首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solid fraction (SF) of pig slurry obtained in the first stage of aerobic slurry treatment was amended with 1 and 2 % zeolite (clinoptilolite) and stored for 12 weeks under anaerobic conditions or with turning after 3 and 6 weeks of storage. In addition to that SF was mixed with 2 % zeolite, 50 % (V/V) sawdust, and both sawdust and zeolite, and stored for 6 weeks with turning after 1 and 3 weeks. Plate counts of psychrophilic, mesophilic, coliform and fecal coliform bacteria, determined during the storage, corresponded to the development of temperature, in the core of the substrates. An effect of amendment of SF with zeolite and sawdust on plate counts of selected bacteria was observed, dependent on the zeolite dose. The thermophilic phase was not reached in any of the investigated substrates. The populations of fecal coliforms in the substrate amended with 1 % zeolite and turned after 3 and 6 weeks decreased after 11 weeks down to 500 CFU/g substrate. Presented at theInternational Conference on Recent Problems in Microbiology and Immunology, Košice (Slovakia), 13–15 October 1999.  相似文献   

2.
The effect of different natural zeolite concentrations on the anaerobic digestion of piggery waste was studied. Natural zeolite doses in the range 0.2-10 g/l of wastewater were used in batch experiments, which were carried out at temperatures between 27 degrees C and 30 degrees C. Total chemical oxygen demand (COD), total and volatile solids, ammonia and organic nitrogen, pH, total volatile fatty acids (TVFA), alkalinity (Alk) and accumulative methane production were determined during 30 days of digestion. The anaerobic digestion process was favored by the addition of natural zeolite at doses between 2 and 4 g/l and increasingly inhibited at doses beyond 6 g/l. A first-order kinetic model of COD removal was used to determine the apparent kinetic constants of the process. The kinetic constant values increased with the zeolite amount up to a concentration of 4 g/l. The values of the maximum accumulative methane production (Gm) increased until zeolite concentrations of 2-4 g/l. The addition of zeolite reduced the values of the TVFA/ Alk ratio while increasing the pH values, and these facts could contribute to the process failure at zeolite doses of 10 g/l.  相似文献   

3.
Straw-rich manure from organic pig farming systems was composted in passively aerated static piles to estimate the effect of monthly turning on organic matter degradation and NH(3), N(2)O and CH(4) emissions. Turning enhanced the rate of drying and degradation. The four-month treatment degraded 57+/-3% of the initial organic matter in the turned piles, while only 40+/-5% in the static piles. The turned piles showed low ammonia and N(2)O emissions, 3.9+/-0.2% and 2.5+/-0.1% of total initial nitrogen, respectively. Static piles gave low ammonia (2.4+/-0.1% N(initial)), but high (9.9+/-0.5% N(initial)) N(2)O emissions. Prevalence of anaerobic regions in the static system was supported by the higher CH(4) emissions, 12.6+/-0.6% VS(degraded) for the static vs. 0.4+/-0.0% VS(degraded) for the turned system. It was shown, that straw-rich pig manure with very low C/N ratios could be composted directly without significant NH(3) and N(2)O emissions if turned on a monthly basis.  相似文献   

4.
Animal agriculture is a significant source of atmospheric ammonia. Ammonia (NH3) volatilization represents a loss of plant available N to the farmer and a potential contributor to eutrophication in low-nitrogen input ecosystems. This research evaluated on-farm slurry treatments of alum or zeolite and compared three diets for lactating dairy cows in their effectiveness to reduce NH3 emissions. NH3 emissions were compared using a group of mobile wind tunnels. The addition of 2.5% alum or 6.25% zeolite to barn-stored dairy slurry reduced NH3 volatilization by 60% and 55%, respectively, compared to untreated slurry. The alum conserved NH3 by acidifying the slurry to below pH 5, while the zeolite conserved ammonia by lowering the solution-phase nitrogen through cation exchange. The use of alum or zeolite also reduced soluble phosphorus in the slurry. NH3 loss from fresh manure collected from lactating dairy cows was not affected by three diets containing the same level of crude protein but differing in forage source (orchardgrass silage vs. alfalfa silage) or neutral detergent fiber (NDF) content (30% vs. 35% NDF). NH3 losses from the freshly excreted manures occurred very rapidly and included the urea component plus some unidentified labile organic nitrogen sources. NH3 conservation strategies for fresh manures will have to be active within the first few hours after excretion in order to be most effective. The use of alum or zeolites as an on-farm amendment to dairy slurry offers the potential for significantly reducing NH3 emissions.  相似文献   

5.
《Process Biochemistry》2014,49(12):2220-2227
The UASB process for wastewater treatment has been extensively studied, but the use of zeolite to improve UASB reactor performance has rarely been explored. In this study, a UASB reactor modified with natural zeolite operating at high nitrogen concentrations (0.5, 0.7 and 1 g/L) was evaluated. Two laboratory bioreactors, one with zeolite and one without, were operated at ambient temperatures ranging between 18 °C and 21 °C. The experimental phase had a start-up period of 21 days. In the reactor with zeolite, the pH was found to be between 7.9 and 9.1, with a COD removal efficiency of about 60% after 80 days of operation at ammonia concentrations of between 0.229 and 0.429 g/L in the effluent. In the reactor without zeolite, the pH was between 8.3 and 9.3, and the COD removal efficiency was about 40% at ammonia concentrations between 0.244 and 0.535 g/L in the effluent. The addition of zeolite also decreased the volatile suspended solids (VSS) concentration in the effluent, generating a biomass with larger granules and higher settling rates as compared to a UASB reactor without zeolite. Taking the lower ammonia concentration, the higher COD removal and the improved granulation into account, it can be concluded that natural zeolite positively influenced the behavior and performance of the UASB reactor operating with high nitrogen concentrations.  相似文献   

6.
The supernatant from mesophilic anaerobic digestion of piggery wastewater is characterised by a high amount of COD (4.1 g COD L(-1)), ammonium (2.3g NH(4)(+)-NL(-1)) and suspended solids (2.5 g SS L(-1)). This effluent can be efficiently treated by means of a Sequencing Batch Reactor (SBR) strategy for biological COD, SS and nitrogen removal including a Coagulation/Flocculation step. Total COD and SS reduction yields higher than 66% and 74%, respectively, and a total nitrogen removal (via nitrite) of more than 98% were reached when working with HRT 2.7 days, SRT 12 days, temperature 32 degrees C, three aerobic/anoxic periods, without external control of pH and under limited aeration flow. The inhibition of nitrite oxidizing biomass was achieved by the working free ammonia concentration and the restricted air supply (dissolved oxygen concentration below 1 mg O(2)L(-1)). Since a part of the total COD was colloidal and/or refractory, a Coagulation/Flocculation step was implemented inside the SBR operating strategy to meet a suitable effluent quality to be discharged. Several Jar-Tests demonstrated that the optimal concentration of FeCl(3) was 800 mg L(-1). A respirometric assay showed that this coagulant dosage did not affect the biological activity of nitrifying/denitrifying biomass.  相似文献   

7.
Cattle slurry solid fraction (SF) with different dry matter (DM) contents was collected from two dairy farms and composted in static and turned piles, with different sizes and cover types, to investigate the effects of pile conditions on the physical and chemical changes in SF during composting and to identify approaches to improve final compost quality. Thermophilic temperatures were attained soon after separation of SF, but the temperature of piles covered with polyethylene did not increase above 60 degrees C. The rate of organic matter (OM) mineralisation increased for turned piles in comparison to static piles, but the maximum amount of mineralisable OM (630-675gkg(-1)) was similar for all pile treatments. The C/N ratio declined from over 36 to a value of 14 towards the end of composting, indicating an advanced degree of OM stabilisation. Mature compost was obtained from raw SF feedstock as indicated by the low compost temperature, low C/N ratio, and low content of NH(4)(+) combined with increased concentrations of NO(3)(-). The efficiency of the composting process was improved and NH(3)-N losses were minimized by increasing DM content of the SF, reducing the frequency of pile turning and managing compost piles without an impermeable cover.  相似文献   

8.
Ash in composting of source-separated catering waste   总被引:5,自引:0,他引:5  
Our earlier experiments in small composters (220 l) indicated the favourable effect of ash from co-incineration of sorted dry waste on the composting of catering waste. The aim of this new study was to clarify further, at a scale of 10 m3, the feasibility of using similar ash as an additive in composting. Source-separated catering waste was mixed with bulking agent (peat and wood chips) and fuel ash from a small (4 MW) district heating power plant. Three compost mixes (CM) were obtained: CM I with 0%, CM II with 10% and CM III with 20 wt.% of fuel ash. These three different mixes were composted in a 10-m3 drum composter as three parallel experiments for 2 weeks each, from January to April 2000. After drum composting, masses were placed according to mixing proportions in separate curing piles. The catering waste fed to the drum was cold, sometimes icy. Even then the temperature rapidly increased to over 50 degrees C. In CM III, the temperature rose as high as 80 degrees C, and after the first week of composting the temperature was about 20 degrees C higher in the CMs II and III than in the CM I. It also improved the oxygen concentrations at the feeding end of the drum and obviously prevented the formation of H2S. No odour problems arose during the composting. Addition of ash increased the heavy metal contents of the composting masses, but the compost was suitable for cultivation or green area construction. Ash clearly decreased the loss of total nitrogen in a time span of 2 years. The lower amounts of nitrogen mean that the amounts applied per hectare can be greater than for normal composts. Measured by mineralization, the breaking down of the organic matter was more rapid in the CM III than in the CM I. Humic acid increased steadily during first 12 months composting, from the initial 39 mg/g organic matter to 115 and 137 mg/g in CMs II and III. Measured by temperature, mineralization and humification the addition of ash appeared to boost the composting. Ash had also other beneficial effects on composting it improved the availability of oxygen in compost mass during the drum composting phase and reduced the formation of odorous gases, especially H2S.  相似文献   

9.
以改性沸石、聚乙烯醇、海藻酸钠作为固定化载体材料,硼酸和氯化钙作为交联剂,采用吸附-包埋-交联法将硝化细菌和好氧反硝化细菌复合固定化制备成微生物小球.通过复合菌配比实验,考察其对氨氮的去除率以及亚硝酸盐和硝酸盐的累积量;对制成的固定化小球做四因素三水平的正交实验,考察不同条件下对氨氮的去除率.结果表明,硝化细菌和好氧反硝化细菌配比为3:2时,氨氮去除率最高达82.32%,亚硝酸盐和硝酸盐的累积量为0.032mg·L-1和0.053 mg·L-1;通过正交实验,确定沸石投加量为2g·100mL-1、温度为30℃、pH值为7.5、振荡速度为130r·min-1时,对氨氮达到最好的去除效果,去除率达90.31%,此法制得的小球机械性能和吸水性能良好.  相似文献   

10.
Performances of single-stage and two-stage sequencing batch reactor (SBR) systems were investigated for treating dairy wastewater. A single-stage SBR system was tested with 10,000 mg/l chemical oxygen demand (COD) influent at three hydraulic retention times (HRTs) of 1, 2, and 3 days and 20,000 mg/l COD influent at four HRTs of 1, 2, 3, and 4 days. A 1-day HRT was found sufficient for treating 10,000-mg/l COD wastewater, with the removal efficiency of 80.2% COD, 63.4% total solids, 66.2% volatile solids, 75% total Kjeldahl nitrogen, and 38.3% total nitrogen from the liquid effluent. Two-day HRT was believed sufficient for treating 20,000-mg/l COD dairy wastewater if complete ammonia oxidation is not desired. However, 4-day HRT needs to be used for achieving complete ammonia oxidation. A two-stage system consisting of an SBR and a complete-mix biofilm reactor was capable of achieving complete ammonia oxidation and comparable carbon, solids, and nitrogen removal while using at least 1/3 less HRT as compared to the single SBR system.  相似文献   

11.
Anaerobic digestion of animal waste: waste strength versus impact of mixing   总被引:6,自引:0,他引:6  
We studied the effect of mode of mixing (biogas recirculation, impeller mixing, and slurry recirculation) and waste strength on the performance of laboratory scale digesters. The digesters were fed with 5% and 10% manure slurry, at a constant energy supply per unit volume (8 W/m3). The experiments were conducted in eight laboratory scale digesters, each having a working volume of 3.73 L, at a controlled temperature of 35+/-2 degrees C. Hydraulic retention time (HRT) was kept constant at 16.2 days, resulting in a total solids (TS) loading rate of 3.08 g/Ld and 6.2 g/Ld for 5% and 10% manure slurry feeds, respectively. Results showed that the unmixed and mixed digesters performed quite similarly when fed with 5% manure slurry and produced biogas at a rate of 0.84-0.94 L/Ld with a methane yield of 0.26-0.31 L CH4/g volatile solids (VS) loaded. This was possibly because of the low solids concentration in the case of 5% manure slurry, where mixing created by the naturally produced gas might be sufficient to provide adequate mixing. However, the effect of mixing and the mode of mixing became prominent in the case of the digesters fed with thicker manure slurry (10%). Digesters fed with 10% manure slurry and mixed by slurry recirculation, impeller, and biogas recirculation produced approximately 29%, 22% and 15% more biogas than unmixed digester, respectively. Deposition of solids inside the digesters was not observed in the case of 5% manure slurry, but it became significant in the case of 10% manure slurry. Therefore, mixing issue becomes more critical with thicker manure slurry.  相似文献   

12.
Monochloramine prepared in situ by first adding chlorine to a suspension of microorganisms, followed by subsequent addition of ammonia, inactivated the MS2 coliphage more rapidly than did exposure of phage to monochloramine prepared either by adding chlorine to ammonia or by adding chlorine and ammonia simultaneously. The rapid viral inactivation was apparently due to the exposure of MS2 to free chlorine before the addition of ammonia. The average 99% CT value of MS2 when exposed to free chlorine was 1.3 and 1.1 at 5 and 15 degrees C, respectively. The average 99% CT values of MS2 briefly exposed to the combined action of free chlorine followed by the addition of ammonia to form monochloramine in situ were 19.3 and 1.5 at 5 and 15 degrees C, respectively. No 99% CT values were calculated for the inactivation of MS2 with preformed monochloramine because less than 1 log (90%) of inactivation occurred during a 4-h contact time. Inactivation of MS2 by monochloramine was more rapid at 15 than at 5 degrees C and when the chlorine to nitrogen weight ratio was 5:1 compared with 3:1. Monochloramine was a more efficient inactivating agent for the coliforms Escherichia coli and Klebsiella pneumoniae than it was for the MS2 coliphage.  相似文献   

13.
A laboratory study was carried out to obtain data on the influence of biomass temperature on biostabilization-biodrying of municipal solid waste (initial moisture content of 410 g kg wet weight (w.w.)(-1)). Three trials were carried out at three different biomass temperatures, obtained by airflow rate control (A = 70 degrees C, B = 60 degrees C and C = 45 degrees C). Biodegradation and biodrying were inversely correlated: fast biodrying produced low biological stability and vice versa. The product obtained from process A was characterized by the highest degradation coefficient (166 g kg TS0(-1); TS0(-1) = initial total solid content) and lowest water loss (409 g kg W0(-1); W0 = initial water content). Due to the high reduction of easily degradable volatile solid content and preservation of water, process A produced the highest biological stability (dynamic respiration index, DRI = 141 mg O2 kg VS(-1); VS = volatile solids) but the lowest energy content (EC = 10,351 kJ kg w.w.(-1)). Conversely, process C which showed the highest water elimination (667 g kg W0(-1)), and lowest degradation rate (18 g kg TS0(-1)) was optimal for refuse-derived fuel (RDF) production having the highest energy content (EC = 14,056 kJ kg w.w.(-1)). Nevertheless, the low biological stability reached, due to preservation of degradable volatile solids, at the end of the process (DRI = 1055 mg O2 kg VS(-1)), indicated that the RDF should be used immediately, without storage. Trial B showed substantial agreement between low moisture content (losses of 665 g kg W0(-1)), high energy content (EC = 13,558 kJ kg w.w.(-1)) and good biological stability (DRI = 166 mg O2 kg VS(-1)), so that, in this case, the product could be used immediately for RDF or stored with minimum pollutant impact (odors, leaches and biogas production).  相似文献   

14.
Sulfur-oxidising acidophilic bacteria were obtained from weathered sulfur piles produced by a petroleum refinery. When grown on commercial sulfur the yield was 10(10)cell/g S. Sulfur conversion to sulfate was about 95% after 17 days. Cultures were also grown together with ash obtained from incinerated refinery sludge, which contained high amounts of iron. Cultures grown in ash plus sulfur gave somewhat higher values for the growth parameters (Y=1.6x10(10)cell/g S). The sulfur conversion was about 70% (after 17 days) and more than 90% of the iron present in the ash was also leached. The sulfur-reduced compound thiosulfate, determined using ion pair HPLC, was found in the presence and absence of ash although the profile was different in each case. Sulfite was only found in non-ash containing cultures, whereas tetrathionate was only formed in the presence of ash. These results are discussed with reference to the substrates used by the micro-organisms.  相似文献   

15.
Effect of covering pig slurry stores on the ammonia emission processes   总被引:2,自引:0,他引:2  
The aim of this study was to evaluate the effects of different covers (oil, plastic film, perforated polystyrene float, peat and zeolites) on slurry settling characteristics and ammonia emission during storage and following surface application in the field. Laboratory trials were carried out for 15 days using a pilot scale device. Samples of 5 kg slurry were used. At the end of the storage period, distributions of dry matter, pH, total ammoniacal nitrogen and total Kjeldahl nitrogen in slurry were characterized. In the field, ammonia volatilisation was measured for three days using a wind tunnel system. Oil and plastic film retained all ammoniacal nitrogen forms in the slurry, whereas the others reduced ammonia volatilisation by reducing the emitting surface or by adsorbing/absorbing ammonia. Over the whole process studied (storage plus application) ammonia emissions were reduced by 40% by oil up to 65-71% by zeolites with different particle sizes.  相似文献   

16.
The effect of temperature on the community structure of ammonia-oxidizing bacteria was investigated in three different meadow soils. Two of the soils (OMS and GMS) were acidic (pH 5.0 to 5.8) and from sites in Germany with low annual mean temperature (about 10 degrees C), while KMS soil was slightly alkaline (pH 7.9) and from a site in Israel with a high annual mean temperature (about 22 degrees C). The soils were fertilized and incubated for up to 20 weeks in a moist state and as a buffered (pH 7) slurry amended with urea at different incubation temperatures (4 to 37 degrees C). OMS soil was also incubated with less fertilizer than the other soils. The community structure of ammonia oxidizers was analyzed before and after incubation by denaturing gradient gel electrophoresis (DGGE) of the amoA gene, which codes for the alpha subunit of ammonia monooxygenase. All amoA gene sequences found belonged to the genus Nitrosospira. The analysis showed community change due to temperature both in moist soil and in the soil slurry. Two patterns of community change were observed. One pattern was a change between the different Nitrosospira clusters, which was observed in moist soil and slurry incubations of GMS and OMS. Nitrosospira AmoA cluster 1 was mainly detected below 30 degrees C, while Nitrosospira cluster 4 was predominant at 25 degrees C. Nitrosospira clusters 3a, 3b, and 9 dominated at 30 degrees C. The second pattern, observed in KMS, showed a community shift predominantly within a single Nitrosospira cluster. The sequences of the individual DGGE bands that exhibited different trends with temperature belonged almost exclusively to Nitrosospira cluster 3a. We conclude that ammonia oxidizer populations are influenced by temperature. In addition, we confirmed previous observations that N fertilizer also influences the community structure of ammonia oxidizers. Thus, Nitrosospira cluster 1 was absent in OMS soil treated with less fertilizer, while Nitrosospira cluster 9 was only found in the sample given less fertilizer.  相似文献   

17.
Two methods were evaluated for the inactivation of African swine fever (ASV) and swine vesicular disease (SVD) viruses in pig slurry: chemical treatment and heat treatment. The addition of NaOH or Ca(OH)2 at different concentration/time combinations at 4 degrees C and 22 degrees C was examined, as was virus stability at different temperature/time combinations. ASF virus (ASFV) was less resistant to both methods than SVD virus (SVDV). In slurry from one source, ASFV was inactivated at 65 degrees C within 1 min, whereas SVDV required at least 2 min at 65 degrees C. However, it was found that thermal inactivation depended on the characteristics of the slurry used. Addition of 1% (w/v) of NaOH or Ca(OH)2 caused the inactivation of ASFV within 150 s at 4 degrees C; 0.5% (w/v) NaOH or Ca(OH)2 required 30 min for inactivation. NaOH or Ca(OH)2 (1% (w/v)) was not effective against SVDV at 22 degrees C after 30 min, and 1.5% (w/v) NaOH or Ca(OH)2 caused inactivation of SVDV at both 4 degrees C and 22 degrees C. At higher chemical concentrations or temperatures, ASFV and SVDV inactivation was faster in slurry than in buffered medium.  相似文献   

18.
A novel reactor configuration was investigated for anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). An anaerobic hyper-thermophilic (68 degrees C) reactor R68 was implemented as a post-treatment step for the effluent of a thermophilic reactor R1 (55 degrees C) in order to enhance hydrolysis of recalcitrant organic matter, improve sanitation and ease the stripping of ammonia from the reactor. The efficiency of the combined system was studied in terms of methane yield, volatile solids (VS) reduction, and volatile fatty acid (VFA) production at different hydraulic retention times (HRT). A single-stage thermophilic (55 degrees C) reactor R2 was used as control. VS reduction and biogas yield of the combined system was 78-89% and 640-790 mL/g VS, respectively. While the VS reduction in the combined system was up to 7% higher than in the single-stage treatment, no increase in methane yield was observed. Shifting the HRT of the hyper-thermophilic reactor from 5 days to 3 days resulted in a drop in the methanogenic activity in the hydrolysis reactor to a minimum. Operation of R68 at HRTs of 24-48 h was sufficient to achieve high VS conversion into VFAs. Removal of pathogens was enhanced by the hyper-thermophilic post-treatment. 7% of the ammonia load was removed in the hyper-thermophilic reactor with a flow of headspace gas through the reactor equivalent to four times the biogas flow produced in reactor R1.  相似文献   

19.
An exponential linear destruction was observed for Escherichia coli O157:H7 and Salmonella typhimurium in cattle manure and manure slurry stored at 4, 20 or 37 degrees C. The resulting decimal reduction times ranged from 6 days to 3 weeks in manure and from 2 days to 5 weeks in manure slurry. The main effects of time as well as temperature were pronounced with the most rapid destruction at 37 degrees C. The ammonia concentration in manure increased slightly during storage but did not exceed 0.1%. pH values in the deeper layers of manure remained constant except at 37 degrees C when the pH increased by 1 unit in 60 days. In the surface layers of manure, pH increased by 1.5-2 units, the oxidation-reduction potential of the manure declined rapidly to values below -200 mV. These changes do not seem to be reflected in changing rates of bacterial destruction. The observed order of destruction makes it possible to predict storage conditions (temperature and time) that will lead to a predetermined level of reduction of the two pathogens.  相似文献   

20.
We investigated the effect of temperature on the activity of soil ammonia oxidizers caused by changes in the availability of ammonium and in the microbial community structure. Both short (5 days) and long (6.5, 16 and 20 weeks) incubation of an agricultural soil resulted in a decrease in ammonium concentration that was more pronounced at temperatures between 10 and 25 degrees C than at either 4 degrees C or 30-37 degrees C. Consistently, potential nitrification was higher between 10 and 25 degrees C than at either 4 degrees C or 37 degrees C. However, as long as ammonium was not limiting, release rates of N2O increased monotonously between 4 and 37 degrees C after short-term temperature adaptation, with nitrification accounting for about 35-50% of the N2O production between 4 and 25 degrees C. In order to see whether temperature may also affect the community structure of ammonia oxidizers, we studied moist soil during long incubation at low and high concentrations of commercial fertilizer. The soil was also incubated in buffered (pH 7) slurry amended with urea. Communities of ammonia oxidizers were assayed by denaturant gradient gel electrophoresis (DGGE) of the amoA gene coding for the alpha subunit of ammonia monooxygenase. We found that a polymerase chain reaction (PCR) system using a non-degenerated reverse primer (amoAR1) gave the best results. Community shifts occurred in all soil treatments after 16 weeks of incubation. The community shifts were obviously influenced by the different fertilizer treatments, indicating that ammonium was a selective factor for different ammonia oxidizer populations. Temperature was also a selective factor, in particular as community shifts were also observed in the soil slurries, in which ammonium concentrations and pH were better controlled. Cloning and sequencing of selected DGGE bands indicated that amoA sequences belonging to Nitrosospira cluster 1 were dominant at low temperatures (4-10 degrees C), but were absent after long incubation at low fertilizer treatment. Sequences of Nitrosospira cluster 9 could only be detected at low ammonium concentrations, whereas those of Nitrosospira cluster 3 were found at most ammonium concentrations and temperatures, although individual clones of this cluster exhibited trends with temperature. Obviously, ammonia oxidizers are able to adapt to soil conditions by changes in the community structure if sufficient time (several weeks) is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号