首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supramaximal doses of cholecystokinin (CCK) induce in vitro submaximal biological responses (i.e., smaller by 50% than the response to a maximal dose of CCK), desensitization and residual stimulation, and in vivo secretory inhibition and edematous pancreatitis. It has been reported previously that supramaximal doses of Boc-[Nle28-Nle31]CCK(27–32)/-phenylethylester (JMV180) do not produce these effects. The aim of this study was to analyze the in vivo response of pancreatic secretion of the rat to a wide dose range of Boc-[Nle28-Nle31]CCK(26–33) (JMV118), an analog of CCK8 with the same activity spectrum as CCK8, to JMV180 and to Boc-[Nle28-Nle31]CCK(27–32)-phenylethylamide (JMV170). The three peptides were administered as intravenous infusions and as bolus intravenous injections. In the case of infusions, the same maximal effect was observed with all three peptides. It was obtained with 22.5 pmol/kg · min of JMV118; JMV180 and JMV170 were about 700 times less potent. In the case of bolus injections, the maximal response to JMV118 was observed with 450 pmol/kg, and the response peaked 10–15 min after the injection. Higher doses of JMV118 induced a secretory peak that was smaller and delayed relative to the moment of injection. JMV180 and JMV170 were about 500 times less potent: the maximal response was observed with 218700 pmol/kg and peaked 10–15 min after the injection. Larger doses of JMV180 and JMV170 produced neither supramaximal inhibition nor a delayed peak response, but induced a sustained stimulation of pancreatic secretion that could last more than 3 h after the injection. These data indicate that single large doses of JMV180 and JMV170 can produce a large and long-lasting stimulation of pancreatic secretion in vivo, a goal that cannot be reached with JMV118 or CCK8.  相似文献   

2.
None of six different tryptophan-modified analogues of the C-terminal octapeptide of cholecystokinin differed from the unaltered peptide in terms of their efficacies for stimulating amylase secretion from dispersed acini prepared from guinea-pig pancreas. Replacementof hydrogen with fluorine in position 5 or 6 on the indole ring of the tryptophan residue did not alter the potency with which the peptide stimulated amylase secretion; however, replacement of hydrogen by fluorine in positions 4, 5, 6, and 7 of the indole ring, of modifying or replacing the indole nitrogen caused a 30- to 300-fold decrease in potency. Changes in the ability of the peptide to stimulate amylase secretion were accompanied by corresponding changes in the ability of the peptide to inhibit binding of 125I-labeled cholecystokinin. Our findings indicate that reducing the ability of the tryptophan residue to donate electrons produced a greater decrease in the affinity of the peptide for the cholecystokinin receptors than did abolishing the ability of tryptophan to form hydrogen bonds, and modifications that altered both abilities caused a greater decrease in affinity than did modification of only one ability. Finally, in the tryptophan residues of cholecystokinin octapeptide, tetrafluorination of the indole ring or replacing the indole nitrogen by oxygen reduced the ability of the peptide to cause residual stimulation of enzyme secretion, probably by accelerating the rate at which bound peptide dissociated from its receptors when the acini were washed and resuspended in fresh incubation solution.  相似文献   

3.
We studied the relative molar potencies of a newly synthetized cholecystokinin nonapeptide [Thr28,Nle31]CCK[25-33], natural porcine CCK33 and synthetic caerulein in conscious dogs with chronic gastric and pancreatic fistulas. Peptides were dissolved in albumin-containing solutions to prevent loss from solution. The three peptides were found to be equipotent on a molar basis in stimulating exocrine pancreatic secretion. As [Thr28,Nle31]CCK9 is a peptide less susceptible to oxidation than other forms of CCK, it is an interesting analog with many uses for medical and biological research.  相似文献   

4.
Effects of synthetic peptides belonging to the CCK/gastrin family (CCK-39, CCK-8, G/CCK-4, G-17ns) on amylase release in dog pancreatic acini have been measured and correlated with binding of three radio-labelled CCK/gastrin peptides: 125I-BH-(Thr,Nle)-CCK-9, 125I-BH-(2–17)G-17ns and 125I-BH-G/CCK-4 prepared by conjugation of the peptides to iodinated Bolton-Hunter reagent and purified by reverse-phase-HPLC. All the CCK/gastrin peptides produced the same maximal amylase release response. Half-maximal responses (D50) were obtained with 2 · 10?10 M CCK-8; 6 · 10?10 M CCK-39; 10?7 M G.17 ns and 2 · 10?6 M G/CCK-4. Dose-response curves for G-17 ns and G/CCK-4 were similar in configuration but not parallel with those for CCK-8 and CCK-39.Binding studies with 125I-BH(Thr,Nle)-CCK-9 demonstrated the presence of specific CCK receptors on dog pancreatic acini. There was a good correlation between receptor occupancy by CCK-8 and CCK-39 and amylase stimulation since maximal amylase stimulation was achieved when 40–50% of high affinity receptors were occupied. In contrast, a saturation of these receptors was required for maximal stimulation by G-17 ns and G/CCK-4 suggesting the existence of a fraction of receptors that can be occupied by G-17 ns and G/CCK-4 without stimulation of amylase release. Binding studies with labelled (2–17)-G-17 ns and G/CCK-4 confirmed the presence of high affinity sites for G-17 ns and G/CCK-4. These sites were not related to amylase release.This study points out a possible species specificity of biological action of gastrin/CCK peptides on pancreatic exocrine secretion in higher mammals.  相似文献   

5.
Two cyclic peptides, cyclo29,34[Dpr29, Lys34(DTPA-Glu)]-CCK8 (1) and cyclo29,34[Tyr27(SO3H), Dpr29, Lys34(DTPA-Glu)]-CCK8 (2), bearing the chelating moiety DTPA-Glu covalently bound to the Lys side chain have been synthesized by solid-phase methodology. The presence in compound 2 of many acidic functions characteristic of the chelating agent increases the lability of the sulfate group on the Tyr side chain. This finding suggests that prolonged acid treatments should be avoided during the preparation of such peptides. Sulfation of cyclo29,34[Dpr29, Lys34(DTPA-Glu)]-CCK8 was performed using a pyridine-SO3 complex as reagent. This reaction has been found to be the most suitable synthetic strategy for obtaining compound 2 in good yield. Cyclo29,34[Tyr27(SO3H), Dpr29, Lys34(DTPA-Glu)]-CCK8 is a new promising CCK8 analogue, able to coordinate radioactive isotopes of metal ions such as 111In(III), and to bind, in a selective way, the CCKA-R receptor.  相似文献   

6.
The C-terminal tricosapeptide of secretin (S5–27) and two analogues, one with asparagine replacing aspartic acid in position 15 (15-Asn-S5–27) and one with lysine replacing aspartic acid in position 15 (15-Lys-S5–27) were tested for their abilities to interact with hormone receptors on pancreatic acinar cells. In interacting with the receptors which prefer vasoactive intestinal peptide (vaso-active intestinal peptide-preferring receptors), the apparent affinity of 15-Asn-S5–27 was equal to that of 15-Lys-S5–27 and was greater than that of S5–27. In interacting with secretin-preferring receptors, the apparent affinity of 15-Asn-S5–27 was equal to that of S5–27 and was greater than that of 15-Lys-S5–27. In interacting with the secretin-preferring receptors each of the secretin fragments was approximately 2% as effective as secretin in causing an increase in cellular cyclic AMP. None of these fragments was able to cause a detectable increase in cyclic AMP mediated by the vasoactive intestinal peptide-preferring receptors. The dose vs. response curves for the action of secretin and vasoactive intestinal peptide on cellular cyclic AMP and on amylase secretion as well as the patetern of effects of secretin fragments on these actions indicated that the increase in amylase secretion caused by vasoactive intestinal peptide and secretin is mediated exclusively by the vasoactive intestinal peptide-preferring receptors. Furthermore, occupation of approximately 50% of the vasoactive intestinal peptide-preferring receptors is sufficient to cause maximal stimulation of amylase secretion.  相似文献   

7.
Vasopressin and oxytocin receptors belong to the superfamily of G protein‐coupled receptors and play an important role in many physiological functions. They are also involved in a number of pathological conditions being important drug targets. In this work, four vasopressin analogues substituted at position 2 with 3,3′‐diphenylalanine have been docked into partially flexible vasopressin and oxytocin receptors. The bulky residue at position 2 acts as a structural restraint much stronger in the oxytocin receptor (OTR) than in the vasopressin V2 receptor (V2R), resulting in a different location of the analogues in these receptors. This explains the different, either agonistic or antagonistic, activities of the analogues in V2R and OTR, respectively. In all complexes, the conserved polar residues serve as anchor points for the ligand both in OTR and V2R. Strong interactions of the C‐terminus of analogue II ([Mpa1,d ‐Dpa2,Val4,d ‐Arg8]VP) with extracellular loop 3 may be responsible for its highest activity at V2R. It also appears that V2R adapts more readily to the docking analogues by conformational changes in the aromatic side chains triggering receptor activation. A weak activity at V1a vasopressin receptor appears to be caused by weak receptor–ligand interactions. Results of this study may facilitate a rational design of new analogues with the highest activity/selectivity at vasopressin and OTRs. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Distamycin and netropsin are two oligopeptides which bind to DNA in a nonintercalative manner. Analogues of distamycin have been synthesized and their binding with poly d(A-T) studied using ultraviolet absorption spectroscopy. Preliminary biological activity tests on a gram positive bacteria using these analogues have also been carried out Based on the lecture given by Dr. V. Sasisekharan at the Royal Society of Chemistry (Deccan Section) Bangalore, 26 June 1984.  相似文献   

9.
A new CCK8 related peptide, Boc[Nle28,Nle31]CCK27-33 (Boc[diNle]CCK7) was synthesized and tested for cholecystokinic activity, at both the peripheral and the central level. This analogue, protected against both chemical oxidation and enzymatic degradation by aminopeptidases, was shown to be equipotent to CCK8 in releasing amylase from rat pancreas fragments. In addition, the EC50 values of Boc[diNle]CCK7 in the guinea pig gallbladder and ileum contraction assays (3.2 nM and 3.0 nM respectively) were similar to those of CCK8 (6.0 nM and 2.0 nM). Moreover both Boc[diNle]CCK7 and CCK8 elicited similar effects on the open field test over the same concentrations range. These results demonstrate the ability of Boc[diNle]CCK7 to be a suitable tool for investigating the physiological role of native CCK8.  相似文献   

10.
Accumulating evidence suggests that activated pancreatic stellate cells (PSC) play an important role in chronic pancreatitis (CP), and inhibition of the activated PSC is considered as a potential strategy for the treatment and prevention of CP. Herein, we disclose our findings that apigenin and its novel analogues suppress the proliferation and induce apoptosis in PSC, which reduce the PSC-mediated fibrosis in CP. Chemical modifications of apigenin have been directed to build a focused library of O-alkylamino-tethered apigenin derivatives at 4′-O position of the ring C with the attempt to enhance the potency and drug-like properties including aqueous solubility. A number of compounds such as 14, 16, and 24 exhibited potent antiproliferative effects as well as improved aqueous solubility. Intriguingly, apigenin, new analogues 23 and 24 displayed significant efficacy to reduce pancreatic fibrosis even at a low dose of 0.5 mg/kg in our proof-of-concept study using a preclinical in vivo mouse model of CP.  相似文献   

11.
In the C-terminal heptapeptide of cholecystokinin, replacement of the penultimate residue, aspartic acid, by β-alanine caused a 300-fold decrease in potency with which the peptide stimulated enzyme secretion, whereas replacement by glutamic acid caused a 1000-fold decrease in potency. The β-alanine-substituted peptide was approximately ten times more potent when the N terminus was blocked with t-butyloxycarbonyl than when it was blocked with benzyloxycarbonyl, and the glutamic acid-substituted peptide was approximately twice as potent when the N terminus was blocked with t-butyloxycarbonyl than when it was blocked with benzyloxycarbonyl. Changes in the ability of the peptide to stimulate amylase secretion were acompanied by corresponding changes in the ability of the peptide to inhibit binding of 125I-labeled cholecystokinin. The magnitude of stimulation of enzyme secretion caused by a maximally effective peptide concentration was the same with each analogue as it was with the unaltered peptide. Rpelacing the aspartyl by β-alanine or glutamic acid or replacing of N-terminal t-butyloxycarbonyl moiety by benzyloxycarbonyl caused an equivalent decrease in the ability of the peptide to stimulate enzyme secretion and its ability to cause residual stimulation of enzyme secretion. In contrast, the N-terminal desamino analogue of cholecystokinin heptapeptide was ten times less potent than the unaltered peptide in stimulating amylase secretion, but 100 times less potent that the unaltered peptide in causing residual stimulation of enzyme secretion.  相似文献   

12.
Pregna-D'-pentaranes (pentaranes) are modified progesterones with demonstrable progestational activity and contraceptive effect. We have examined the steroid binding characteristics of the two newly synthesized progesterone analogs, Pentarane A (16, 17-cyclohexanoprogesterone) and Pentarane B (6-methyl, 16, 17-cyclohexanoprogesterone), and studied the nature of their interaction with progesterone receptor (PR) from the chicken oviduct and the calf uterine cytosols. Pregna-D'-pentaranes exhibited no affinity for the chick PR but interacted with the calf uterine PR as did R5020. The pentaranes, however, bound PR less tightly. R5020- or pentarane-bound PR sedimented as an 8S moiety in 8–30% linear glycerol gradients. Thermal transformation of receptor resulted in the reduction of the 8S form, and caused an increase in the binding of R5020-and progesterone-bound PR complexes to DNA-cellulose. The pentarane-bound PR bound poorly, if at all, to DNA-cellulose. Our data suggest that pentaranes exhibit both similarities and differences with natural and synthetic progestins with respect to their interaction with calf uterine PR. The lack of pentarane binding to chicken PR is reminiscent of the general phenomenon that antiprogestins (RU486, ZK98299, and Org 31710 and Org 31806) do not interact with chicken PR. Pentaranes, therefore, represent unique steroid analogs to investigate the molecular mechanism of steroid hormone action.Abbreviations DMSO Dimethyl sulfoxide - DTT Dithiothreitol - E Estradiol - EDTA Ethylene-diaminetetraacetate - F Cortisol - IA Iodoacetamide - MER -mercaptoethanol - MTG Monothioglycerol - NEM N-ethylmaleimide - Org 31710 (6, 11, 17)-11-(4-dimethylaminophenyl)-6 methyl-4, 5-dihydro[estra-4, 9-diene-17, 2(3H')-furna]-3-one - Org 31806 (7, 11, 17)-11-(4-dimethyl-aminophenyl)-7 methyl-4, 5-dihydro[estra-4, 9-diene-17, 2(3H)-furan]-3-one - P Progesterone - Pentarane A 16, 17-cyclohexanoprogesterone - Pentarane B 6-methyl, 16, 17-cyclohexanoprogesterone - PMSF Phenylmethylsulfonyl Fluoride - PR Progesterone Receptor - R5020 17, 21-dimethylpregna-4, 9(10)-diene-3  相似文献   

13.
The C-terminal tricosapeptide of secretin (S5-27) and two analogues, one with asparagine replacing aspartic acid in position 15 (15-Asn-S5--27) and one with lysine replacing aspartic acid in position 15 (15-Lys-S5-27) were tested for their abilities to interact with hormone receptors on pancreatic acinar cells. In interacting with the receptors which prefer vasoactive intestinal peptide (vasoactive intestinal peptide-preferring receptors), the apparent affinity of 15-Asn S5-27 was equal to that of 15-Lys-S5-27 and was greater than that of S5-27. In interacting with secretin-preferring receptors, the apparent affinity of 15-Asn-S5--27 was equal to that of S5-27 and was greater than that of 15-Lys-S5-27. In interacting with the secretin-preferring receptors each of the secretin fragments was approximately 2% as effective as secretin in causing an increase in cellular cyclic AMP. None of these fragments was able to cause a detectable increase in cyclic AMP mediated by the vasoactive intestinal peptide-preferring receptors. The dose vs. response curves for the action of secretin and vasoactive intestinal peptide on cellular cyclic AMP and on amylase secretion as well as the pattern of effects of secretin fragments on these actions indicated that the increase in amylase secretion caused by vasoactive intestinal peptide and secretin is mediated exclusively by the vasoactive intestinal peptide-preferring receptors. Furthermore, occupation of approximately 50% of the vasoactive intestinal peptide-preferring receptors is sufficient to cause maximal stimulation of amylase secretion.  相似文献   

14.
α-Conotoxins, peptide neurotoxins from poisonous marine snails of the genus Conus that highly specifically block nicotinic acetylcholine receptors (AChRs) of various types, are reviewed. Preliminarily, the structural organization of AChRs of the muscular and neuronal types, their involvement in physiological processes, and their role in various diseases are briefly discussed. In this connection, the necessity of quantitative determination of AChR subtypes using neurotoxins and other approaches is substantiated. The chemical structure, spatial organization, and specificity of α-conotoxins are mainly discussed, taking into consideration the recent results on the ability of α-conotoxins to interact with muscular or neuronal hetero-and homooligomeric AChRs exhibiting a high species specificity. Particular emphasis is placed upon a thorough characterization of the surfaces of interaction of α-conotoxins with AChRs using synthetic analogues of α-conotoxins, mutations in AChRs, and pairwise mutations in both α-conotoxins and AChRs. The discovery in 2001 of the acetylcholine-binding protein from the pond snail Lymnaea stagnalis and the determination of its crystalline structure led to rapid progress in understanding the structural organization of ligand-binding domains of AChRs with which α-conotoxins also interact. We discuss the interaction of various α-conotoxins with acetylcholine-binding proteins, the recently reported X-ray structure of the complex of the acetylcholine-binding protein from Aplysia californica with the α-conotoxin analogue PnIA, and the application of this structure to the modeling of complexes of α-conotoxins with various AChRs.  相似文献   

15.
A series of 3-N,N-di-n-propylamino-2-chromanones were synthesized as dopamine analogues. The lactone ring was introduced as a means to reduce their propensity to cross the blood-brain barrier and to avoid central side effects, rendering these compounds potentially useful for the treatment of glaucoma. Pharmacological activities were determined in vitro on rat striatum, by examining their capacity to displace the specific binding of the labeled dopaminergic ligand 3H sulpiride or 3H spiperone and 3H SCH 23390 for D2 and D1 sites, respectively. Compound 6a showed a weak dopaminergic activity on D2-receptors and no affinity for D1-receptors, which can be explained, at least in part, by a weak pKa and the presence of an internal hydrogen bonding. Furthermore, computer molecular modelling studies showed that the aromatic ring of 6a was negatively charged in contrast to the classical D2-agonists aminotetralin derivatives, hampering a possible interaction with a negatively charged area of the D2-receptor. These results, taken together, can account for the moderate dopaminergic activities exhibited by these lactone derivatives.  相似文献   

16.
The possibility of a correlation between the membrane properties of the delta sleep-inducing peptide (DSIP) and its analogues and their biological activity in vivo was examined by a comparative study of the membrane effects of these peptides. The peptides exhibiting biological activity in vivo were shown to cause a statistically reliable disordering of lipids in thrombocyte plasma membranes similar to the effect of DSIP. The membrane effect of the D-Val2-, D-Tyr2-, and Tyr1, Pro2 analogues of DSIP had the same bimodal dose dependence characteristic of natural DSIP. Only a slight nonspecific lipid disordering was registered for Trp-Asp-Ala-Ser-Gly-Glu, a biologically inactive hexapeptide analogue. These results indicate a correlation between the biological activity of the peptides during in vivo tests and their membrane properties in vitro. The structure-function relationship was studied within the group of DSIP analogues examined in vitro. The DSIP modeling effect, especially pronounced under the action of stress factors, was suggested to be directly associated with the ability of DSIP to change the dynamic structure of biological membranes.  相似文献   

17.
The biological activity of six synthetic siderophore analogues (two dihydroxamates, two trihydroxamates, one tetrahydroxamate and one 3-hydroxy-4(1H)pyridinone) has been studied in Escherichia coli, Morganella morganii 13 and Proteus mirabilis 8993 strains by using growth promotion tests. Various transport-deficient mutants of E. coli were used to study the route of entry into gram-negative bacteria. The results indicated that the synthetic hydroxamate compounds are transported via Fhu-mediated transport systems, although receptor specificity was low. This could be proven by using a delta (fhuA-B) E. coli mutant as a control in which growth promotion by natural hydroxamates was completely abolished, suggesting that a periplasmic binding-protein-dependent transport system (FhuB, C, D) is required for the transport of all synthetic ferric hydroxamate complexes. Although utilization of the synthetic hydroxamates was generally lower than that of the natural siderophores, differences in growth promotion could be detected. Highest activity was observed with the dihydroxamate DOCYDHAMA ligand which supported growth at concentrations <1 mM. In comparison with other polyamino-polyhydroxamate ligands studied, this dihydroxamate ligand has an extra diamide backbone that could be important for the interaction with the receptors or with FhuD. The synthetic trihydroxamate and tetrahydroxamate ligands showed a relatively low siderophore activity. Studies with Proteus and Morganella in the presence of increasing bipyridyl concentrations showed a decreased growth promotion with the synthetic ferric hydroxamates, suggesting the involvement of a reduction step during iron mobilization or an increased toxicity of bipyridyl. This was not observed in the case of the 3-hydroxy-4(1H)pyridinone where bipyridyl had no effect.  相似文献   

18.
Increased expression of the chemokine CX3CL1 and its sole receptor, CX3CR1 have been correlated with poor pancreatic cancer patient survival and time to recurrence, as well as with pancreatic perineural invasion. We have previously shown that metastasis of prostate and breast cancer is in part driven by CX3CL1, and have developed small molecule inhibitors against the CX3CR1 receptor that diminish metastatic burden. Here we ask if inhibition of this chemokine receptor affects the phenotype of PDAC tumor cells. Our findings demonstrate that motility, invasion, and contact-independent growth of PDAC cells all increase following CX3CL1 exposure, and that antagonism of CX3CR1 by the inhibitor JMS-17-2 reduces each of these phenotypes and correlates with a downregulation of AKT phosphorylation. These data suggest that PDAC tumor cell migration and growth, elements critical in metastatic progression, may susceptible to pharmacologic intervention.  相似文献   

19.
Few studies have suggested that neuropeptide Y (NPY) could play an important role in skin functions. However, the expression of NPY, the related peptides, peptide YY (PYY) and pancreatic polypeptide (PP) and their receptors have not been investigated in human skin. Using specific antisera directed against NPY, PYY, PP and the Y1, Y2, Y4 and Y5 receptor subtypes, we investigated here the expression of these markers. NPY-like immunoreactivity (ir) in the epidermal skin could not be detected. For the first time we report the presence of positive PP-like ir immunofluorescent signals in epidermal cells, i.e. keratinocytes of skin from three areas (abdomen, breast and face) obtained as surgical left-overs. The immunofluorescent signal of PP-like ir varies from very low to high level in all three areas. In contrast, PYY-like ir is only expressed in some cells and with varied level of intensity. Furthermore and for the first time we observed specific Y1 and Y4 receptor-like ir in all epidermal layers, while the Y2 and Y5 subtypes were absent. Interestingly, as seen in human epidermis, in Episkin, a reconstituted human epidermal layer, we detected the presence of PP-like as well as Y1-like and Y4-like ir. These data have shown the presence and distribution of PYY, PP and Y1 and Y4 receptors in the human skin and Episkin, suggesting possible novel roles of NPY related peptides and their receptors in skin homeostasis.  相似文献   

20.
Ductal epithelial cells of the exocrine pancreas secrete HCO3 rich, alkaline pancreatic juice, which maintains the intraluminal pH and washes the digestive enzymes out from the ductal system. Importantly, damage of this secretory process can lead to pancreatic diseases such as acute and chronic pancreatitis. Intracellular Ca2+ signaling plays a central role in the physiological regulation of HCO3 secretion, however uncontrolled Ca2+ release can lead to intracellular Ca2+ overload and toxicity, including mitochondrial damage and impaired ATP production. Recent findings suggest that the most common pathogenic factors leading to acute pancreatitis, such as bile acids, or ethanol and ethanol metabolites can evoke different types of intracellular Ca2+ signals, which can stimulate or inhibit ductal HCO3 secretion. Therefore, understanding the intracellular Ca2+ pathways and the mechanisms which can switch a good signal to a bad signal in pancreatic ductal epithelial cells are crucially important. This review summarizes the variety of Ca2+ signals both in physiological and pathophysiological aspects and highlight molecular targets which may strengthen our old friend or release our nasty enemy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号