首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors (1,2) discovered a two-membrane system in the head of the femur and its distal condyles (Copf et al. 1,2,3). The one membrane serves the hydrodynamic principle. It was termed the CC membrane. According to the provisional opinion of the authors, the second membrane, which is designated as Cc membrane, serves for exchange of fluid supply of energy and information flow in view of its original perforations. In contrast to the head of the femur, CC membranes are more numerous. The Cc membranes are also more numerous here, but in some cases differ in terms of their elongate form. The first impression indicates a very much more pronounced component of the hydrodynamic system in the region of the femoral condyle.  相似文献   

2.
Summary Static polarization and differential polarized phase fluorimetry studies on rat renal cortical brush border (BBM) and basolateral membranes (BLM) were undertaken to determine the membrane components responsible for differences in BBM and BLM fluidity, whether these differences were due to the order or dynamic components of membrane fluidity and if a fluidity gradient existed within the bilayer. Surface membrane proteins rigidified both BBM and BLM fluidity. Neutral lipid extraction, on the other hand, caused a larger decrease in BBM than BLM fluorescence polarization (0.104vs. 0.60,P<0.01) using diphenyl hexatriene (DPH). Cholesterol addition to phospholipid fractions restored membrane fluidity to total lipid values in both BBM and BLM phospholipids. The response to cholesterol in the BBM was biphasic, while the BLM response was linear. Lateral mobility, quantitated using dipyrenylpropane, was similar in both BBM and BLM fractions at 35°C. BBM and BLM differed primarily in the order component of membrane fluidity as DPH-limiting anisotropy (r ) (0.212vs. 0.154,P<0.01) differed markedly between the two membrane fractions. The two membrane components also differed with respect to 2 and 12-anthroyloxy stearate (2-AS, 12-AS) probes, indicating a difference in the dynamic component of membrane fluidity may also be present. DPH and 12-As probes were also used to quantitate inner core membrane fluidity and showed the BBM was less fluid than the BLM for intact membranes, total lipid extracts and phospholipids. Results obtained using the surface membrane probes trimethylammonium-DPH (TMA-DPH) and 2-AS suggested a fluidity gradient existed in both BBM and BLM bilayers with the inner core being more fluid in both membranes. These data indicate cholesterol is in large part responsible for fluidity differences between BBM and BLM and that these membranes, while clearly differing in the order component of membrane fluidity, may also difer in the dynamic component as well.  相似文献   

3.
Bovine submandibular glands were homogenized and fractionated under conditions which yielded subcellular fragments from mainly one cell type, the mucous acinar cell, as judged by morphological analysis of the glands before and after homogenization. The majorN-acetylneuraminate-9(7)-O-acetyltransferase activity was detected in the cytosolic fraction, a result supported by the high specific radioactivity of free sialic acids isolated after [14C]acetate-labelling experiments. Separation of membranes on a Ficoll density gradient gave six fractions which were analyzed biochemically and morphologically. The particulate activities of acetyltransferase and sialyltransferase were found in fractions containing smooth and mitochondrial membranes. MembraneO-acetyl sialic acids were present at the highest levels in these fractions and also had the highest specific radioactivity after [14C]acetate-labelling experiments. Significant amounts of theO-acetyltransferase activity also occur in the cytosol and are consistent with a model ofO-acetyl sialic acid biosynthesis involving both cytosolic and smooth membrane sites ofO-acetylation.  相似文献   

4.
Pathogenic and commensal Gram‐negative bacteria produce and release outer membrane vesicles (OMVs), which present several surface antigens and play an important role for bacterial pathogenesis. OMVs also modulate the host immune system, which makes them attractive as vaccine candidates. At the cellular level, OMVs are internalized by macrophages and deliver lipopolysaccharide (LPS) into the host cytosol, thus activating the caspase‐11 non‐canonical inflammasome. Here, we show that OMV‐induced inflammasome activation requires TLR4‐TRIF signaling, the production of type I interferons, and the action of guanylate‐binding proteins (GBPs), both in macrophages and in vivo. Mechanistically, we find that isoprenylated GBPs associate with the surface of OMVs or with transfected LPS, indicating that the key factor that determines GBP recruitment to the Gram‐negative bacterial outer membranes is LPS itself. Our findings provide new insights into the mechanism by which GBPs target foreign surfaces and reveal a novel function for GBPs in controlling the intracellular detection of LPS derived from extracellular bacteria in the form of OMVs, thus extending their function as a hub between cell‐autonomous immunity and innate immunity.  相似文献   

5.
Abstract

Chitosans have attracted the interest of the medicinal chemists as mucous adhesive excipients capable of increasing the residence period of drugs inside mucous membranes. Their interactions with the oligomeric mucus gel-forming glycoprotein mucin 2 throughout the intestine determine the level of mucus adhesion, which can be potentiated by the insertion of thiolated substituents on its structure. In this work, we studied the interactions between the mucin 2 and thiolated chitosans, ranking them based on the free energy of receptor–ligand interaction. Results show that when non-bonded interactions were considered, the chitosan-N-acetyl cysteine (AC-Chi) equaled itself in terms of free energy of bonding to the hexamer chitosan-thiobutylamidine (TBA-Chi). The unmodified chitosan (U-Chi) displayed the second greatest ΔG(binding), showing that the level of mucoadhesion of thiolated chitosans has assumed a diverse order, when considering only the non-binding interactions.

Communicated by Ramaswamy H. Sarma  相似文献   

6.
Plant plastids generate signals, including some derived from lipids, that need to be mobilized to effect signaling. We used informatics to discover potential plastid membrane proteins involved in microbial responses in Arabidopsis (Arabidopsis thaliana). Among these are proteins co-regulated with the systemic immunity component AZELAIC ACID INDUCED 1, a hybrid proline-rich protein (HyPRP), and HyPRP superfamily members. HyPRPs have a transmembrane domain, a proline-rich region (PRR), and a lipid transfer protein domain. The precise subcellular location(s) and function(s) are unknown for most HyPRP family members. As predicted by informatics, a subset of HyPRPs has a pool of proteins that target plastid outer envelope membranes via a mechanism that requires the PRR. Additionally, two HyPRPs may be associated with thylakoid membranes. Most of the plastid- and nonplastid-localized family members also have pools that localize to the endoplasmic reticulum, plasma membrane, or plasmodesmata. HyPRPs with plastid pools regulate, positively or negatively, systemic immunity against the pathogen Pseudomonas syringae. HyPRPs also regulate the interaction with the plant growth-promoting rhizobacteria Pseudomonas simiae WCS417 in the roots to influence colonization, root system architecture, and/or biomass. Thus, HyPRPs have broad and distinct roles in immunity, development, and growth responses to microbes and reside at sites that may facilitate signal molecule transport.

Hybrid proline-rich proteins that reside at plastid membranes and other sites have broad and distinct roles in immunity, development, and growth responses to microbes.  相似文献   

7.
Summary The outer mitochondrial membranes of all organisms so far examined contain a protein which forms voltage-dependent anion selective channels (VDAC) when incorporated into planar phospholipid membranes. Previous reports have suggested that the yeast (Saccharomyces cerevisiae) outer mitochondrial membrane component responsible for channel formation is a protein of 29,000 daltons which is also the major component of this membrane. In this report, we describe the purification of this 29,000-dalton protein to virtual homogeneity from yeast outer mitochondrial membranes. The purified protein readily incorporates into planar phospholipid membranes to produce ionic channels. Electrophysiological characterization of these channels has demonstrated they have a size, selectivity and voltage dependence similar to VDAC from other organisms. Biochemically, the purified protein has been characterized by determining its amino acid composition and isoelectric point (pI). In addition, we have shown that the purified protein, when reconstituted into liposomes, can bind hexokinase in a glucose-6-phosphate dependent manner, as has been shown for VDAC purified from other sources. Since physiological characterization suggests that the functional parameters of this protein have been conserved, antibodies specific to yeast VDAC have been used to assess antigenic conservation among mitochondrial proteins from a wide number of species. These experiments have shown that yeast VDAC antibodies will recognize single mitochondrial proteins fromDrosophila, Dictyostelium andNeurospora of the appropriate molecular weight to be VDAC from these organisms. No reaction was seen to any mitochondrial protein from rat liver, rainbow trout,Paramecium, or mung bean. In addition, yeast VDAC antibodies will recognize a 50-kDa mol wt protein present in tobacco chloroplasts. These results suggest that there is some antigenic as well as functional conservation among different VDACs.  相似文献   

8.
Abstract

Steady-state fluorescence anisotropy and dynamic light scattering (DLS) were used to determine the thermotropic properties of lipid systems that act as models for bacterial membranes of Yersinia kristensenii and Proteus mirabilis. Lipid proportions of PE:PG:CL of 0.60:0.20:0.20 and 0.80:0.15:0.05, were used in order to mimic these two membranes respectively. We observed that the introduction of cardiolipin (CL) as a third lipid component of any PE:PG mixture, changes the system's properties considerably. The results obtained by these two techniques show that the main transition temperatures obtained are undoubtedly CL-dependent. Additionally AFM experiments were performed and these results show that even at small concentration CL produces important changes not only in the membrane thermotropic properties, but also in the bilayer structure. In summary, we were able to compare how low and high CL concentration affect bacterial membrane model system properties which can provide a further explanation for the different antibiotic susceptibilities reported for Y. kristensenii and P. mirabilis.  相似文献   

9.
For translocation across the cell envelope of Gram-negative bacteria, substances have to overcome two permeability barriers, the inner and outer membrane. Channel-tunnels are outer membrane proteins, which are central to two distinct export systems: the type I secretion system exporting proteins such as toxins or proteases, and efflux pumps discharging antibiotics, dyes, or heavy metals and thus mediating drug resistance. Protein secretion is driven by an inner membrane ATP-binding cassette (ABC) transporter while drug efflux occurs via an inner membrane proton antiporter. Both inner membrane transporters are associated with a periplasmic accessory protein that recruits an outer membrane channel-tunnel to form a functional export complex. Prototypes of these export systems are the hemolysin secretion system and the AcrAB/TolC drug efflux pump of Escherichia coli, which both employ TolC as an outer membrane component. Its remarkable conduit-like structure, protruding 100 ? into the periplasmic space, reveals how both systems are capable of transporting substrates across both membranes directly from the cytosol into the external environment. Proteins of the channel-tunnel family are widespread within Gram-negative bacteria. Their involvement in drug resistance and in secretion of pathogenic factors makes them an interesting system for further studies. Understanding the mechanism of the different export apparatus could help to develop new drugs, which block the efflux pumps or the secretion system. Electronic Publication  相似文献   

10.
Summary Brush border membranes were isolated from tilapia (Oreochromis mossambicus) intestine by the use of magnesium precipitation and differential centrifugation. The membrane preparation was enriched 17-fold in alkaline phosphatase. The membranes were 99% right-side-out oriented as indicated by the unmasking of latent glyceraldehyde-3-phosphate dehydrogenase and acetylcholine esterase activity by detergent treatment. The transport of Ca+2 in brush border membrane vesicles was analyzed. A saturable and a nonsaturable component in the uptake of Ca+2 was resolved. The saturable component is characterized by a K m much lower than the Ca+2 concentrations predicted to occur in the intestinal lumen. The nonsaturable component displays a Ca+2 permeability too high to be explained by simple diffusion. We discuss the role of the saturable component as the rate-limiting step in transmembrane Ca+2 movement, and suggest that the nonsaturable component reflects a transport mechanism operating well below its level of saturation.The authors wish to thank Tom Spanings for his superb organization of fish husbandry, and Maarten de Jong (Dept. of Physiology, Faculty of Medicine, University of Nijmegen) for making the automated stopped-flow apparatus available to us.  相似文献   

11.
大部分感染都起源于黏膜表面,而黏膜免疫的主要抗体是分泌型免疫球蛋白A(SIgA),它能有效地阻断病原体的感染和侵入。SIgA是由1个IgA二聚体、1条J链和1个分泌片(SC)共价结合构成的异源十聚体。IgA和J链由活化B细胞产生,SC则由黏膜上皮细胞合成。SIgA分子具有极高的稳定性和极强的抗微生物活性。我们就SIgA合成的相关机制、IgA单体和SIgA的结构与功能,以及重组SIgA的研究进展简要综述。  相似文献   

12.
13.
The Rhodospirillum rubrum pyridine dinucleotide transhydrogenase system is comprised of a membrane-bound component and an easily dissociable soluble factor. Active transhydrogenase complex was solubilized by extraction of chromatophores with lysolecithin. The membrane component was also extracted from membranes depleted of soluble factor. The solubilized membrane component reconstituted transhydrogenase activity upon addition of soluble factor. Various other ionic and non-ionic detergents, including Triton X-100, Lubrol WX, deoxycholate, and digitonin, were ineffectual for solubilization and/or inhibited the enzyme at higher concentrations. The solubilized membrane component was significantly less thermal stable than the membrane-bound component. None of the pyridine dinucleotide substrate affected the thermostability of the solubilized membrane-bound component, whereas NADP+ and NADPH afforded protection to membrane-bound component. NADPH stimulated trypsin inactivation of membrane-bound component to a greater extent than NADP+, but inactivation of solubilized membrane component was stimulated to the same extent by both pyridine dinucleotides. The solubilized membrane component appears to have a slightly higher affinity for soluble factor than does the membrane-bound component.Abbreviations AcPyAD+ oxidized 3-acetylpyridine adenine dinucleotide - BChl bacteriochlorophyll - CT-particles chromatophores depleted of soluble transhydrogenase factor and devoid of transhydrogenase activity This work was supported by Grant GM 22070 from the National Institutes of Health, United States Public Health Service. Paper I of this series is R. R. Fisher et al. (1975)  相似文献   

14.
Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.  相似文献   

15.
It is now well established that dietary lipids are incorporated into macrophage and T-cell membrane microdomains, altering their structure and function. Within cell membranes, there are specific detergent-resistant domains in which key signal transduction proteins are localized. These regions are classified as “lipid rafts”. Rafts are composed mostly of cholesterol and sphingolipids and therefore do not integrate well into the fluid phospholipid bilayers causing them to form microdomains. Upon cell activation, rafts compartmentalize signal-transducing molecules, thus providing an environment conducive to signal transduction. In this review, we discuss recent novel data describing the effects of n−3 PUFA on alterations in the activation and functions of macrophages and T-cells. We believe that the modifications in these two disparate immune cell types are linked by fundamentally similar changes in membrane lipid composition and transmembrane signaling functions. We conclude that the outcomes of n−3 PUFA-mediated immune cell alterations may be beneficial (e.g., anti-inflammatory) or detrimental (e.g., loss of microbial immunity) depending upon the cell type interrogated.  相似文献   

16.
Cytochromes b, c, d, and o were identified by spectroscopic analysis of respiratory membrane fragments from Vitreoscilla sp., strain C1. Carbon monoxide difference spectra of the reduced membranes had absorption maxima at 416, 534, and 571 nm (ascribed to cytochrome o) and 632 nm (cytochrome d). Derivative spectra of the pyridine hemochromogen spectra of the membranes identified the presence of b- and c-type cytochromes in Vitreoscilla. The cyanide binding curve of the membranes was biphasic with dissociation constants of 2.14 mM and 10.7 mM which were assigned to cytochrome o and cytochrome d, respectively. Membranes bound carbon monoxide with dissociation constant 3.9 M, which was assigned to cytochrome o. Cytochrome c 556 and a NADH-p-iodonitrotetrazolium violet reductase component were partially purified from Vitreoscilla membranes.Abbreviations INT p-iodonitrotetrazolium violet - RMF respiratory membrane fragments - K d dissociation constant - CHAPS 3-[(3-cholamido propyl) dimethylammonio]-1-propanesulfonate - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

17.
Phosphoinositide metabolism in the plasma membrane is linked to transmembrane signal transduction. In this study we have investigated some physical properties (e.g. molecular order and dynamics) of phosphatidylinositol (PI) in various membrane preparations by time-resolved fluorescence techniques, using a synthetic PI derivate with a cis-parinaroyl chain on the sn-2 position. Phospholipid vesicles, normal and denervated rat skeletal muscle sarcolemmal membranes, and acetylcholine receptor rich membrances from Torpedo marmorata were investigated both at 4°C and 20 °C. For comparison we have also included 2-parinaroyl-phosphatidylcholine (PC) in this study. The fluorescent lipids were incorporated into the membrane preparations by way of specific phospholipid transfer proteins, to ensure an efficient and non-perturbing insertion of the lipid-probes. In the Torpedo membranes the order parameters measured for the parinaroyl derivatives of both PC and PI were higher than in phospholipid vesicles. For the Torpedo membrane preparations the acyl chain order for the PI was lower than that for PC, whereas the opposite was true for the vesicles. This inversion strongly suggests that PI has different interactions with certain membrane components as compared to PC. This is also suggested by the significantly higher rate of restricted rotation of PI as compared to PC. In contrast to the order parameters, the correlation times were almost identical for both probes and showed little difference between vesicles and the Torpedo membranes. In contrast to Torpedo membranes, the time-dependent fluorescence anisotropy of the two lipid probes in the sarcolemmal membranes showed, after an initial fast decay, a subsequent gradual increase. This phenomenon was satisfactorily analyzed by assuming two populations of probe lipids with distinct lifetimes, rotational correlation times and molecular order. The order parameter of the population with a short lifetime compared with that of phospholipid vesicles, whereas the population with a long lifetime agreed with that of the Torpedo membranes.Abbreviations PI phosphatidylinositol - PC phosphatidylcholine - PA phosphatidic acid - PE phosphatidylethanolamine - PS phosphatidylserine, PnA, cis-parinaric acid: cis,trans,trans,cis-9,11,13,15-octadecatetraenoic acid - 2-PnA-PC 1-acyl, 2-parinaroyl-PC - 2-PnA-PI 1-acyl,2-parinaroyl-PI - DPH diphenylhexatriene - POPOP 1,4-di[2-(5-phenyloxazolyl)]-benzene - NMR nuclear magnetic resonance - ESR electron spin resonance - I parallel fluorescence intensity component - I perpendicular fluorescence intensity component - SET-buffer 0.25 M Sucrose, 1 mM EDTA, 10mM Tris-HCl, pH 7.4  相似文献   

18.
A set of plasmids containing portions of the Col El plasmid were transformed into recA cells. These cells, after UV irradiation, only incorporate labelled amino acids into plasmid-encoded proteins. UV-irradiated cells label a 14.5 kDa band if they are phenotypically immune to colicin E1, and do not contain this band if they are sensitive to colicin E1. We conclude that the 14.5 kDa protein is the colicin E1 immunity protein. When the inner and outer membranes of these cells are fractionated, the labelled band appears in the inner membrane. The immunity protein must be an intrinsic inner membrane protein, confirming the predictions made by hydrophobicity calculations from primary sequence data.MaxicellCol El plasmidImmunity proteinHydrophobicity calculation  相似文献   

19.
Carbohydrates in the mucous cells of the epidermis of the fish Mastacembelus pancalus were studied by means of electron-microscopic cytochemical methods using physical development procedures. Three types of mucous cells (types A-C) were differentiated on the basis of the reactivities of the secretory products elaborated by them. The carbohydrate contents of mucous globules predominantly comprised sulfate esters and traces of oxidizable vicinal diols in type-A cells, oxidizable vicinal diols in type-B cells, and moderate amounts of both sulfate esters and oxidizable vicinal diols in type-C cells. Glycogen particles were also found to occur in the cytoplasm of these cells, and glycoproteins containing oxidizable vicinal diols were visualized in Golgi cisternae, rough endoplasmic reticulum, nuclear envelopes, and plasma membranes. In the type-A and type-B cells situated in the superficial layers of the epidermis, extensive cisternae of the Golgi apparatus and copious rough endoplasmic reticulum suggested the active syntheses of secretory contents, in contrast to the type-C mucous cells, which displayed poor development of these organelles, in the deeper layers.  相似文献   

20.
Studies of cellular and humoral immunity of the blow fly Calliphora vicina maggot revealed three groups of pharmacologically active substances that are perspective for use in medicine: alloferons, allocations, and antimicrobial peptides. Alloferons are the C. vicina peptide family selectively stimulating cytotoxic activity of the natural killer cells, an evolutionary ancient group of immunocompetent cells playing the key role in antiviral and antitumoral immunity of mammals. Alloferons are used in medicine for treatment of herpes viral infections and viral hepatitis B. Allostatins are synthetic peptides combining structural characteristics both of alloferons and of some mammalian immunoactive proteins. Allostatins, like alloferons, stimulate cytotoxic activity of the natural killer cells and interferon production, but, unlike alloferons, have pronounced adjuvant properties, i.e., the ability to enhance immune recognition of alien (non-self) antigens. At present, allostatins are used to enhance resistance of skin and mucous membranes to viral infections; in future, they might find use in immunotherapy of cancer and other diseases. One more group of proteins and peptides of the C. vicina maggot immune response, which are promising for use in medicine, serve antimicrobial peptides. The study of the preparation whose composition inclusdes defensins, cecropins, diptericins, and proline-rich peptides of C. vicina show that this type of drugs has great potential for treatment and prevention of antibiotic-resistant infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号