首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sectioned and polished specimen of the coral Archohelia vicksburgensis from the early Oligocene Byram Formation (~30 Ma) near Vicksburg, Mississippi, reveals 12 prominent annual growth bands. Stable oxygen isotopic compositions of 77 growth‐band‐parallel microsamples of original aragonite exhibit well‐constrained fluctuations that range between ?2.0 and ?4.8. Variation in δ18O of coral carbonate reflects seasonal variation in temperature ranging from 12 to 24 °C about a mean of 18 °C. These values are consistent with those derived from a bivalve and a fish otolith from the same unit, each using independently derived palaeotemperature equations. Mg/Ca and Sr/Ca ratios were determined for 40 additional samples spanning five of the 12 annual bands. Palaeotemperatures calculated using elemental‐ratio thermometers calibrated on modern corals are consistently lower; mean temperature from Mg/Ca ratios are 12.5 ± 1 °C while those from Sr/Ca are 5.8 ± 2.2 °C. Assuming that δ18O‐derived temperatures are correct, relationships between temperature and elemental ratio for corals growing in today's ocean can be used to estimate Oligocene palaeoseawater Mg/Ca and Sr/Ca ratios. Calculations indicate that early Oligocene seawater Mg/Ca was ~81% (4.2 mol mol?1) and Sr/Ca ~109% (9.9 mmol mol?1) of modern values. Oligocene seawater with this degree of Mg depletion and Sr enrichment is in good agreement with that expected during the Palaeogene transition from ‘calcite’ to ‘aragonite’ seas. Lower Oligocene Mg/Ca probably reflects a decrease toward the present day in sea‐floor hydrothermal activity and concomitant decrease in scavenging of magnesium from seawater. Elevated Sr/Ca ratio may record lesser amounts of Oligocene aragonite precipitation and a correspondingly lower flux of strontium into the sedimentary carbonate reservoir than today.  相似文献   

2.
The impact of growth temperature was evaluated for the fungal plant pathogen Mycoleptodiscus terrestris over a range of temperatures (20–36°C). The effect of temperature on biomass accumulation, colony forming units (cfu), and microsclerotia production was determined. Culture temperatures of 24–30°C produced significantly higher biomass accumulations and 20–24°C resulted in a significantly higher cfu. The growth of M. terrestris was greatly reduced at temperatures above 30°C and was absent at 36°C. The highest microsclerotia concentrations were produced over a wide range of temperatures (20–30°C). These data suggest that a growth temperature of 24°C would optimize the parameters evaluated in this study. In addition to growth parameters, we also evaluated the desiccation tolerance and storage stability of air-dried microsclerotial preparations from these cultures during storage at 4°C. During 5 months storage, there was no significant difference in viability for air-dried microsclerotial preparations from cultures grown at 20–30°C (>72% hyphal germination) or in conidia production (sporogenic germination) for air-dried preparations from cultures grown at 20–32°C. When the effect of temperature on germination by air-dried microsclerotial preparations was evaluated, data showed that temperatures of 22–30°C were optimal for hyphal and sporogenic germination. Air-dried microsclerotial preparations did not germinate hyphally at 36°C or sporogenically at 20, 32, 34, or 36°C. These data show that temperature does impact the growth and germination of M. terrestris and suggest that water temperature may be a critical environmental consideration for the application of air-dried M. terrestris preparations for use in controlling hydrilla.  相似文献   

3.
Variation of the distribution of bacteriochlorophyll a (BChl a) between external antenna (LH2) and core complexes (LH1 + RC) of the photosynthetic membrane of the sulfur bacterium Allochromatium minutissimum was studied at light intensities of 5 and 90 Wt/m2 in the temperature range of 12–43°C. The increase of light intensity was shown to result in a 1.5-to 2-times increase of a photosynthetic unit (PSU). PSU sizes pass through a maximum depending on growth temperature, and the increase of light intensity (5 and 90 Wt/m2) results in a shift of the maximal PSU size to higher temperatures (15 and 20°C, respectively). In the narrow temperature interval of ~14–17°C, the ratio of light intensity to PSU size is typical of phototrophs: lower light intensity corresponds to larger PSU size. The pattern of PSU size change depending on light intensity was shown to differ at extreme growth temperatures (12°C and over 35°C). The comparison of Alc. minutissimum PSU size with the data on Rhodobacter capsulatus and Rhodopseudomonas palustris by measuring the effective optical absorption cross-section for the reaction of photoinhibition of respiration shows a two to four times greater size of light-harvesting antenna for Alc. minutissimum, which seems to correspond to the maximum possible limit for purple bacteria.  相似文献   

4.
《Marine Micropaleontology》2010,74(3-4):178-189
Trace elements incorporated in planktonic foraminiferal test carbonate are commonly used as paleoproxies. For instance, Mg/Ca ratios are frequently used for reconstructing sea surface temperature and, together with the foraminiferal stable oxygen isotope ratios, are also used as paleosalinity proxy. Foraminiferal Sr/Ca ratios constitute another example of the application of trace elements in paleostudies since they may reflect the Sr/Ca values of seawater. However, over the past few decades it has been proven that the incorporation of trace elements in foraminiferal calcite is controlled by more than one environmental parameter. To quantify the effect of salinity on Mg and Sr incorporation planktonic foraminifera Globigerinoides sacculifer (sensu stricto) were grown in the laboratory under different environmental conditions. Laboratory experiments allowed us to separate a direct salinity effect from a possible independent impact through differences in the calcite saturation state of the seawater (Ω). Although the temperature effect is more important than the salinity effect, a change of 4 salinity units is equivalent to a 1 °C bias on Mg/Ca-based temperatures. This effect of salinity on Mg incorporation is minor. However, when using Mg/Ca-based temperatures in combination with foraminiferal δ18O to calculate salinity, it cannot be neglected. The present study shows salinity as the overriding control on Mg incorporation within the range of Ω studied (Ω between 5.25 and 6.50; [CO32−] between 218 and 270 μmol/kg) at a constant temperature of 26 °C. In contrast, Ω appears to be the main control on foraminiferal Sr incorporation (0.10 mmol/mol per 100 µmol/kg rise in [CO32−]), whereas salinity has a non significant influence on Sr/Ca.  相似文献   

5.
Rising temperatures (1.4–6 °C) due to climate change have been predicted to increase cyanobacterial bloom occurrences in temperate water bodies; however, the impacts of warming on tropical cyanobacterial blooms are unknown. We examined the effects of four different temperatures on the growth rates and microcystin (MC) production of five tropical Microcystis isolates (M. ichthyoblabe (two strains), M. viridis, M. flos-aquae, and M. aeruginosa). The temperature treatments are based on current temperature range in Singapore's reservoirs (27 °C and 30 °C), as well as projected mean (33 °C) and maximum temperatures (36 °C) based on tropical climate change estimates of +6 °C in air temperature. Increasing temperatures did not significantly affect the maximum growth rates of most Microcystis strains. Higher growth rates were only observed in one M. ichthyoblabe strain at 33 °C and M. flos-aquae at 30 °C where both were isolated from the same reservoir. MC-RR and MC-LR were produced in varying amounts by all four species of Microcystis. Raised temperatures of 33 °C were found to boost total MC cell quota for three Microcystis strains although further increase to 36 °C led to a sharp decrease in total MC cell quota for all five Microcystis strains. Increasing temperature also led to higher MC-LR:MC-RR cell quota ratios in M. ichthyoblabe. Our study suggests that higher mean water temperatures resulting from climate change will generally not influence growth rates of Microcystis spp. in Singapore except for increases in M. ichthyoblabe strains. However, toxin cell quota may increase under moderate warming scenarios depending on the species.  相似文献   

6.
  1. At temperature levels from 10 to 25°C animals from resting eggs produce subitaneous eggs independent on temperature. In contrast animals from subitaneous eggs produce subitaneous eggs dependent on temperature. At a high rate subitaneous eggs are only formed at temperature levels above 20°C.
  2. Below 10°C no development occurs in the juveniles. At temperatures of 30/22°C (24.7°C) the first subitaneous eggs are formed after 6–9 days, at 14/9°C (10.7°C) they are formed after 34 days. At different temperature levels the developmental rate of the young is from 10.5 to 42 days. One generation extends over 16.5 (30/22°C) to 75 days (14/9°C). The average egg production is 10–20 subitaneous eggs or 30–60 resting eggs. The maximum egg production of one individual is 50 subitaneous eggs or 84 resting eggs. 50% of the animals have just formed resting eggs, before the juveniles are hatched. Resting eggs in the first egg-batch are formed 6–20 days later than subitaneous eggs. The duration of life is between 65 (30/22°C) and 140 days (19/13°C).
  3. Young worms in resting eggs have a dormance period of at least 15–30 days.
At room temperatures (20°C) no juvenile in resting eggs hatches from water. By combining room and refrigerator (3.5°C) temperatures the hatching rate increases to a maximum of 85%. To reach a hatching rate of 50–65% the influence of low temperatures must be at least 30 days. At room temperatures 60% of the young in resting eggs hatch from mud covered with water. Combining high and low temperatures the hatching success is between 67 and 81%, where the highest percentage of the young may hatch at room temperature. Up to 90 days low temperatures cause a maximum hatching rate of 79%. It decreases to approximately 30% after 180 days. At high temperatures resting eggs preserved in 100% moist mud, survive for two months. By adding a period of low temperatures the hatching rate increases to a maximum of 52%. Low temperatures are survived for more than 6 months. Up to 30 days preservation at 3.5°C causes a maximum hatching rate of 61%, up to 12o days it decreases to 30%. At room temperature the young in resting eggs are not resistant against air-dried mud (30–40% rel. air moisture). Combining high and low temperatures air-dried mud is endured 1 month (hatching rate 5–14%). Preservation of 30–120 days at 3.5°C and 70% rel. air moisture result in a hatching rate of 43–61%. li]4. In the open air in Middle-Europe there occur 5–6 generations of M. ehrenbergii per life-cycle. The first generation hatches from resting eggs in May, where the production of subitaneous eggs is independent on temperature. All other generations up to October hatch from subitaneous eggs. The egg-production of those worms is dependent on environmental factors. In summer subitaneous egg production prevails, in autumn resting egg production. The abundance during the life-cycle is dependent on the number of animals which produce subitaneous eggs. Resting eggs are predestinated to endure periods of dryness and cold. The life-cycles of the species M. lingua and M. productum are different from those of M. ehrenbergii in length and in the number of generations. In both species 7 generations occur over 8 to 8.5 respectively 5.5 months. M. nigrirostrum only forms resting eggs. The life-cycle consists of one generation from February/March to May/June.  相似文献   

7.
Novak M. 1982. Histopathological changes in livers of mice infected with tetrathyridia of Mesocestoides corti and exposed to different environmental temperatures. International Journal for Parasitology12: 41–45. Observations on the histopathology of the liver of mice infected with Mesocestoides corti and kept for 20 days p.i. (post-infection) at low (5 ± 1°C), room (21 ± 1°C) or high (35 ± 1°C) temperature revealed that the degree of liver pathology was directly proportional to the intensity of liver infection, which in turn was the result of the temperature effect. The most severe pathological changes occured in the heavily infected organs of mice kept at low temperature, followed by less prominent changes in moderately infected livers of mice kept at room temperature and the smallest changes in lightly infected livers of mice kept at high temperature. The pathological changes in infected and uninfected livers of hosts exposed to different environmental temperatures are described and compared.  相似文献   

8.
The growth rate of five species of intertidal Fucales (Pelvetia canaliculata (L.) Dec. et Thur., Fucus spiralis L., Fucus vesiculosus L., Fucus serratus L., Ascophyllum nodosum (L.) Le Jolis) was measured at temperatures from 2.5 to 35 °C. An increase in temperature immediately causes a high growth rate, and during the first hour it increases linearly with temperature; at 35 °C it is 20 times the control at 7 °C. This acceleration of growth is based mainly on stored photosynthate. After the first few hours the growth rate decreases rapidly, particularly at the highest temperatures. After 2–3 weeks a temperature optimum below 17.5 °C is indicated. High temperatures, 30–35 °C, were lethal to all species, with a survival time corresponding to their vertical zonation in the natural habitat.  相似文献   

9.
Using controlled environmental growth chambers, whole plants of soybean, cv. ‘Clark’, were examined during early development (7–20 days after sowing) at both ambient (≈ 350 μL L–1) and elevated (≈ 700 μL L–1) carbon dioxide and a range of air temperatures (20, 25, 30, and 35 °C) to determine if future climatic change (temperature or CO2 concentration) could alter the ratio of carbon lost by dark respiration to that gained via photosynthesis. Although whole-plant respiration increased with short-term increases in the measurement temperature, respiration acclimated to increasing growth temperature. Respiration, on a dry weight basis, was either unchanged or lower for the elevated CO2 grown plants, relative to ambient CO2 concentration, over the range of growth temperatures. Levels of both starch and sucrose increased with elevated CO2 concentration, but no interaction between CO2 and growth temperature was observed. Relative growth rate increased with elevated CO2 concentration up to a growth temperature of 35 °C. The ratio of respiration to photosynthesis rate over a 24-h period during early development was not altered over the growth temperatures (20–35 °C) and was consistently less at the elevated relative to the ambient CO2 concentration. The current experiment does not support the proposition that global increases in carbon dioxide and temperature will increase the ratio of respiration to photosynthesis; rather, the data suggest that some plant species may continue to act as a sink for carbon even if carbon dioxide and temperature increase simultaneously.  相似文献   

10.
The kelp Undaria pinnatifida has a widespread latitudinal range in Japan, with populations exposed to very different temperature regimes. To test the hypothesis that U. pinnatifida exhibits genetic differentiation in its temperature response, juvenile sporophytes from a warmer location (Naruto, southern Japan) and two colder locations (Okirai Bay and Matsushima Bay, northern Japan) were collected and transplanted to long lines, cultivated under the environmental conditions in Matsushima Bay. These plants were bred using successive self-crossing methods for three generations and the characteristics of photosynthesis, growth, survival, and nitrogen contents of the third-generation juvenile sporophytes (2–3 cm) then were measured and compared. The plants from Naruto showed significantly higher photosynthetic activities and respiration than those from the northern populations at warmer temperatures of 20–35°C. The juvenile sporophytes from all three locations had similar growth rates below 18°C, but significant differences were observed at 18–24°C. The optimum temperatures for growth were 14–16°C in plants that originated from Okirai Bay and Matsushima Bay and 18°C in plants that originated from Naruto. These results reflected the differences in latitude. Dead plants were observed at high temperatures of 22 and 24°C in the northern population plants, whereas no plants from Naruto died. Juvenile sporophytes from Naruto exhibited the greatest capacity to accumulate high nitrogen reserves. These results suggest that the differences in high-temperature tolerance in juvenile U. pinnatifida sporophytes from geographically separated populations are due to genetic differentiation rather than phenotypic plasticity.  相似文献   

11.
The submersed aquatic vegetation (SAV) species Vallisneria americana Michx. (tape grass) is a valuable resource in the Caloosahatchee estuary and in many other aquatic systems. Given the variable nature of freshwater inflows and environmental conditions in the Caloosahatchee, it is necessary to understand how tape grass will respond to high and low salinity conditions at different light and temperature levels. Specifically, quantitative information is needed as input to modeling tools that can be applied to predict growth and survival of tape grass under a range of environmental conditions present in the estuary. We determined growth rates for small and medium sized tape grass plants obtained from the Caloosahatchee estuary, southwest coastal Florida, USA in freshwater (0.5 psu) under high (331 μE m?2 s?1) and low light (42 μE m?2 s?1) and at 10 psu under high light conditions. We ran six treatments at five temperatures spanning 13–32 °C for 8–9 weeks. The optimum temperature for growth was roughly 28 °C, with a minimum threshold temperature of 13 °C and a maximum threshold temperature of 38 °C. Plants grew fastest in freshwater, at high light and temperatures greater than 20 °C. The slowest growth rates were observed at 13 °C regardless of salinity, light or plant size. Our results suggest that tape grass growth is strongly influenced by water temperature and that additional stressors such as low light and elevated salinity can reduce the range of temperature tolerance, especially at colder water temperatures.  相似文献   

12.
The ecology of the Central Asian blunt-nosed viper (Macrovipera lebetina turanica) inhabiting the Nuratau Crest of Uzbekistan is described. The temperature conditions of the environment and the spatialtemporal structure of the viper activity are represented, which made it possible to find some of thermobiological characteristics. The temperature diapason of full activity of this viper constitutes approximately 17–34°C. The temperature of thermostabilization is in the range of 26–31°C, nocturnal temperatures are elevated from 9–15°C to 18–23°C in spring and summer, respectively, and diurnal body temperatures are decreased from 18–22°C to 10–15°C. Feeding and digestion are normal in blunt-nosed vipers at 25°C, which is below the diurnal temperature variation. In spring, the light phase duration is rapidly increased from 3–6 h to 14 h or more. This length of time and the large diurnal variation in the body temperature from 18°C to 20–22°C facilitate active and efficient coupling. Later, the diurnal body temperature is decreased to 13–18°C, which facilitates successful recovery in males and pregnancy in females. Plots for the average viper body temperature in different seasons are represented. The thermobiological characteristics of the bluntnosed viper of Macrovipera lebetina ěrnovi are similar to M. l. turanica.  相似文献   

13.
Three species of diatoms, Skeletonema costatum (Grev.) Cleve, Thalassiosira gravida Cleve, and T. pseudonana (Hustedt) Hasle et Heimdal, were grown in in situ dialysis culture in the Trondheimsfjord at depths of 0.5 and 4 m. The rates of growth and the chemical composition of exponentially growing cells were monitored and related to seasonal changes in illumination and temperature. Functions correlating growth rate with temperature were deduced. Growth took place from February to November. During this period temperature ranged from ?1 to 16°C, the average photon flux density (ifI) (per 24 h) from 9 to 570 μE · m?2 · s?1 (0.5 m depth), and the length of the days (I > 1 μE · m?2 · s?1) from 6 to 24 h. Light-limited growth was evident when the product of the average daily light and the chlorophyll/N ratio was < 10; this occurred mostly in early spring and late autumn. Peak densities (> 800 for the Thalassiosira spp. and > 1300–1400 μE · m?2 · s?1 for Skeletonema) seem to inhibit growth. The highest rates recorded were ≈1.6 doubl. · day?1 (July, 15–16°C).The three species exhibit different ecological behaviour. Skeletonema is eurythermal (Q10 = 1.8), whereas Thalassiosira pseudonana favours high temperatures, and T. gravida temperatures < 10°C. Moreover, Skeletonema has generally less chlorophyll and more phosphorus and ATP (≈ 1.4 ×) than the other two species. In Skeletonema, the ATP level seems related to the light-governed growth rate, and independent of temperature. In Thalassiosira no such correlation was found.  相似文献   

14.
The effect of a wide range of temperatures (?15 and 60°C) in darkness or under strong irradiation [1,600 μmol(photon) m?2 s?1] on quantum yield of photosystem II photochemistry and xanthophyll cycle pigments was investigated in a tropical fruit crop (Musa sp.) and a temperate spring flowering plant (Allium ursinum L.). In darkness within the nonlethal thermal window of A. ursinum (from ?6.7 to 47.7°C; 54.5 K) and of Musa sp. (from ?2.2°C to 49.5°C; 51.7 K) maximal quantum yield of PSII photochemistry (Fv/Fm) was fairly unaffected by temperature over more than 40 K. At low temperature Fv/Fm started to drop with ice nucleation but significantly only with initial frost injuries (temperature at 10% frost damage; LT10). The critical high temperature threshold for PSII (Tc) was 43.8°C in A. ursinum and 44.7°C in Musa sp. Under strong irradiation, exposure to temperatures exceeding the growth ones but being still nonlethal caused photoinhibition in both species. Severity of photoinhibition increased with increasing distance to the growth temperature range. ΔF/Fm′ revealed distinctly different optimum temperature ranges: 27–36°C for Musa sp. and 18–27°C for A. ursinum exceeding maximum growth temperature by 2–7 K. In both species only at temperatures > 30°C zeaxanthin increased and violaxanthin decreased significantly. At nonlethal low temperature relative amounts of xanthophylls remained unchanged. At temperatures > 40°C β-carotene increased significantly in both species. In Musa sp. lutein and neoxanthin were significantly increased at 45°C, in A. ursinum lutein remained unchanged, neoxanthin levels decreased in the supraoptimal temperature range. In darkness, Fv/Fm was highly temperature-insensitive in both species. Under strong irradiation, whenever growth temperature was exceeded, photoinhibition occurred with xanthophylls being changed only under supraoptimal temperature conditions as an antiradical defence mechanism.  相似文献   

15.
Effects of fluctuations in habitat temperature (18–30°) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrata are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40 °C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR (≥3) and P/O ratio (1.4–2.7) at the temperature range of 15–25 °C were within the normal range reported for other animals (3–10 for RCR and 1.5–3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18 °C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40 °C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondrial respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments.  相似文献   

16.
Isolates ofFusarium poae, F. sporotrichioides, F. sporotrichioides var.chlamydosporum andF. sporotrichioides var.tricinctum made their best growth on PDA substrates at 24 °C, but good growth was also made at 18 °C and 30 °C. At 35 °C growth made by theF. sporotrichioides var.chlamydosporum was quite good, and superior to that of the other fungi. Moderate growth was made by all fungi at 12 °C and byF. sporotrichioides var.tricinctum also at 6 °C, while growth of the other fungi at that temperature was slight. At low temperatures toxic isolates of all butF. sporotrichioides grew better than non-toxic isolates, and growth of all isolates usually was better in light than in darkness up to temperatures of 18 °C. F. poae andF. sporotrichioides produced highest toxicity on rabbit skins when grown at 5–8 °C,F. sporotrichioides var.tricinctum at 15–20 °C. Darkness always favoured toxin development at all temperatures. In a comparison of 3 liquid substrates, overall toxin production was stronger on a starch substrate than on Czapek's or carbohydrate-peptone substrates. Among grain substrates, barley gave highest overall toxicity, which was again favoured by darkness.F. poae isolates were most toxic when derived from soil,F. sporotrichioides isolates when derived from barley. Further tests with 8 liquid substrates confirmed thatF. poae andF. sporotrichioides produce stronger toxicity at 8 °C than at 25 °C, and substrates favoured toxin production at pH 5.6 more than at pH 3.8 or 7.2. At pH 5.6 the isolates induced marked changes in the pH level of the substrate on which they grew. No relation was found to exist between the vigour of growth made by any of these fungi under various environmental conditions and the severity of the toxiç reaction their extracts produced on rabbit skins.  相似文献   

17.
Traditional temperature-sensitive systems use either heat shock (40–42 °C) or cold shock (15–23 °C) to induce gene expression at temperatures that are not the optimal temperature for host cell growth (37 °C). This impacts the overall productivity and yield by disturbing cell growth and cellular metabolism. Here, we have developed a new system which controls gene expression in Escherichia coli at more permissive temperatures. The temperature-sensitive cI857-P L system and the classic lacI-P lacO system were connected in series to control the gene of interest. When the culture temperature was lowered, the thermolabile cI857 repressor was activated and blocked the expression of lacI from P L. Subsequently, the decrease of LacI derepressed the expression of gene of interest from P lacO . Using a green fluorescent protein marker, we demonstrated that (1) gene expression was tightly regulated at 42 °C and strongly induced by lowering temperature to 25–37 °C; (2) different levels of gene expression can be induced by varying culture temperature; and (3) gene expression after induction was sustained until the end of the log phase. We then applied this system in the biosynthesis of acetoin and demonstrated that high yield and production could be achieved using temperature induction. The ability to express proteins at optimal growth temperatures without chemical inducers is advantageous for large-scale and industrial fermentations.  相似文献   

18.
The relationship between distribution boundaries and temperature responses of some North AtlanticCladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group (C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group (C. prolifera: isolate from Corsica;C. coelothrix: isolates from Brittany and Curaçao; andC. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20–30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C.C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests thatC. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests thatC. prolifera, C. coelothrix andC. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10–15°C interval.C. prolifera andC. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences in cold tolerance accounting for differences in their distribution patterns. On the American coast, species were probably restricted by lethal winter temperatures in the nearshore and, in some cases, by the absence of suitable hard substrates in the more equable offshore waters. Isolates from two points along the European coast (Brittany, Corsica) ofC. laetevirens showed no marked differences in their temperature tolerance but the Caribbean and European isolates ofC. coelothrix differed markedly in their tolerance to low temperatures, the lethal limit of the Caribbean isolate lying more than 5°C higher (at ca 5°C).  相似文献   

19.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

20.
The effect of light and temperature on the growth and photosynthesis of the Japanese agarophyte, Gracilariopsis chorda (Gracilariaceae, Rhodophyta), was determined to better understand its physiology so that we could identify candidates for mass cultivation. Above the photosynthetic active radiation of 66 μmol photons m?2 s?1, photosynthetic rates saturated for all strains that were collected from six different locations (Hokkaido, Chiba, Tokushima, Saga, Kagoshima, and Okinawa); furthermore, either photosynthesis or growth was observed at all temperature treatments examined in our study (4–32 °C for photosynthesis, 16–32 °C for growth experiments). We identified a temperature range for optimal photosynthesis and growth, which occurred within 20.1–29.1 °C and roughly correlated with the water temperatures of the collection locations and strongly suggests that this species tolerates a wide variety of water temperature. In particular, the Kagoshima strain had the widest range of optimal temperatures (20.8–29.1 °C), whereas the Saga strain had the narrowest range (23.1–27.3 °C). It is important to note that all the optimal temperature ranges overlapped among the strains; therefore, no definitive distinction can be determined. The broad tolerance to temperatures commonly observed from northern to southern Japan suggests that the cultivation of this species should succeed during spring to summer in the majority of the coastal regions in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号