首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
14C-Ethylene was metabolized by etiolated pigweed seedlings (Amaranthus retroflexus L.) in the manner similar to that observed in other plants. The hormone was oxidized to 14CO2 and incorporated into 14C-tissue components. Selected cyclic olefins with differing abilities to block ethylene action were used to determine if ethylene metabolism in pigweed is necessary for ethylene action. 2,5-Norbornadiene and 1,3-cyclohexadiene were effective inhibitors of ethylene action at 800 and 6400 microliters per liter, respectively, in the gas phase, while 1,4-cyclohexadiene and cyclohexene were not. However, all four cyclic olefins inhibited the incorporation and conversion of 14C-ethylene to 14CO2 by 95% with I50 values below 100 microliters per liter. The results indicate that total ethylene metabolism does not directly correlate with changes in ethylene action. Additionally, the fact that inhibition of ethylene metabolism by the cyclic olefins did not result in a corresponding increase in ethylene evolution indicates that ethylene metabolism does not serve to significantly reduce endogenous ethylene levels.  相似文献   

2.
Florida's red tide organism, Gymnodinium breve, utilized exogenous glucose in the light for the synthesis of cellular components. Glucose was not taken up in the dark. Kinetic parameters for glucose uptake include a KFD of 11 μM and a Vmax of 1 × 10?10 mol of glucose taken up/mg cellular protein/hr. Glucose uptake was competitively inhibited by phloridzin (Ki = 40 μM), mannose (Ki = 12O μM), and 2-deoxy-d-glucose (Ki = 190 μM) and non-competitively inhibited by galactose (Ki = 125 μM). Kinetics and inhibition of glucose uptake are consistent with a facilitated diffusion transport system.  相似文献   

3.
Histamine activation of adenylyl cyclase activity in sonicated enriched rat gastric parietal cells showed a time, temperature, and concentration dependence upon guanine diphosphoimide (Gpp(NH)p). Enzyme activation was first order with Gpp(NH)p alone or Gpp(NH)p plus histamine. The Ka for Gpp(NH)p was ~2 μm and was not influenced by histamine. GTP and GDP were inactive alone or with histamine and were competitive with Gpp(NH)p, showing apparent Ki's of near 0.4 and 0.3 μm, respectively. In the presence of Gpp(NH)p, parietal cell adenylyl cyclase was activated by histamine with an EC50 of 24 μm, the most potent in a series of histamine analogs, further substantiating an H2-receptor classification for this response. H2-Receptor antagonists were competitive inhibitors with submicromolar Ki's. Preincubation of parietal cells with histamine and Gpp(NH)p resulted in adenylyl cyclase activity up to 15 times the basal level. The activated state was retained after washing the cells free of histamine and Gpp(NH)p and was not reversed by the subsequent addition of either histamine, cimetidine, or GTP. The other gastric acid secretagogues, pentagastrin and carbamylcholine, were without effect upon histamine activation or the activated state of adenylyl cyclase. These results describe a level of control of histamine-sensitive adenylyl cyclase that requires consideration in the activation of the parietal cell H2-receptor system by histamine to modulate acid secretion.  相似文献   

4.
Gossypol, a polyphenolic binaphthalene-dialdehyde extracted from cotton plants which possesses male antifertility action in mammals, is a potent inhibitor of phospholipid-sensitive Ca2+-dependent protein kinase from pig testis. Gossypol inhibited Ca2+-dependent activity of the enzyme without affecting its basal activity. The IC50 value (concentration causing 50% inhibition) was 31 μM when lysine-rich histone was used as substrate. Kinetic analysis indicated that the compound inhibited the enzyme non-competitively with respect to ATP (Ki = 31 μM) or lysine-rich histone (Ki = 30μM), and competitively with respect to phosphatidylserine (Ki = 2.1 μM). With Ca2+, irrespective of the presence or absence of 1,3-diolein, the compound lowered Vmax and increased the apparent Ka for Ca2+. The compound also inhibited phosphorylation by the enzyme of high-mobility-group 1 protein (one of the endogenous substrate in the testis for the enzyme located in nucleosome), with an IC50 value of 88 μM. These results suggested that a phospholipid-sensitive Ca2+-dependent protein phosphorylation system in the testis is involved in the regulation of spermatogenesis.  相似文献   

5.
In order to investigate the enzymatic mechanism of tomato alcohol dehydrogenase, kinetic studies were carried out at pH 5.8 and 9.4 for the forward and reverse reactions, respectively. Primary double reciprocal plots for several fixed concentrations of the associated substrate in all cases intersect, suggesting a sequential mechanism. Exploitation of secondary plots (slope-intercept values on the primary plots versus the reciprocals of the non-varied substrates) gives the following values: Kms 500 μM for MeCHO, 30 μM for NADH, 2700 μM for EtOH, 12 μM for NAD+; Kis 40 μM for MeCHO, 3 μM for NADH, 104 μM for EtOH and 45 μM for NAD+. The results obtained in product inhibition studies agree with an ordered bi-bi mechanism for both forward and reverse reactions. Application of Cleland's rules shows that the coenzyme was the first substrate to complex with the enzyme in both cases.  相似文献   

6.
The (1→4)-β-d-glucan glucohydrolase from Penicillium funiculosum cellulase was purified to homogeneity by chromatography on DEAE-Sephadex and by iso-electric focusing. The purified component, which had a molecular weight of 65,000 and a pI of 4.65, showed activity on H3PO4-swollen cellulose, o-nitrophenyl β-d-glucopyranoside, cellobiose, cellotriose, cellotetraose, and cellopentaose, the Km values being 172 mg/mL, and 0.77, 10.0, 0.44, 0.77, and 0.37 mm, respectively. d-Glucono-1,5-lactone was a powerful inhibitor of the action of the enzyme on o-nitrophenyl β-d-glucopyranoside (Ki 2.1 μm), cellobiose (Ki 1.95 μm), and cellotriose (Ki 7.9 μm) [cf.d-glucose (Ki 1756 μm)]. On the basis of a Dixon plot, the hydrolysis of o-nitrophenyl β-d-glucopyranoside appeared to be competitively inhibited by d-glucono-1,5-lactone. However, inhibition of hydrolysis by d-glucose was non-competitive, as was that for the gluconolactone-cellobiose and gluconolactone-cellotriose systems. Sophorose, laminaribiose, and gentiobiose were attacked at different rates, but the action on soluble O-(carboxymethyl)cellulose was minimal. The enzyme did not act in synergism with the endo-(1→4)-β-d-glucanase component to solubilise highly ordered cotton cellulose, a behaviour which contrasts with that of the other exo-(1→4)-β-d-glucanase found in the same cellulase, namely, the (1→4)-β-d-glucan cellobiohydrolase.  相似文献   

7.
Erythrocyte diphosphoglycerate mutase is inhibited by several inorganic salts, the extent of the effect being characteristic of the anionic component, i.e., at ionic strength of about 0.1, SO42? > Cl? > CH3COO?. Using a partially purified enzyme preparation from human red blood cells, kinetic constants were determined in the presence of 0.1 m KCl to simulate the ionic environment of the cell. At pH 7.5, the addition of salt caused a 10-fold increase in the Km of 1,3-diphosphoglycerate and a 46-fold increase in the Ki of 2,3-diphosphoglycerate. There was no effect of salt on the Km of 3-phosphoglycerate or on the maximal velocity of the reaction. In the presence of 0.1 m KCl, the i of inorganic phosphate increased from 0.3 mm to 0.6 mm. The Km of 1,3-diphosphoglycerate was pH dependent, the values obtained being 3.6 μm at pH 6.75, 3.1 μm at pH 7.24, and 6.7 μm at pH 7.75. The Ki values for 2,3-diphosphoglycerate under the same conditions were: 12 μm at pH 6.75, 20μm at pH 7.24, and 53 μm at pH 7.75. The relative maximal velocity of the reaction has been evaluated over the same pH range. The maximal activity of the enzyme measured at 25 °C and pH 7.5 was 2 units/min/ml of packed red cells. From these studies, it is concluded that the effective enzymatic rate increases fourfold when the pH increases from 6.75 to 7.75.  相似文献   

8.
Adenine uptake into human blood platelets is a carrier-mediated process with a Km of 159±21 nM and a V of 100±10 pmoles/min per 109 platelets (in citrated platelet-rich plasma). The Q10 was 2.53±0.22. A pH optimum was found at 7.5. Washing of the platelets increased the Km to 453±33 nM and V to 397±38 pmoles/min per 109 platelets. The change in shape induced in platelets by ADP was accompanied by an increase in V (2 times) and Km (1.5 times).Guanine (Ki 50 μM), hypoxanthine (Ki 390 μM), adenine-N′-oxide (Ki 40 μM), adenosine (Ki 100 μM), RA 233 (Ki 75 μM) and papaverine (Ki 15 μM) acted as competitive inhibitors. Adenosine at low concentrations, and prostaglandin E1 gave inhibition at only high adenine levels. A similar inhibition was obtained with 2-deoxy-d-glucose. Sulfhydryl-group inhibitors, pyrimidines and ouabain had no effect.  相似文献   

9.
The maximal velocity, V, for isocitrate cleavage by isocitrate lysase from Pseudomonas indigofera was dependent on two dissociable groups (pKa's of 6.9 and 8.6). The pH dependence of the pKi for succinate, a product of isocitrate cleavage, implied that a dissociable group (pKa of 6.0) on the enzyme functions in binding succinate. The pKi's for maleate and itaconate (succinate analogs) were similarly pH dependent. The pKi for oxalate, an analog of glyoxylate which is also a product of isocitrate cleavage, was pH independent. In contrast the pKi's of the four-carbon dicarboxylic acid inhibitors, fumarate and meso-tartrate, both of which affect the glyoxylate site, were dependent on a dissociable group on the enzyme-inhibitor complex. Comparison of the pH dependence of the pKm for isocitrate and the pKi for succinate (and succinate analogs) indicated that the binding of isocitrate was dependent on an acidic dissociable group on the enzyme (pKa of 5.8). The pH dependence of the pKi for homoisocitrate was similar. In addition the Ki for succinate and Km for isocitrate were dependent upon Mg2+ concentration. Inhibition by phosphoenolpyruvate, which binds to the succinate site and may regulate isocitrate lyase from P. indigofera, was twice as pH dependent as that for succinate. Two dissociable groups, one on the enzyme (pKa of 5.8) and one on phosphoenolpyruvate (pKa of 6.35), contributed to the pH dependence observed with phosphoenolpyruvate.  相似文献   

10.
Activity of arginine decarboxylase in etiolated pea seedlings appears 24 hours after seed imbibition, reaches its highest level on the 4th day, and levels off until the 7th day. This activity was found in the apical and subapical tissue of the roots and shoots where intensive DNA synthesis occurs. Exposure of the seedlings to ethylene greatly reduced the specific activity of this enzyme. The inhibition was observed within 30 min of the hormone application, and maximal effect—90% inhibition—after 18 hours. Ethylene at physiological concentrations affected the enzyme activity; 50% inhibitory rate was recorded at 0.12 microliters per liter ethylene and maximal response at 1.2 microliters per liter. Ethylene provoked a 5-fold increase in the Kmapp of arginine decarboxylase for its substrate and reduced the Vmaxapp by 10-fold. However, the enzyme recovered from the inhibition and regained control activity 7 hours after transferral of the seedlings to ethylene-free atmosphere. Reducing the endogenous level of ethylene in the tissue by hypobaric pressure, or by exposure to light, as well as interfering with ethylene action by treatment with silver thiosulfate or 2,5-norbornadiene, caused a gradual increase in the specific activity of arginine decarboxylase in the apical tissue of the etiolated seedlings. On the basis of these findings, the possible control of arginine decarboxylase activity by endogenous ethylene, and its implication for the hormone effect on plant growth, are discussed.  相似文献   

11.
Epinephrine promotes spontaneous activity in cardiac Purkinje fibers through its action on the pacemaker potassium current (iKK2). The mechanism of the acceleratory effect was studied by means of a voltage clamp technique. The results showed that the hormone speeds the deactivation of iKK2 during pacemaker activity by displacing the kinetic parameters of iKK2 toward less negative potentials. This depolarizing voltage shift is the sole explanation of the acceleratory effect since epinephrine did not alter the rectifier properties of iKK2, or the underlying inward leakage current, or the threshold for iNNa. The dose dependence of the voltage shift in the iKK2 activation curve was similar in 1.8 and 5.4 mM [Ca]o. The maximal voltage shift (usually ~20 mV) was produced by epinephrine concentrations of > 10-6 M. The half-maximal effect was evoked by 60 nM epinephrine, nearly an order of magnitude lower than required for half-maximal effect on the secondary inward current (Carmeliet and Vereecke, 1969). The β-blocker propranolol (10-6 M) prevented the effect of epinephrine (10-7M) but by itself gave no voltage shift. Epinephrine shifted the activation rate coefficient α8 to a greater extent than the deactivation rate coefficient β8, and often steepened the voltage dependence of the steady-state activation curve. These deviations from simple voltage shift behavior were discussed in terms of possible mechanisms of epinephrine's action on the iKK2 channel.  相似文献   

12.
《Phytochemistry》1986,25(2):303-310
Compounds which inhibit the natural metabolic inactivation of cytokinins are of considerable physiological significance. In this study, inhibitors have been found for two enzymes which form glucose and alanine conjugates of cytokinin bases, namely, cytokinin 7-glucosyltransferase and β-(9-cytokinin)alanine synthase. The most effective inhibitors found for the former enzyme were the cytokinin analogues 3-methyl-7-n-pentylaminopyrazolo[4,3-d]pyrimidine, which acted competitively (Ki, 22 μM), and the diaminopurine, 6-benzylamino-2-(2-hydroxyethylamino)-9-methylpurine (Ki, 3.3 μM). However these compounds were ineffective as inhibitors of the cytokinin-alanine synthase which was inhibited competitively by IAA (Ki 70 μM) and related compounds, especially 5,7-dichloro-IAA (Ki 0.4 μM). Certain urea derivatives were moderately effective inhibitors of the enzymes (Kica 100μM).  相似文献   

13.
J M Storey  K B Storey 《Cryobiology》1982,19(2):185-194
The kinetic properties of cytoplasmic glycerol-3-P dehydrogenase from the third instar larva of the gall fly, Eurosta solidaginis, were studied with emphasis on temperature effects on the enzyme and the regulation of enzyme activity during the synthesis of the cryoprotectant, glycerol. Isoelectrofocusing revealed one major and two minor forms of the enzyme with no alteration in the pI's or relative activities of the forms in larvae acclimated to 24 versus ?30 °C. Kinetic properties of the enzyme were also the same in larvae acclimated to high and low temperatures. Arrhenius plots were linear over a 30 to 0 °C range with an activation energy of 12,630 ± 185 cal/mol and a Q10 of 2.16. The Km for dihydroxyacetone-P was constant, at 50 μM, between 30 and 10 °C but increased by 75% at 0 °C; this increase may be a factor in the cessation of glycerol synthesis which occurs below 5 °C in this species. The Km(NADH), by contrast, was higher (5–6 μM) at 30 °C but decreased (3 μM) at lower temperatures. In the reverse direction, Km's were 340 μM for glycerol-3-P and 12 μM for NAD+. Effects of most inhibitors (of the forward reaction), glycerol-3-P (Ki = 2.4 mM), NAD+ (Ki = 0.2 mM), ATP, Mg·ATP, and Pi, were unaltered by assay temperature but ADP effects were potentiated by low temperature while citrate inhibition was greatest at high temperatures. Glycerol and sorbitol, which accumulate as cryoprotectants in E. solidaginis, had no significant effects on kinetic constants at any temperature but decreased the Vmax activity of the enzyme. Thermal inactivation studies showed an increased thermal stability of the larval enzyme compared to the homologous enzyme from rabbit muscle while added polyols stabilized enzyme activity, decreasing the rate of enzyme inactivation at 50 °C.  相似文献   

14.
A continuous application of ethylene (10 μl/l) and propylene (500 μl/l) to potato tubers (Solanum tuberosum L.) resulted in an upsurge of respiration and a concomitant rise in peroxides. When applied in 100% O2, the effect of ethylene and propylene on respiration and peroxide formation was augmented. Hydrogen cyanide (500 μl/l) mimicked the action of ethylene and propylene inducing a respiratory rise and a corresponding increase in peroxides. As with ethylene, the effect of HCN was augmented in high O2 tensions. The results support the suggestion that ethylene activates the cyanide-insensitive respiratory pathway.  相似文献   

15.
A number of methyl ketones have been prepared from l-leucine and found to be competitive inhibitors of Aeromonas aminopeptidase. These inhibitors were leucine methyl ketone (Ki 18 μm), leucine chloromethyl ketone (Ki 0.67 μm), and leucine bromomethyl ketone (Ki 0.20 μm), and the corresponding succinimido derivative (Ki 170 μm), succinamic acid derivative (Ki 6.9 μm) and phthalimido derivative (Ki 140 μm). Reversible inhibition was observed for all of the inhibitors tested, indicating that the active site of this enzyme is not alkylated or acylated by the nucleophile-sensitive components of some of the inhibitors.The chloromethyl ketones derived from l-leucine and l-phenylalanine were found to have the same relative binding constants as the substrates, l-leucinamide and l-phenylalaninamide.  相似文献   

16.
5'-Deoxy-5'-S-isobutylthioadenosine (SIBA), a synthetic analogue of S-adenosylhomocysteine, has been reported by others to inhibit a number of biological processes and these effects of SIBA have been attributed generally to inhibition of methyltransferases. However, the present studies with mouse lymphocytes show that SIBA also acts as a competitive inhibitor (Ki = 130 μM) of the high-affinity cyclic AMP phosphodiesterase and potentiates the cyclic AMP response of intact cells to several activators of adenylate cyclase. Moreover, SIBA has been found to inhibit lymphocyte-mediated cytolysis, a cellular function known to be sensitive to elevated lymphocyte levels of cyclic AMP, at concentrations (IC50 = 250 μM) similar to those which inhibit cyclic AMP phosphodiesterase. These results indicate the need for caution in attributing biological effects of SIBA singularly to inhibition of methyltransferases and suggest the possible agency of cyclic AMP in the mechanism of SIBA action.  相似文献   

17.
The specific activity of dihydroorotate dehydrogenase, catalysing the conversion of l-5,6-dihydroorotate (l-DHO) to orotate, in Leishmania mexicana mexicana was found to be 22.1 ± 3.5 nmole/hr/mg protein in the amastigote, and 28.7 ± 4.6 nmole/hr/mg protein in the promastigote. The enzyme was found to be soluble and to require molecular O2 for activity in both forms of the parasite. Oxygen utilisation was not mediated through the mitochondrial cytochrome-containing respiratory chain, and phenazine methosulphate and ferricyanide could be used as electron acceptors by the enzyme in both aerobic and anaerobic conditions. The enzyme from both amastigote and promastigote had a pH optimum of 7.0, and the Km values for l-DHO were 11.8 ± 4.9 and 2.3 ± 0.4 μM, respectively. The pyrimidine analogs 5-methylorotate (Ki = 8.8 μM) and 5-aminoorotate (Ki = 57 μM) were shown to be competitive inhibitors of the promastigote enzyme, as was the reaction product orotate (Ki = 10 μM).  相似文献   

18.
The effects of tetrahydroisoquinolinecarboxylic acids, derived from dopamine and various phenylpyruvates, on the enzyme tyrosine 3-monooxygenase have been investigated. Using a partially purified tyrosine 3-monooxygenase from bovine adrenal medulla, 3′,4′-deoxynorlaudanosolinecarboxylic acid was found to be a mixed inhibitor against the cofactor (Ki = 122 μM), equipotent with norepinephrine. Norlaudanosolinecarboxylic acid inhibited tyrosine 3-monooxygenase competitively with respect to the cofactor (Ki = 126 μM). When tyrosine 3-monooxygenase activity in catecholamine-free striatal homogenates was studied, again 3′,4′-deoxynorlaudanosolinecarboxylic acid (Ki = 40 μM) behaved as a mixed inhibitor whereas norlaudanosolinecarboxylic acid (Ki = 136 μM) was competitive. When the rat striatal tyrosine 3-monooxygenase was subjected to phosphorylating conditions in vitro, decreases in the Ki of norlaudanosolinecarboxylic acid and in that of 3′,4′-deoxynorlaudanosolinecarboxylic acid were observed, whereas the Ki of dopamine was increased. Tyrosine 3-monooxygenase activity in rat striatal synaptosomes was also inhibited by 3′,4′-deoxynorlaudanosolinecarboxylic acid (IC50 = 100 μm) and phosphorylating conditions affected only that inhibition produced by dopamine, but not that by the tetrahydroisoquinolinecarboxylic acids. The results are discussed in relation to the structure of the tetrahydroisoquinolinecarboxylic acids and their possible role in vivo.  相似文献   

19.
The influence of cytosolic pH (pHi) in controlling K+-channel activity and its interaction with cytosolic-free Ca2+ concentration ([Ca2+]i) was examined in stomatal guard cells ofVicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes and K+-channel currents were recorded under voltage clamp while pHi or [Ca2+]i was monitored concurrently by fluorescence ratio photometry using the fluorescent dyes 2,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Fura-2. In 10 mM external K+ concentration, current through inward-rectifying K+ channels (IK,in) was evoked on stepping the membrane from a holding potential of –100 mV to voltages from –120 to –250 mV. Challenge with 0.3-30 mM Na+-butyrate and Na+-acetate outside imposed acid loads, lowering pHi from a mean resting value of 7.64 ± 0.03 (n = 25) to values from 7.5 to 6.7. The effect on pHi was independent of the weak acid used, and indicated a H+-buffering capacity which rose from 90 mM H+/pH unit near 7.5 to 160 mM H+/pH unit near pHi 7.0. With acid-going pHi, (IK,in) was promoted in scalar fashion, the current increasing in magnitude with the acid load, but without significant effect on the current relaxation kinetics at voltages negative of –150 mV or the voltage-dependence for channel gating. Washout of the weak acid was followed by transient rise in pHi lasting 3–5 min and was accompanied by a reduction in (IK,in) before recovery of the initial resting pHi and current amplitude. The pHi-sensitivity of the current was consistent with a single, titratable site for H+ binding with a pKa near 6.3. Acid pHi loads also affected current through the outward-rectifying K+ channels (IK,out) in a manner antiparallel to (IK,in) The effect on IK, out was also scalar, but showed an apparent pKa of 7.4 and was best accommodated by a cooperative binding of two H+. Parallel measurements showed that Na+-butyrate loads were generally without significant effect on [Ca2+]i, except when pHi was reduced to 7.0 and below. Extreme acid loads evoked reversible increases in [Ca2+]i in roughly half the cells measured, although the effect was generally delayed with respect to the time course of pHi changes and K+-channel responses. The action on [Ca2+]i coincided with a greater variability in (IK,in) stimulation evident at pHi values around 7.0 and below, and with negative displacements in the voltage-dependence of (IK,in) gating. These results distinguish the actions of pHi and [Ca2+]i in modulating (IK,in) they delimit the effect of pHi to changes in current amplitude without influence on the voltage-dependence of channel gating; and they support a role for pHi as a second messenger capable of acting in parallel with, but independent of [Ca2+]i in controlling the K+ channels.Abbreviations BCECF 2,7-bis (2-carboxyethyl)-5(6)-carboxy fluorescein - [Ca2+]i cytosolic free Ca2+ concentration - gK ensemble (steady-state) K+-channel conductance - IK,out, IK,in outward-, inward-rectifying K+ channel (current) - IN current-voltage (relation) - Mes 2-(N-morpholinolethanesulfonic acid - pHi cytosolic pH - V membrane potential  相似文献   

20.
《Life sciences》1995,57(20):PL315-PL320
The naturally occurring indole alkaloid ibogaine is of interest because of its reported ability to block drug seeking behavior for extended periods. The compound also potentiates morphine-induced analgesia in mice and reduces certain naltrexone-precipitated withdrawal signs in morphine-dependent rats. Although these results might suggest ibogaine interaction with opioid receptors, previous receptor binding studies (Brain Res. 571:242–247, 1980) found that ibogaine had a Ki value of only 2 μM for the kappa opioid receptor and was virtually inactive in blocking mu and delta receptor binding (Ki >100 μM). The present investigation of ibogaine interaction with the mu opioid receptor from mouse forebrain labeled with [3H]-naloxone, however, yielded significantly more potent mu opioid Ki values. LIGAND analysis indicated that the data were best fit by a two site binding model, with Ki values of about 130 nM and 4 μM, reflecting ibogaine recognition of different agonist affinity states of the receptor. Inclusion of 100 mM NaCl in the assay to induce the agonist low affinity state of the receptor, reduced ibogaine's inhibition of [3H]-naloxone binding. These results suggest that ibogaine is an agonist at the mu opioid receptor with a Ki value of about 130 nM, potentially explaining ibogaine's antinociceptive effects as well as its reported reduction of opioid withdrawal symptoms and attenuation of drug seeking behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号