Stx2 binding is influenced by residues in the ceramide portion of Gb3 and the lipid environment. Nanomolar affinities were obtained for both toxins to immobilized glycolipids mixtures, while the effective dose for 50% inhibition (ED50) of protein synthesis was about 10−11 M. The failure of preincubation with Gb3 to protect cells from Stx2 suggests that in addition to glycolipid expression, other cellular components contribute to toxin potency.  相似文献   

2.
Globotetraosylceramide is recognized by the pig edema disease toxin   总被引:20,自引:0,他引:20  
The pig edema disease toxin has been shown by a tlc glycolipid binding assay to bind specifically to globotetraosylceramide (Gb4, GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4GlcCer.). Binding was reduced for globotriosylceramide (Gb3, Gal alpha 1-4Gal beta 1-4GlcCer) and more markedly for the Forssman antigen (GalNAc alpha 1-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4GlcCer). Paragloboside, blood group A glycolipids, glycolipids terminating in Gal NAc beta 1-4Gal-, and glycolipids in which globoside was present as an internal sequence did not bind the toxin. Isogloboside (GalNAc beta 1-3Gal alpha 1-3Gal beta 1-4GlcCer) was efficiently recognized. This toxin is genetically related to the verotoxin (or Shiga-like) family of toxins for which Gb3 has been shown to be the receptor. The difference in susceptibility of cell lines to the cytotoxicity of the pig edema disease toxin and the Shiga and Shiga-like toxins is consistent with the difference in receptor glycolipid binding.  相似文献   

3.
Globotriaosylceramide [(Gal alpha 1-4Gal beta 1-4Glc-ceramide (Gb3)] was separated from human kidney, and the fatty acid composition was determined. Semisynthetic Gb3 molecular species of corresponding fatty acid chain length were prepared and compared for verotoxin (VT) binding affinity by TLC overlay, and a quantitative binding assay was performed in the presence of auxiliary lipids. Our results indicate that, within the natural range, fatty acid chain length has little effect on verotoxin binding but that Gb3 molecular species containing different fatty acids can interact to provide a higher affinity toxin receptor than any of the individual component receptor species. Receptor function as assayed by TLC overlay was not always found to correlate with binding in a lipid environment. Short-chain fatty acid Gb3 molecular species could not function as VT receptors under these conditions. Evidence is presented to suggest that fatty acid chain length can have a stereoselective effect on carbohydrate conformation.  相似文献   

4.
T Ariga  K Yoshida  K Nemoto  M Seki  N Miyatani  R K Yu 《Biochemistry》1991,30(32):7953-7961
We have studied the glycolipid composition of six different murine myelogenous leukemias as well as that of T-cell leukemias and normal spleen cells. Neutral and acidic lipid fractions were isolated by column chromatography on DEAE-Sephadex and analyzed by high-performance thin-layer chromatography (HPTLC) and an HPTLC overlay method. Murine myelogenous leukemias were found to contain globo- and ganglio-series neutral glycolipids, e.g., glucosylceramide (Glc-cer), lactosylceramide (Lac-cer), globotriaosylceramide (Gb3), globoside (Gb4), Forssman glycolipid (Gb5), and asialo-GM1 (GA1). Monoblastic leukemia cells contained increased proportions of Gb3, Gb4, Gb5, and GA1. Monocytic and myelomonocytic leukemia cells contained increased proportions of Glc-cer and Lac-cer. Especially, Glc-cer accounted for approximately 60% of the total neutral glycolipids in monocytic leukemia cells. Gb3 was the major neutral glycolipid in reticulum cell neoplasm type A, and it accounted for approximately 75% of the neutral glycolipids. GA1 was the major neutral glycolipid in myeloblastic and granulocytic leukemia cells as well as T-cell leukemias. Especially, granulocytic leukemia cells contained predominantly GA1, and it accounted for approximately 80% of the total neutral glycolipids. The pattern of gangliosides in myelogenous leukemias was more complex when compared with that of the neutral glycolipids; murine myelogenous leukemias contained at least 13 gangliosides, including such major gangliosides as GM1, GM1b containing N-acetyl neuraminic acid and N-glycolyl neuraminic acid, and Ga1NAc-GM1b. Alterations of glycolipid composition in murine myeloid leukemias may be associated with cellular differentiation and maturation, and therefore these characteristic glycolipid species may be regarded as markers for specific populations of leukemia cells.  相似文献   

5.
Verotoxins (VTs) from Escherichia coli elicit human vascular disease as a consequence of specific binding to globotriaosylceramide (Gb3) receptors on endothelial cell surfaces. Molecular models based on the VT1 crystal structure were used previously to investigate the structural basis for receptor recognition by VT1 and other verotoxins. Interestingly, these model-based predictions of glycolipid binding to VT1 differ somewhat from recently published structural data from cocrystals of the VT1 B-subunit (VT1B) and an analogue of the sugar moiety of Gb3. In this study, fluorescence spectroscopy was used to test model-based predictions of the location of Gb3 binding on the B-subunit pentamer of VT1. Resonance energy transfer was used to calculate the distance from a coumarin probe used to replace the acyl tail of Gb3 and the single tryptophan residue (Trp34) present within each VT1B monomer. The observed energy transfer efficiency (greater than 95%) suggests that these two moieties are approximately 13.3 A apart when a single distance is assumed. This distance is consistent with proposed models for the fit of Gb3 within the "cleft site" of the VT1 B-subunit. When the distances from Trp34 to the other coumarinGb3 molecules (bound to each of the four remaining monomers within the VT1B pentamer) are taken into consideration, it appears likely that the coumarin-modified Gb3 analogue used in this study associates with the previously proposed receptor binding site II of VT1. This is consistent with an observed binding preference of VT2c for coumarinGb3. To provide additional information on the association of Gb3 with the VT1 B-subunit, the influence of Gb3 glycolipid binding on the accessibility of Trp34 to different quenching agents in solution was then examined. Taken together, the data suggest that coumarin-labeled Gb3 preferentially binds to site II on VT1 in a position that is consistent with the previously described molecular models.  相似文献   

6.
The N-terminus of the type 1 interferon receptor subunit, IFNAR1, has high amino acid sequence similarity to the receptor binding B subunit of the Escherichia coli-derived verotoxin 1, VT1. The glycolipid, globotriaosyl ceramide (Gb(3): Gal alpha(1) --> 4 Gal beta 1 --> 4 Glu beta 1 --> 1 Cer) is the specific cell receptor for VT1. Gb(3)-deficient variant cells selected for VT resistance are cross-resistant to interferon-alpha (IFN-alpha)-mediated antiproliferative activity. The association of eIFNAR1 with Gal alpha 1 --> 4 Gal containing glycolipids has been previously shown to be important for the receptor-mediated IFN-alpha signal transduction for growth inhibition. The crucial role of Gb(3) for the signal transduction of IFN-alpha-mediated antiviral activity is now reported. IFN-alpha-mediated antiviral activity, nuclear translocation of activated Stat1, and increased expression of PKR were defective in Gb(3)-deficient vero mutant cells, although the surface expression of IFNAR1 was unaltered. The VT1B subunit was found to inhibit IFN-alpha-mediated antiviral activity, Stat1 nuclear translocation and PKR upregulation. Unlike VT1 cytotoxicity, IFN-alpha-induced Stat1 nuclear translocation was not inhibited when RME was prevented, suggesting that the accessory function of Gb(3) occurs at the plasma membrane. IFN-alpha antiviral activity was also studied in Gb(3)-positive MRC-5 cells, which are resistant to IFN-alpha growth inhibition, partially resistant to VT1 but still remain fully sensitive to IFN-alpha antiviral activity, and two astrocytoma cell lines expressing different Gb(3) fatty acid isoforms. In both systems, long chain fatty acid-containing Gb(3) isoforms, which are less effective to mediate VT1 cytotoxicity, were found to correlate with higher IFN-alpha-mediated antiviral activity. Inhibition of Gb(3) synthesis in toto prevented IFN-alpha antiviral activity in all cells. We propose that the long chain Gb(3) fatty isoforms preferentially remain in the plasma membrane, and by associating with IFNAR1, mediate IFN-alpha antiviral signaling, whereas short chain Gb(3) fatty acid isoforms are preferentially internalized to mediate VT1 cytotoxicity and IFNAR1-dependent IFN-alpha growth inhibition.  相似文献   

7.
The major virulence factor of Shiga toxin producing E. coli, is Shiga toxin (Stx), an AB5 toxin that consists of a ribosomal RNA-cleaving A-subunit surrounded by a pentamer of receptor-binding B subunits. The two major isoforms, Stx1 and Stx2, and Stx2 variants (Stx2a-h) significantly differ in toxicity. The exact reason for this toxicity difference is unknown, however different receptor binding preferences are speculated to play a role. Previous studies used enzyme linked immunosorbent assay (ELISA) to study binding of Stx1 and Stx2a toxoids to glycolipid receptors. Here, we studied binding of holotoxin and B-subunits of Stx1, Stx2a, Stx2b, Stx2c and Stx2d to glycolipid receptors globotriaosylceramide (Gb3) and globotetraosylceramide (Gb4) in the presence of cell membrane components such as phosphatidylcholine (PC), cholesterol (Ch) and other neutral glycolipids. In the absence of PC and Ch, holotoxins of Stx2 variants bound to mixtures of Gb3 with other glycolipids but not to Gb3 or Gb4 alone. Binding of all Stx holotoxins significantly increased in the presence of PC and Ch. Previously, Stx2a has been shown to form a less stable B-pentamer compared to Stx1. However, its effect on glycolipid receptor binding is unknown. In this study, we showed that even in the absence of the A-subunit, the B-subunits of both Stx1 and Stx2a were able to bind to the glycolipids and the more stable B-pentamer formed by Stx1 bound better than the less stable pentamer of Stx2a. B-subunit mutant of Stx1 L41Q, which shows similar stability as Stx2a B-subunits, lacked glycolipid binding, suggesting that pentamerization is more critical for binding of Stx1 than Stx2a.  相似文献   

8.
Eukaryotic cell surface glycolipids can act as both the primary interface between bacteria and their host and secondly as a targeting mechanism for bacterial virulence factors. The former is characterized by redundancy in adhesin-receptor interactions and the latter by a higher affinity, more restrictive glycolipid binding specificity for targeting. Interactions of verotoxin with its glycolipid receptor globotriaosylceramide and Helicobacter pylori binding to a variety of different glycolipids, which can be environmentally regulated, provide examples of these differing modes of glycolipid receptor function. Verotoxins are involved in endothelial targeting in the microangiopathies of hemorrhagic colitis and hemolytic uremic syndrome (HUS). The highly restricted binding specificity and crystal structure of the verotoxin B subunit have allowed theoretical modeling of the Gb3 binding site of the verotoxin B subunit pentamer which provides an approach to intervention. Studies of the role of glycolipid function in verotoxin-induced disease have concentrated on the distribution of Gb3 and its ability to mediate the internalization of the toxin within the target cell. The distribution of Gb3 within the renal glomerulus plays a central role in defining the age-related etiology of HUS following gastrointestinal infection with VT producing Escherichia coli. H. pylori, on the other hand, instigates a less distinct but more complex disseminated gastric inflammation. Studies on the role of glycolipid receptors in H. pylori infection have been bogged down in establishing the importance of each binding specificity defined. In addition, the physiological condition of the organism within the various binding assays has not been extensively considered, such that spurious non-physiological interactions may have been elucidated. The identification and cloning of a Le(b) binding adhesin and the identification of cell surface hsp70 as a mediator of sulfoglycolipid binding under stress conditions may now allow a more molecular approach to define the role of glycolipid recognition in this infection.  相似文献   

9.
In order to clarify the presence and verotoxin (VT) inhibitory activity of globotriaosylceramide (Gb3) in bovine milk, we analyzed neutral glycosphingolipids (GSLs) from bovine milk and investigated the inhibitory effect of bovine milk Gb3 on the cytotoxicity of VT2. Five species of neutral GSLs, designated as N-1, N-2, N-3, N-4, and N-5, were separated on thin-layer chromatography (TLC). N-1, N-2, and N-3 showed the same mobility as glucosylceramide, lactosylceramide, and Gb3 on the TLC plate, respectively. N-4 and N-5 GSLs migrated below globoside on the TLC plate. N-3 GSL having the same TLC mobility as Gb3 from bovine milk was immunologically identified as Gb3 by monoclonal antibody against Gb3, anti-CD77 monoclonal antibody. Furthermore, the effect of bovine milk Gb3 on VT2-induced cytotoxicity was investigated. We found that treatment of VT2 with bovine milk Gb3 can reduce the cytotoxic effect of VT2.  相似文献   

10.
The globotriaosylceramide (Gb3) verotoxin (VT) interaction is one of several examples of glycolipid receptors where the ceramide (or lipid) free oligosaccharides fail to show the expected binding parameters. We present a novel, yet simple strategy to synthesize monovalent, water soluble glycosphingolipid mimics which retain receptor function. Replacing the fatty acid chain with rigid, three dimensional hydrocarbon frames, such as adamantane, gives a novel class of neohydrocarbon glycoconjugates. Such adamantyl conjugates derived from Gb3 showed significantly enhanced solubility in water compared to natural Gb3. Adamantyl-Gb3 showed a thousand fold enhanced inhibitory activity (IC50 = 1 microM) for VT-Gb3 binding as compared to a lipid free Gb3 oligosaccharide derivative, alphaGal1-4betaGal1-4betaGlc1-O-CH2CH(CH2SO2C 4H9)2 (IC50 > 2 mM). This represents a new approach to the generation of antagonists of glycolipid receptors.  相似文献   

11.
We have shown that the ABC transporter, multiple drug resistance protein 1 (MDR1, P-glycoprotein) translocates glucosyl ceramide from the cytosolic to the luminal Golgi surface for neutral, but not acidic, glycosphingolipid (GSL) synthesis. Here we show that the MDR1 inhibitor, cyclosporin A (CsA) can deplete Gaucher lymphoid cell lines of accumulated glucosyl ceramide and Fabry cell lines of globotriaosyl ceramide (Gb3), by preventing de novo synthesis. In the Fabry mouse model, Gb3 is increased in the heart, liver, spleen, brain and kidney. The lack of renal glomerular Gb3 is retained, but the number of verotoxin 1 (VT1)-staining renal tubules, and VT1 tubular targeting in vivo, is markedly increased in Fabry mice. Adult Fabry mice were treated with alpha-galactosidase (enzyme-replacement therapy, ERT) to eliminate serum Gb3 and lower Gb3 levels in some tissues. Serum Gb3 was monitored using a VT1 ELISA during a post-ERT recovery phase +/- biweekly intra peritoneal CsA. After 9 weeks, tissue Gb3 content and localization were determined using VT1/TLC overlay and histochemistry. Serum Gb3 recovered to lower levels after CsA treatment. Gb3 was undetected in wild-type liver, and the levels of Gb3 (but not gangliosides) in Fabry mouse liver were significantly depleted by CsA treatment. VT1 liver histochemistry showed Gb3 accumulated in Kupffer cells, endothelial cell subsets within the central and portal vein and within the portal triad. Hepatic venule endothelial and Kupffer cell VT1 staining was considerably reduced by in vivo CsA treatment. We conclude that MDR1 inhibition warrants consideration as a novel adjunct treatment for neutral GSL storage diseases.  相似文献   

12.
Escherichia coli verotoxin, also known as Shiga-like toxin, binds to eukaryotic cell membranes via the glycolipid Gb(3) receptors which present the P(k) trisaccharide Galalpha(1-4)Galbeta(1-4)Glcbeta. Crystallographic studies have identified three P(k) trisaccharide (P(k)-glycoside) binding sites per verotoxin 1B subunit (VT1B) monomer while NMR studies have identified binding of P(k)-glycoside only at site 2. To understand the basis for this difference, we studied binding of wild type VT1B and VT1B mutants, defective at one or more of the three sites, to P(k)-glycoside and pentavalent P(k) trisaccharide (pentaSTARFISH) in solution and Gb(3) presented on liposomal membranes using surface plasmon resonance. Site 2 was the key site in terms of free trisaccharide binding since mutants altered at sites 1 and 3 bound this ligand with wild type affinity. However, effective binding of the pentaSTARFISH molecule also required a functional site 3, suggesting that site 3 promotes pentavalent binding of linked trisaccharides at site 1 and site 2. Optimal binding to membrane-associated Gb(3) involved all three sites. Binding of all single site mutants to liposomal Gb(3) was weaker than wild type VT1B binding. Site 3 mutants behaved as if they had reduced ability to enter into high avidity interactions with Gb(3) in the membrane context. Double mutants at site 1/site 3 and site 2/site 3 were completely inactive in terms of binding to liposomal Gb(3,) even though the site 1/site 3 mutant bound trisaccharide with almost wild type affinity. Thus site 2 alone is not sufficient to confer high avidity binding to membrane-localized Gb(3). Cytotoxic activity paralleled membrane glycolipid binding. Our data show that the interaction of verotoxin with the Gb(3) trisaccharide is highly context dependent and that a membrane environment is required for biologically relevant studies of the interaction.  相似文献   

13.
Variation in the lipid moiety of the verotoxin (VT) receptor glycosphingolipid, globotriaosyl ceramide (Gb3) can modulate toxin binding. The binding of VT1 and VT2 to C18 and C22 ahydroxy and nonhydroxy fatty acid isoforms of Gb3 were compared using a receptor ELISA and a 125l-labeled toxin/glycolipid microtitre plate direct binding assay. Increased binding to the hydroxylated species, particularly C22OH, was observed for both toxins. Increased RELISA binding at low glycolipid concentrations only, suggested the binding affinity is increased following Gb3 fatty acid hydroxylation. Nonlinear regression analysis of direct binding assay to these Gb3 isoforms confirmed the increased affinity of both toxins for the C22 hydroxylated Gb3. The capacity was also significantly increased. The increased binding of VTs for hydroxylated fatty acid Gb3 isoforms may be a factor in the selective renal pathology which can follow systemic verotoxemia, particularly in the mouse model. The more pronounced effect at lower glycolipid concentrations prompted investigation of VT1 binding affinity at different Gb3 concentrations. Unexpectedly, the VT1 Kd for Gb3 was found to decrease as an inverse function of the Gb3 concentration. This shows that glycolipids have nonclassical receptor properties.  相似文献   

14.
Although verotoxin-1 (VT1) and verotoxin-2 (VT2) share a common receptor, globotriaosyl ceramide (Gb(3)), VT2 induces distinct animal pathology and is preferentially associated with human disease. Moreover VT2 cytotoxicity in vitro is less than VT1. We therefore investigated whether these toxins similarly traffic within cells via similar Gb(3) assemblies. At 4 degrees C, fluorescent-VT1 and VT2 bound both coincident and distinct punctate surface Gb(3) microdomains. After 10 min at 37 degrees C, similar distinct/coincident micropunctate intracellular localization was observed. Most internalized VT2, but not VT1, colocalized with transferrin. After 1 h, VT1 and VT2 coalesced during retrograde transport to the Golgi. During prolonged incubation (3-6 h), VT1, and VT2 (more slowly), exited the Golgi to reach the ER/nuclear envelope. At this time, VT2 induced a previously unreported, retrograde transport-dependent vacuolation. Cell surface and intracellular VT1 showed greater detergent resistance than VT2, suggesting differential 'raft' association. >90% (125)I-VT1 cell surface bound, or added to detergent-resistant cell membrane extracts (DRM), was in the Gb(3)-containing sucrose gradient 'insoluble' fraction, whereas only 30% (125)I-VT2 was similarly DRM-associated. VT1 bound more efficiently to Gb(3)/cholesterol DRMs generated in vitro. Only VT1 binding was inhibited by high cholesterol/Gb(3) ratios. VT2 competed less effectively for (125)I-VT1/Gb(3) DRM-binding but only VT2-Gb(3)/cholesterol DRM-binding was augmented by sphingomyelin. Differential VT1/VT2 Gb(3) raft-binding may mediate differential cell binding/intracellular trafficking and cytopathology.  相似文献   

15.
Glycosphingolipids were isolated from a canine kidney cell line (MDCK) and its ouabain-resistant mutant (MDCK-OR) by solvent extraction, mild alkaline methanolysis, a DEAE-Sephadex column, and preparative TLC. The glycolipids were characterized by their mobilities on TLC, an analysis of carbohydrates as trimethylsilyl methyl glycosides and acetates of partially methylated alditols, as well as by treatment with specific glycosidases. In the neutral glycolipid fraction of both cell lines, galactosylceramide (GalCer), glucosylceramide (GlcCer), lactosylceramide (LacCer), digalactosylceramide (Ga2Cer), globotriaosylceramide (Gb3Cer), globoside (Gb4Cer), and the Forssman antigen (IV3GalNAc alpha-Gb4Cer) were identified. The contents of Ga2Cer (4.4 nmol/mg protein), Gb3Cer (0.6), Gb4Cer (2.9), and IV3GalNac alpha-Gb4Cer (19.5) in MDCK-OR were 1.4- to 2.1-fold higher than those in MDCK, while the concentrations of GlcCer (5.3) and LacCer (1.4) in MDCK-OR were about half of those in MDCK. Among acidic glycolipids of MDCK-OR, galactosyl sulfatide (GalCer-I3-sulfate) and lactosyl sulfatide (LacCer-II3-sulfate) were increased to 1.9 (2.7-fold) and 0.2 nmol/mg protein (2.0-fold), respectively, as compared to MDCK. However, N-acetylneuraminosyllactosylceramide (GM3), the predominant ganglioside in both cell lines, was decreased to about one third of the level (1.5 nmol/mg protein) in the parent MDCK (4.7 nmol/mg protein). The fatty acid of the glycolipids in both cell lines consisted mainly of saturated acids of 16, 18, 22, and 24 carbons.  相似文献   

16.
Purified renal globotriaosyl ceramide (Gb3)/cholesterol mixtures sonicated heated in a Triton-containing buffer placed below a discontinuous sucrose gradient form glycosphingolipid (GSL)-containing dense lipid structures at the 30/5% sucrose interface after centrifugation. Inclusion of fluorescein-labeled verotoxin 1 B subunit (FITC-VT1 B) within the most dense sucrose layer results in the fluorescent labeling of this Gb3-containing raft structure. Alternatively inclusion of I-labeled VT1 fractionation allows quantitation of binding. FITC-VT1 B effectively competes for I-VT1/Gb3 raft binding. This assay will allow the definition of the optimal raft composition for VT1 (or any other ligand) binding. The effect of several potential cellular raft components are reported. Increased cholesterol content increased VT1 binding. Addition of phosphatidylethanolamine had minimal effect while phosphatidylserine was inhibitory. Although inclusion of sphingomyelin increased the Gb3 content of the "raft" reduced VT1 binding was seen. Inclusion of other glycolipids can also be inhibitory. The addition of globotetraosyl ceramide had no effect; however addition of sulfogalactosyl ceramide but not sulfogalactoglycerolipid inhibited VT1/Gb3 raft binding. These results suggest that certain GSLs can disfavor the formation of the appropriate 'raft' structure for ligand binding that this is dependent on both their carbohydrate lipid structure. Such "deceptor" GSLs may provide an as yet unappreciated mechanism for the regulation of cellular GSL receptor activity. This model is an effective tool to approach the dynamics ligand-binding specificity of GSL/cholesterol-containing lipid microdomains.  相似文献   

17.
Glycolipids from mucosa scrapings of small intestine of neonatal and adult pigs were tested by the thin-layer chromatogram overlay assay for the binding of Escherichia coli K99. There was practically no binding to acid or non-acid glycolipids of adult pig, known to be resistant to infection with this bacterium. However, piglets, which are susceptible to infection, showed a clear binding to a doublet band in the acid glycolipid fraction. The receptor-active glycolipid was isolated and shown by mass spectrometry, NMR spectroscopy and degradation methods to be NeuGc alpha-3Gal beta 4Glc beta Cer (NeuGc-GM3), the two bands being due to heterogeneity of the ceramide. When tested against various reference glycolipids, NeuAc-GM3 was shown to be inactive. This ganglioside was dominating in adult pig. The apparent developmental disappearance of N-glycolyl groups in glycolipids of intestinal mucosa may have a correspondence in protein-linked sequences as well as thus explain the resistance of adult pigs to infection with E. coli K99.  相似文献   

18.
The glycolipids of nonpregnant and pregnant rabbit endometrium were characterized using a combination of biochemical and immunochemical techniques. Quantitative analyses indicated a 70% decline in acidic glycolipid (ganglioside) content during early pregnancy (day 6), and a 2.5-fold increase in neutral glycolipid content during later pregnancy (day 26). The major gangliosides of rabbit endometrium were identified by thin-layer chromatography as GM3 and GD3, with minor amounts of GM1, GD1a and GT1b. The major neutral glycolipids were identified similarly as globo-series structures Gb3 and Gb4. Monoclonal antibodies (mAbs) directed to glycolipid antigens permitted the detection of additional glycolipid species, including sialylated, sulfated and fucosylated lacto-series structures. Difucosyl Ley structure (defined by mAb AH-6) and sulfated-galactosyl structure (defined by mAb VESP 6.2) were identified by indirect immunofluorescence along the luminal surface of the endometrium during the implantation period. Rapid changes in the glycolipid composition of endometrial cells during early pregnancy may facilitate embryo adhesion and trophectoderm outgrowth during implantation.  相似文献   

19.
pH-independent retrograde targeting of glycolipids to the Golgi complex   总被引:2,自引:0,他引:2  
A small fractionof the molecules internalized by endocytosis reaches the Golgi complexthrough a retrograde pathway that is poorly understood. In the presentwork, we used bacterial toxins to study the retrograde pathway in Verocells. The recombinant B subunit of verotoxin 1B (VT1B)was labeled with fluorescein to monitor its progresswithin the cell by confocal microscopy. This toxin, which bindsspecifically to the glycolipid globotriaosyl ceramide, enteredendosomes by both clathrin-dependent and -independent pathways,reaching the Golgi complex. Once internalized, the toxin-receptor complex did not recycle back to the plasma membrane. The kinetics ofinternalization and the subcellular distribution of VT1B were virtuallyidentical to those of another glycolipid-binding toxin, the B subunitof cholera toxin (CTB). Retrograde transport of VT1B and CTB wasunaffected by addition of weak bases in combination with concanamycin,a vacuolar-type ATPase inhibitor. Ratio imaging confirmed that theseagents neutralized the luminal pH of the compartments where the toxinwas located. Therefore, the retrograde transport of glycolipids differsfrom that of proteins like furin and TGN38, which require an acidicluminal pH. Additional experiments indicated that the glycolipidreceptors of VT1B and CTB are internalized independently and not aspart of lipid "rafts" and that internalization is cytochalasininsensitive. We conclude that glycolipids utilize a unique,pH-independent retrograde pathway to reach compartments of thesecretory system and that assembly of F-actin is not required for thisprocess.

  相似文献   

20.
The ability of the periodontal pathogen Porphyromonas gingivalis to use different glycolipid structures as receptors has previously been demonstrated. The bacterium adhered to acid and nonacid glycolipids originating from human organs and to nonacid glycolipids of porcine origin. The aim of the present study was to analyze these binding epitopes by structural characterization. Glycolipid fractions with positive bacterial binding from e.g. human and porcine origin, were purified by the high performance liquid chromatography technique and thereafter used in bacterial overlay assays with (35)S-labeled P. gingivalis. Purified fractions with positive binding were structurally characterized by proton nuclear magnetic resonance spectroscopy. Complementing thin-layer chromatograms and bacterial overlay assays with pure reference glycolipid fractions and competition experiments with lactose were performed to define potential receptors. The P. gingivalis binding epitopes, including cerebrosides with nonhydroxy fatty acids, lactosylceramide with hydroxy fatty acids, sulfatides, lacto-, neolacto- and gangliotetraosylceramides, are in several instances similar to those found for other bacteria, e.g. H. pylori, H. influenzae and N. meningitidis. In addition P. gingivalis also bound to the Galalpha4Gal epitope of the globo series of glycolipids. In the future these results may be valuable for development of new treatment strategies, such as anti-adhesion therapies and vaccines specifically directed against P. gingivalis infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号