首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The addition of amlodipine or verapamil into the lumen of the newt distal tubule led to the decrease of reabsorption of Na, Cl, Ca and of fluid. 2. The application of amlodipine to the outside of the frog skin caused large increases in potential difference (PD) and short circuit (SCC) similar to what is seen with Co2+. If both amlodipine and Co2+ were applied simultaneously to the outer surface the increases in PD and SCC were additive. 3. Verapamil added to the outer surface of the skin caused a reduction in PD which could be overcome by subsequent addition of amlodipine. 4. After addition of amlodipine to serosal or mucosal surfaces of the frog urinary bladder, the ability of vasopressin to increase osmotic permeability was markedly attenuated. 5. It is likely that the calcium channel blockers used here not only affect intracellular calcium levels by inhibiting entry through calcium channels, but they may also alter calcium dependent processes within the plasma membranes which modulate sodium transfer across epithelia.  相似文献   

2.
Since many isoforms of adenylyl cyclase and adenosine 3', 5'-monophosphate (cAMP) phosphodiesterase have been cloned, it is likely that receptors of each hormone have a specific combination of these isoforms. Types I, III and VIII adenylyl cyclases are reported to be stimulated by Ca(2+)-calmodulin, type I phosphodiesterase by Ca(2+)-calmodulin, but types IV and VII (cAMP-specific) phosphodiesterases by Co2+. In the present study, we examined different effects of Ca2+ and Co2+ on hormone-induced cAMP response in the isolated perfused rat liver.The removal of Ca2+ from the perfusion medium (0 mM CaCl(2 ) + 0.5 mM EGTA) did not affect glucagon (0.1 nM)-responsive cAMP but reduced secretin (1 nM)-, vasoactive intestinal polypeptide (VIP, 1-10 nM)- and forskolin (1 microM)-responsive cAMP considerably. The addition of 1 mM CoCl2 reduced glucagon- and secretin-responsive cAMP considerably, forskolin-responsive cAMP partly, did not affect 1 nM VIP-responsive cAMP, but enhanced 10 nM VIP-responsive cAMP. Forskolin- and VIP-responsive cAMP was greater in the combination (0 mM CaCl(2) + 0.5 mM EGTA + 3 mM CoCl2) than in the Ca(2+)-free perfusion alone.These results suggest that secretin, VIP1 and VIP2 receptors are linked to Ca(2+)-calmodulin-sensitive adenylyl cyclase; glucagon receptor to Ca(2+)-calmodulin-insensitive adenylyl cyclase; VIP1 receptor to Ca(2+)-calmodulin-dependent phosphodiesterase; glucagon, secretin and VIP2 receptors to cAMP-specific phosphodiesterase, respectively, in the rat liver.  相似文献   

3.
The effect of Ba2+, TEA, 4-AP and CoCl2 on the EPSP and spike discharges recorded from single fibres of the posterior nerve in the isolated frog labyrinth has been investigated. In Ca-free solution Ba2+ preserved, at low concentration (0.3 mM), the resting activity and at higher levels (up to 6 mM) it resulted in a pronounced facilitation of the EPSP and spike discharges. Facilitation increased on increasing Ba2+ concentration up to 4-5 mM and it was more evident in those units exhibiting a low resting spike firing. The effect of Ba2+ (1 mM) was completely antagonized by 10 mM Ca2+ X CoCl2 (3 mM) suppressed the resting rate at the normal external Ca2+ concentration; the Co2+ block was partially relieved by 1.8 mM Ba2+ X TEA (20 mM) evoked a clear-cut increase in the EPSP and spike discharges which, however, was less consistent than that produced by Ba2+. By comparing the effect of TEA on the spike frequency with that obtained at different Ba2+ levels, the Ba2+ capacity to carry the Ca2+ current was dissected. Such an effect is dose-dependent and it is more evident in low-frequency units. Conversely, 4-AP did not affect the resting discharge frequency. These results indicate that either the Ca2+ or the Ba2+ current sustain the transmitter release at the cyto-neural junction. The effect of TEA suggests that the Ca2+-dependent K+ current may play an important role in supporting the neurosecretory process by controlling the membrane potential of the hair cells.  相似文献   

4.
Studies of cation requirements in the recA-catalyzed proteolysis of lambda repressor and strand assimilation reactions have demonstrated that Co2+ significantly enhances both activities. In the presence of 4mM MgCl2, the optimal concentration of CoCl2 for proteolysis was 1mM. 2mM Co2+ increased the rate and extent of D-loop formation as measured by membrane filtration. Cobalt did not replace Mg2+ for the ssDNA-dependent ATPase activity of recA, and did not affect the rate of hydrolysis of ATP, measured over a wide range of DNA concentrations. Cobalt did prevent the Mg-dependent ssDNA renaturation catalyzed by recA protein. Membrane filter binding assays established that Co2+ increases the affinity of recA protein for ssDNA with ATP, dATP, or ATP gamma S as cofactors. The dissociation of recA protein from ssDNA-nucleoside triphosphate complex was much slower with CoCl2. This metal provides an excellent tool for dissecting the various activities inherent in recA protein.  相似文献   

5.
The effect of cobalt(II) chloride (CoCl2) and CoCl2 with ascorbic acid (AA) on components of the antioxidant defense system and lipid oxidative damage were studied in controls and streptozotocin-induced diabetic rat livers. Three days after injection, rats received either 0.5 mM CoCl2 or 0.5 mM CoCl2 with a combination of 1 g/L AA in drinking water up to 6 wk. The elevated blood glucose levels in diabetic rats were about 12% restored by oral administration of CoCl2 (0.05 mM) and were significant reduced (46%) following AA addition (1 g/L) to CoCl2. Cobalt therapy effectively decreased the increased activities of catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactant substances (TBARS) but could not restore the increased glutathione peroxidase (GSH-Px) in the liver of diabetic rats. Our findings suggest that cobalt therapy may prove effective in improving the impaired antioxidant status during the early state of diabetes, and ascorbic acid supplementation at this dose potentiates the effectiveness of cobalt action.  相似文献   

6.
The exfoliative toxins ExhA and ExhB produced by Staphylococcus hyicus strains NCTC10350 and 1289D-88, respectively, were investigated with regard to the effect of divalent metal ions on toxin production as measured in indirect enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies. Data were obtained as endpoint titer values and used as semiquantitative measures for the amount of exfoliative toxin detected in culture supernatants. It was shown that the endpoint titers of ExhA in supernatants from cultures of strain NCTC10350 grown in the presence of 0.5 mM CaCl2, Cu(NO3)2 or ZnSO4 were higher compared to titers obtained by growth in medium supplemented with a number of other divalent metal salts. The titer of ExhB as determined in the indirect ELISA was increased by addition of 0.5 mM CoCl2, Cu(NO3)2 or CuSO4 to the growth medium. When ExhA or ExhB, prepared without addition of metal salt to the liquid growth medium, was subsequently incubated with 25 mM of Co2+, Cu2+ or Zn2+, the endpoint titers of the toxins were increased. Dialysis of ExhA and ExhB prepared with Zn2+ and Co2+, respectively, against certain metal chelators, resulted in a reduction of the titer determined in ELISA. Other metal chelators had varied effect in the detection of the toxins in ELISA. It was, however, not possible to restore the recognition of toxins by the monoclonal antibodies by incubation of EDDHA-dialyzed toxin preparations with Co2+, Cu2+ or Zn2+. The results of this study suggest that ExhA and ExhB are metalloproteins.  相似文献   

7.
Diadenosine-5',5'-P1,P4-tetraphosphate pyrophosphohydrolase (diadenosinetetraphosphatase) from Escherichia coli strain EM20031 has been purified 5000-fold from 4 kg of wet cells. It produces 2.4 mg of homogeneous enzyme with a yield of 3.1%. The enzyme activity in the reaction of ADP production from Ap4A is 250 s-1 [37 degrees C, 50 mM tris(hydroxymethyl)aminomethane, pH 7.8, 50 microM Ap4A, 0.5 microM ethylenediaminetetraacetic acid (EDTA), and 50 microM CoCl2]. The enzyme is a single polypeptide chain of Mr 33K, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and high-performance gel permeation chromatography. Dinucleoside polyphosphates are substrates provided they contain more than two phosphates (Ap4A, Ap4G, Ap4C, Gp4G, Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, Ap5A, Ap6A, and dAp4dA are substrates; Ap2A, NAD, and NADP are not). Among the products, a nucleoside diphosphate is always formed. ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, and dTTP are not substrates; Ap4 is. Addition of Co2+ (50 microM) to the reaction buffer containing 0.5 microM EDTA strongly stimulates Ap4A hydrolysis (stimulation 2500-fold). With 50 microM MnCl2, the stimulation is 900-fold. Ca2+, Fe2+, and Mg2+ have no effect. The Km for Ap4A is 22 microM with Co2+ and 12 microM with Mn2+. The added metals have similar effects on the hydrolysis of Ap3A into ADP + AMP. However, in the latter case, the stimulation by Co2+ is small, and the maximum stimulation brought by Mn2+ is 9 times that brought by Co2+. Exposure of the enzyme to Zn2+ (5 microM), prior to the assay or within the reaction mixture containing Co2+, causes a marked inhibition of Ap4A hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
To study the nature of adrenergic stimulation of ions and water reabsorption in the newt renal distal tubule, stationary microperfusion of the nephron and electron probe analysis were used. After application of norepinephrine (NE 10(-6) M) to the tubule surface, the fractional reabsorption of fluid increased from 15.0 +/- 3.1 to 41.30 +/- 10.4% (n = 7, p < 0.01), of Na+ from 69.30 +/- 6.6 to 79.10 +/- 7.5% (p < 0.05), Cl- from 63.30 +/- 7.6 to 72.40 +/- 7.9% (p < 0.05). Instead of secretion (control), there was reabsorption of K+. Fractional reabsorption of Ca2+ decreased from 51.00 +/- 6.0 to 43.00 +/- 7.0% (p < 0.05). The nonspecific alpha-adrenergic antagonist dibenamine 10(-6) M completely inhibited the effect of NE while, under the action of propranolol (2 x 10(-6) M) NE increased ion and water reabsorption significantly. When applied alone, or with NE, the specific alpha 2-adrenoblocker idazoxan, 2 x 10(-6) M, did not interfere with reabsorption in the distal tubule. At the same time, under the action of alpha 1-adrenoblocker prazosin 2 x 10(-6) M NE, increased the fractional reabsorption of fluid from 24.10 +/- 3.4 to 44.40 +/- 4.0% (n = 6, p < 0.001). These results serve as evidence that there exist specific alpha 2-adrenoceptors in the newt distal tubule the stimulation of which increases membrane permeability of the distal tubule to water, Na+, K+, Cl-, but not to Ca2+.  相似文献   

9.
The allantoic sac of the chick embryo functions as a primitive urinary bladder, storing and modifying the excretory fluid produced by the embryo. We have used chick embryos grown in shell-less culture to study the in situ handling of Ca2+ by the allantoic epithelium. Between Days 8 and 13 of incubation (38 degrees C, 5% CO2), the [Ca2+] of the allantoic sac fluid declines from about 1.5 mM to less than 0.3 mM, with most of this Ca2+ reabsorption occurring between Days 10 and 11. In 13-day-old embryos, the allantoic epithelium reabsorbs within 24 hr 85-92% of 45Ca2+ injected into the allantoic sac, while in 9-day-old embryos 45Ca2+ reabsorption is less than 40% by 24 hr. This is evidence for the developmental onset of a Ca2+ reabsorption process in the allantoic epithelium. The allantoic fluid Ca2+ is reabsorbed into the embryo's blood in which the serum [Ca2+] is about 1.5 mM. Also, electrical potential profiles reveal that the serosal (mesenchymal) side of the allantoic epithelium is 15-30 mV positive compared to the mucosal (luminal) side. Thus, by electrochemical criteria this reabsorption process appears to be active.  相似文献   

10.
The metal ion requirement for both enzymatic activitiesof the bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosaminekinase (E.C. 5.1.3.14/ 2.7.1.60), the key enzyme of N-acetylneuraminic acidbiosynthesis in ratliver, was investigated. UDP-N-acetylglucosamine 2-epimerase was active inimida-zole/HCl buffer in the complete absence of any metal ion. 200 mM Na + , K + , Rb + and Cs +activated enzymeactivity up to five-fold, whereas lower concentrations of thesemonovalent metal ions showed only a small effect on UDP-N-acetylglucosamine 2-epimeraseactivity. In sodium phosphate buffer the enzyme activitywas increased by 0.5 mM Mg , Sr , Ba and Mn , while in the presence of 200 mM NaCl UDP-N-acetyl-glucosamine2-epimerase activity showed astronger activation by these divalent metal ions. In imidazole/HClbuffer, UDP-N-acetylglucosamine2-epimerase activity was partially inhibited by 0.5 mM Be , Mg , Ba ,Mn , Sn and Fe , and completely inhibited by 0.5 mM Zn and Cd . Divalent metal ions were essen-tialforN-acetylmannosamine kinase activity, the most effective being Mg , followed byMn and Co .The optimal concentration of these metal ions was 3 mM. Less effective were Ni and Cd , whereas Ca ,Ba , Cu , Fe and Zn showed no effect on enzyme activity.  相似文献   

11.
New evidence for active sodium transport from fluid-filled rat lungs   总被引:4,自引:0,他引:4  
The hypothesis that fluid reabsorption from the air spaces is mediated at least in part by active transport of Na+ was investigated in six sets of experiments conducted in isolated fluid-filled rat lungs. Fluid reabsorption was monitored by following the changes in the air space concentration of labeled albumin. We found that incorporation of bicarbonate rather than a nonvolatile buffer (N-2-hydroxy-ethylpiperazine-N'-2-ethanesulfonic acid) in the air space solution more than doubled the rate of fluid reabsorption. Addition of 10(-4) M amiloride to the air space solution reduced the rate of fluid reabsorption over a 2-h experiment from 1.2 +/- 0.1 to 0.7 +/- 0.1 ml and decreased reabsorption of both labeled and unlabeled Na+ from the air spaces. To show that Na+ could be reabsorbed from the air spaces even if the concentrations of Na+ in the perfusate increased above those in the air space, mannitol (150 mM) was added to the perfusate and air space solutions and the concentrations of Na+ and Cl- were reduced to 90 and 60 mM, respectively. Mannitol diffuses across the pulmonary epithelium very slowly, and it osmotically restrained the movement of water out of the air spaces. Na+ concentrations in the perfusate increased by 10 +/- 2 mM, but concentrations in the air space remained unchanged. Despite an increasingly unfavorable concentration gradient for Na+, 0.2 mmol Na+ and 0.6 ml water were reabsorbed from the air spaces in 2 h. Ouabain (10(-4) M) did not appear to slow fluid reabsorption in the presence of mannitol, but it reduced K+ secretion into the air spaces and increased K+ appearance in the perfusate in a manner consistent with inhibition of Na+-K+-adenosinetriphosphatase at the basolateral surface of the epithelial cells. Fluid reabsorption was not altered when the lungs were exposed to a hypotonic solution (185 mM), but secretion of K+ into the air spaces was accelerated and K+ was lost from the perfusate. These experiments are consistent with active Na+ transport from the air spaces.  相似文献   

12.
Damage to the stomach results in excessive movement of hydrogen ion (H+) out of the lumen, and increased movement of sodium (Na+) and potassium (K+) into the lumen. Histamine liberation during damage probably adds to the destruction by increased capillary permeability and formation of edema. Previous reports have shown that the synthetic prostaglandin analogue 16,16-dimethyl prostaglandin E2 (Dm PGE2) protects dog gastric mucosa from aspirin- and ethanol-induced gastric mucosa damage. The effects of dm PGE2 on bile salt (sodium taurocholate) induced injury has not been investigated. Using the canine Heidenhain pouch, the present study examined the action of dm PGE2 on gastric mucosal damage induced by 5 mM sodium taurocholate in 100 mM HCl. Bile salt damaged the pouch mucosa as evidenced by an increased loss of H+, and increased net fluxes of both Na+ and K+. There was also an increase in the histamine content of the fluid irrigating the Heidenhain pouch. Intravenous injection of dm PGE2 in the doses 0.1 and 1.0 microgram/kg 1/2 h before administration of the sodium taurocholate in HCl significantly reduced the net loss of H+ and the gain of Na+, K+, and histamine. It is concluded the dm PGE2 effectively protects the canine gastric mucosa from the damaging effects of bile salt and that the mechanism of dm PGE2 protection of canine oxyntic mucosa may be mediated in part via inhibition of the gastric mucosal release of histamine.  相似文献   

13.
The effect of sodium concentration on the absorption kinetics of glucose, galactose and 3-o-methyl-glucose in rat and hamster jejunum in vivo has been studied. In consecutive 1 min periods the total absorption and absorption in presence of 0.5 mM phlorizin were measured. The difference between them was taken as the active transport rate. The perfusion rate value was 5.6 ml X min-1 and sugar concentrations in the perfusion solution ranged from 1 to 10 mM. The results for the different sodium concentrations show a nearly common Vmax for the same sugar and animal species, while the apparent KT values increase when the sodium concentration in the lumen decreases, mimicking a pure affinity-type activation system. The absorption of sugar when solutions without Na+ are perfused, is greater than that entering passively in the presence of phlorizin. An explanation may be that appreciable amounts of endogenous Na+ find their way to the intestinal lumen in favour of the gradient, making Na+-sugar cotransport possible.  相似文献   

14.
M E Trimble 《Life sciences》1975,17(12):1799-1806
In the isolated perfused rat kidney, sodium reabsorption is enhanced in the presence of 5.5 mM D-glucose. However, it is unclear whether this effect is metabolic or whether it is due to a requirement for sodium transport in the process of glucose reabsorption. A third possibility is solvent drag. In an attempt to differentiate between these possibilities, kidneys were perfused with the D-glucose isomer, L-glucose (L-G), a nonmetabolizable hexose. At a perfusate concentration of 5.5 mM L-G, per cent L-G reabsorption was approximately 30. Inhibition of L-G reabsorption by D-glucose suggests carrier-mediated transport. In the presence of 5.5 mM L-G, sodium reabsorption approximated 92% during the course of perfusion. When L-G was omitted from perfusate, sodium reabsorption ultimately declined to 85%. Since significant metabolism of L-G was not observed, the results are compatible with the hypothesis that enhanced sodium reabsorption may be brought about by some still to be defined aspect of glucose transport.  相似文献   

15.
Blockers of the transient outward current (4-aminopyridine) and the Ca current (Co2+) as well as injection of polarizing current during the plateau were used to assess the role of these current systems as determinants of action potential duration at different pacing rates. Papillary muscles and ventricular trabecula were superfused with oxygenated Krebs solution at 33 degrees C and driven at a basic rate of 1 Hz. The effects of varying the frequency of stimulation between 0.1 and 4 Hz on action potential parameters were determined under control conditions and during exposure to 2 mM 4-aminopyridine, 1-3 mM CoCl2, or a mixture of 4-aminopyridine and CoCl2. The control relationship between action potential duration and pacing rate showed a maximum between 1 and 2 Hz. Under 4-aminopyridine, the plateau height and the action potential duration increased. The rate-dependent shortening of the action potential at frequencies below 1 Hz was reduced or abolished, and enhanced shortening was observed at rates above 1 Hz. Exposure to Co2+ reduced the action potential shortening at rates higher than 1 Hz. Both blockers, 4-aminopyridine and Co2+ were necessary to eliminate the rate-dependent changes of the action potential duration. Our results indicated that both the transient outward current and the inward calcium current determine the plateau height and duration for frequencies less than or equal to 2 Hz, whereas at higher rates, the Ca current plays a dominant role.  相似文献   

16.
The role of Na(+) and Cl(-) in fluid reabsorption by the efferent ducts was examined by perfusing individual ducts in vivo with preparations of 160 mM NaCl in which the ions were replaced, together or individually, with organic solutes while maintaining the osmolality at 300 mmol/kg. Progressively replacing NaCl with mannitol reduced net reabsorption of water and the ions in a concentration-dependent manner, and caused net movement into the lumen at concentrations of NaCl less than 80 mM. The net rates of flux were lower for Na(+) than for Cl(-). In collectates, [Na(+)] was greater than [Cl(-)], indicating that Cl(-) transport is probably linked with another anion. Replacing either Na(+) or Cl(-) in perfusates (with choline and isethionate, respectively) while maintaining the other inorganic ion at 160 mM also reduced net rates of reabsorption in a concentration-dependent manner to zero when either ion was completely replaced. There were no significant differences in the osmolality of perfusate and collectate, and collectates contained a mean of 3.4 mM K(+), indicating a backflux of K(+) into the lumen. It is concluded that fluid reabsorption from the efferent ducts is dependent on the transport of both Na(+) and Cl(-) from the lumen (from a luminal concentration of at least 70-80 mM), and that Cl(-) transport is dependent on another anion. The epithelium is permeable to K(+) and has a higher permeability to a range of organic solutes (mannitol, choline, and isethionate) than epithelium in the proximal kidney tubules.  相似文献   

17.
Prolonged incubation of zinc-zinc leucine aminopeptidase (bovine lens) (EC 3.4.1.1) with 0.05 M CoCl2 and M KCl in 0.2 M N-ethylmorpholine-HCl at pH 7.5 and 37 degrees yields an active enzyme in which 2 g atoms of Co2+ per 54,000 dalton subunit have replaced the Zn2+. Incubation of cobalt-cobalt leucine aminopeptidase with various AnCl2 concentrations or zinc-zinc leucine aminopeptidase with various CoCl2 concentrations in M KCl and 0.2 M N-ethylmorpholine-HCl at pH 7.5 and 37 degrees demonstrates that Co2+ and Zn2+ compete reversibly for two independent binding sites per subunit for which the ratio of the association constants for Zn2+ and Co2+ (1KZn:1KCo = 1KZn/Co; 2KZn:2KCo = 2KZn/Co) are 115 and 15.9 for sites 1 and 2, respectively. The specific activities of the various species of enzyme with 2 mM L-leucine p-nitroanilide as substrate in 0.2 M N-ethylmorpholine-HCl and 0.01 M NaHCO3 at pH 7.5 are estimated to be (in micromoles per min per mg) 0.043 for the zinc-zinc. 0.039 for the zinc-cobalt, 0.541 for the cobalt-zinc, and 0.536 for the cobalt-cobalt forms, which implies that activity is affected only when cobalt is substituted at site 1, the "activation site." The site, at which cobalt substitution has no effect on activity, is designated the "structural site." The value of Km for cobalt-cobalt leucine aminopeptidase with L-leucine p-nitroanilide as substrate in 0.2 M N-ethylmorpholine-HCl at pH 7.5 containing 0.01 M NaHCO3 at 30 degrees is 0.52 mM while Vmax is 0.90 mumol per min per mg. In the additional presence of 1 M KCl, Km is 0.19 mM while Vmax is 0.68 mumol per min per mg.  相似文献   

18.
Louise F.B. Green   《Tissue & cell》1979,11(4):673-703
The Malpighian tubules of the glow-worm Arachnocampa luminosa are divided into four morphologically distinct regions (Parts 1--4) each comprised of a different cell type (Types I--IV). The ultrastructure of Type II cells is indicative of a transport function. The basal cell surface is highly invaginated and at the apical surface the lumen is lined with microvilli about 80% of which contain mitochondria. Spherites contained in these cells are formed from small vesicles produced by the Golgi apparatus. They have a central uric acid core enclosed by laminations of phosphates of calcium and magnesium. Cells of Part 2 of the tubule secrete a fluid high in potassium (173 mM) and low in sodium (18 mM). The cell is 30 mV negative and the lumen 44 mV positive to the bathing solution. This is consistent with the proposal of an apical cation pump. The secretion produced by Part 2 of the tubules is modified by the Type I cells by the reabsorption of potassium (162 mM) and the addition of sodium (24 mM) to the primary excretory fluid. Type I cells are 20 mV negative and the lumen 22 mV positive with respect to the bathing medium. From ultrastructural observations, Type I cells exhibit features characteristic of transporting cells thought to have an absorptive function. The basal and apical cell surfaces are extensively folded, and mitochondria are found in bands above the basal infoldings and below the microvilli. Mitochondria do not penetrate the microvilli. On comparative grounds, the fine structure of Type I cells suggest that they reabsorb ions from the tubule lumen. Energy for these processes may come from the breakdown of lipids by microperoxisomes contained within these cells. Alternatively, the fluid produced by Part 2 of the tubule may be modified passively by diffusional processes across Type I cells.  相似文献   

19.
It is important to identify the signal transduction pathway involved in the regulation of fluid reabsorption by the ductuli efferentes of the testis because they reabsorb most of the fluid leaving the testis and are essential for male fertility. Microperfusion studies of the ducts in vivo showed that 0.1 or 1.0 mM dibutyryl (db)-cGMP in the perfusate had no effect on fluid reabsorption, but 0.1 mM db-cAMP significantly reduced fluid reabsorption, 0.25 mM abolished reabsorption, and 0.5-1.0 mM caused secretion. The inhibitory effect of db-cAMP was reversible. Although the presence of db-cAMP in the perfusate did not affect the concentration of Na+ in the collectate, the concentrations of K(+) and Cl(-) increased, indicating that their transport is at least partly regulated by cAMP. Including the phosphodiesterase inhibitor pentoxifylline in the perfusate decreased fluid reabsorption by the ducts in a dose-dependent manner, and it also increased the concentration of cAMP (5.5-fold) in collectate. Pentoxifylline also increased the production of cAMP (4-fold) by ducts incubated in vitro. It is concluded that cAMP, but probably not cGMP, is an intracellular messenger regulating fluid reabsorption in the efferent ducts.  相似文献   

20.
Micropuncture technique and electron microprobe analysis have been used to investigate the role of noradrenalin in ion and water balance in the renal tubules of the lamprey Lampetra fluviatilis and newt Triturus vulgaris. Noradrenalin decreased Na, K, and Ca concentrations in the proximal lumen of the lamprey increasing the value of (TF/P)in from 1.1 +/- 0.1 to 1.3 +/- 0.1 (p less than 0.001). Regitin blocked these effects. Noradrenalin perfusion of the peritubular capillaries in newt kidney increased ion and water reabsorption in the proximal segment of the nephron and resulted in differential changes of ion transport in the distal tubule, increasing reabsorption of Na, Cl and K and inhibiting that of Ca and Mg. The rate of glomerular filtration in the nephron remained practically unaffected. The data obtained reveal direct effect of noradrenalin on the renal tubular function in lower vertebrates, this effect being realized presumably via alpha-adrenoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号