首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins destined for the mitochondrial matrix space have leader sequences that are typically present at the most N-terminal end of the nuclear-encoded precursor protein. The leaders are rich in positive charges and usually deficient of negative charges. This observation led to the acid-chain hypothesis to explain how the leader sequences interact with negatively charged receptor proteins. Here we show using both chimeric leaders and one from isopropyl malate synthase that possesses a negative charge that the leader need not be at the very N terminus of the precursor. Experiments were performed with modified non-functioning leader sequences fused to either the native or a non-functioning leader of aldehyde dehydrogenase so that an internal leader sequence could exist. The internal leader is sufficient for the import of the modified precursor protein. It appears that this leader still needs to form an amphipathic helix just like the normal N-terminal leaders do. This internal leader could function even if the most N-terminal portion contained negative charges in the first 7-11 residues. If the first 11 residues were deleted from isopropyl malate synthase, the resulting protein was imported more successfully than the native protein. It appears that precursors that carry negatively charged leaders use an internal signal sequence to compensate for the non-functional segment at the most N-terminal portion of the protein.  相似文献   

2.
An in vitro expression plasmid (pGRAP) that contained the cDNA coding for the rat mitochondrial aldehyde dehydrogenase precursor was constructed, mRNA was synthesized then translated, and the in vitro synthesized precursor of aldehyde dehydrogenase was used in an in vitro import assay. As expected the 19 amino acid signal peptide of the precursor allowed import of the precursor into rat liver mitochondria. This in vitro system was used to examine the effect of alcohols on import. It was found that the alcohols (ethyl, butyl, hexyl, and octyl) tested inhibited the import of the aldehyde dehydrogenase precursor. Pretreatment of the mitochondria with alcohol was responsible for the inhibition. The inhibition appeared to be relatively specific for pre-aldehyde dehydrogenase as the precursor of ornithine transcarbamylase was still imported in the presence of alcohols. Of potential physiological significance was finding that ethanol inhibited import in a dose-response fashion; 50% inhibition occurred at 75 mM, a concentration achievable during the ingestion of alcohol. In addition, the concentrations of alcohols required to produce an inhibitory effect on import decreased as the hydrocarbon chain length of alcohols increased. The inhibitory effect of alcohols appeared to be specific as other solvents examined did not inhibit import. We postulate that alcohols may perturb the mitochondrial membrane and affect the receptor-translocator necessary for the import of the aldehyde dehydrogenase precursor.  相似文献   

3.
Tom20 and Tom34 are mammalian liver proteins previously identified by others to be components of the mitochondrial import translocation apparatus. It has been shown that Tom20 interacts with the leader sequence of nuclear coded matrix space precursor proteins. Here we show with recombinantly expressed Tom proteins that Tom34 binds the mature portion of the precursor and not the leader. Both these Tom proteins inhibited the import of newly translated precursor of aldehyde dehydrogenase in an in vitro assay. Only Tom20 inhibited the import of a fusion protein of the leader of aldehyde dehydrogenase attached to dihydrofolate reductase. Antibodies against Tom20 coprecipitated both the precursor of aldehyde dehydrogenase (pALDH) and of dihydrofolate reductase (pA-DHFR). Antibodies against Tom34 interacted only when the mature portion of aldehyde dehydrogenase was present. Similar import inhibition patterns were found when other precursor and chimeric constructs we investigated. When Tom34-green fluorescence protein was transfected to HeLa cells it was observed that Tom34 was found through out the cell. It is concluded from our observation that Tom34 is a cytosolic protein, whose role appeared to be to interact with mature portion of some preproteins and may keep them in an unfolded, import compatible state.  相似文献   

4.
We investigated the dual targeting signal of pea glutathione reductase (GR) that had been previously shown to be capable of targeting the passenger protein phosphinothricin acetyl transferase to mitochondria and chloroplasts in vivo. We confirmed that GR was imported into mitochondria and chloroplasts in vitro. Rupture of the outer mitochondrial membrane after the import assay indicated that GR was imported into both the intermembrane space and the matrix. Changing positive and hydrophobic residues in the targeting signal we investigated if dual targeting of GR was due to an overlapping or separate signal. Overall single mutations had a greater effect on mitochondrial import compared to chloroplasts, especially those on positive residues. Precursors containing both positive and hydrophobic residue mutations (double mutants) indicated that there might be some redundancy in targeting information for chloroplastic import as double mutants had a greater effect than predicted from the single mutants. Fusion of the targeting signal to the green fluorescent protein (GFP) followed by transient transformation indicated that this signal was only capable of targeting this passenger protein to plastids. Additionally, fusion of the complete coding sequence of GR to GFP also resulted in an exclusive chloroplastic localization. Mutations in the targeting signal that reduced import into plastids in vitro also displayed altered patterns of GFP localizations in vivo. These results indicate that some residues in the signal for dual localisation of GR play a role in both mitochondrial and chloroplastic import, and thus the signal is overlapping.  相似文献   

5.
The Saccharomyces cerevisiae F1-ATPase beta subunit precursor contains redundant mitochondrial protein import information at its NH2 terminus (D. M. Bedwell, D. J. Klionsky, and S. D. Emr, Mol. Cell. Biol. 7:4038-4047, 1987). To define the critical sequence and structural features contained within this topogenic signal, one of the redundant regions (representing a minimal targeting sequence) was subjected to saturation cassette mutagenesis. Each of 97 different mutant oligonucleotide isolates containing single (32 isolates), double (45 isolates), or triple (20 isolates) point mutations was inserted in front of a beta-subunit gene lacking the coding sequence for its normal import signal (codons 1 through 34 were deleted). The phenotypic and biochemical consequences of these mutations were then evaluated in a yeast strain deleted for its normal beta-subunit gene (delta atp2). Consistent with the lack of an obvious consensus sequence for mitochondrial protein import signals, many mutations occurring throughout the minimal targeting sequence did not significantly affect its import competence. However, some mutations did result in severe import defects. In these mutants, beta-subunit precursor accumulated in the cytoplasm, and the yeast cells exhibited a respiration defective phenotype. Although point mutations have previously been identified that block mitochondrial protein import in vitro, a subset of the mutations reported here represents the first single missense mutations that have been demonstrated to significantly block mitochondrial protein import in vivo. The previous lack of such mutations in the beta-subunit precursor apparently relates to the presence of redundant import information in this import signal. Together, our mutants define a set of constraints that appear to be critical for normal activity of this (and possibly other) import signals. These include the following: (i) mutant signals that exhibit a hydrophobic moment greater than 5.5 for the predicted amphiphilic alpha-helical conformation of this sequence direct near normal levels of beta-subunit import (ii) at least two basic residues are necessary for efficient signal function, (iii) acidic amino acids actively interfere with import competence, and (iv) helix-destabilizing residues also interfere with signal function. These experimental observations provide support for mitochondrial protein import models in which both the structure and charge of the import signal play a critical role in directing mitochondrial protein targeting and import.  相似文献   

6.
7.
Mitochondrial import signals have been shown to function in many steps of mitochondrial protein import. Previous studies have shown that the F1-ATPase beta-subunit precursor (pre-F1beta) of the yeast Saccharomyces cerevisiae contains an extended, functionally redundant mitochondrial import signal at its amino terminus. However, the full significance of this functionally redundant targeting sequence has not been determined. We now report that the extended pre-F1beta signal acts to maintain the precursor in an import-competent conformation prior to import, in addition to its previously characterized roles in mitochondrial targeting and translocation. We found that this extended signal is required for the efficient posttranslational mitochondrial import of pre-F1beta both in vivo and in vitro. To determine whether the pre-F1beta signal directly influences precursor conformation, fusion proteins that contain wild-type and mutant forms of the pre-F1beta import signal attached to the model passenger protein dihydrofolate reductase (DHFR) were constructed. Deletions that reduced the import signal to a minimal functional unit decreased both the half-time of precursor folding and the efficiency of mitochondrial import. To confirm that the reduced mitochondrial import associated with this truncated signal was due to a defect in its ability to maintain DHFR in a loosely folded conformation, we introduced structurally destabilizing missense mutations into the DHFR passenger to block precursor folding independently of the import signal. We found that the truncated signal imported this destabilized form of DHFR as efficiently as the intact targeting signal, indicating that the primary defect associated with the minimal signal is an inability to maintain the precursor in a loosely folded conformation. Our results suggest that the loss of this intramolecular chaperone function leads to defects in the early stages of the import process.  相似文献   

8.
Intracellular delivery of the mitochondrial F1-ATPase beta-subunit precursor from the cytoplasm into the matrix of mitochondria is prevented by deletion of its mitochondrial import signal, a basic amphipathic alpha-helix at its amino terminus. Using a complementation assay, we have selected spontaneous mutations which restore the correct in vivo localization of the protein containing the import signal deletion. Analysis of these mutations revealed that different functional surrogate mitochondrial targeting signals formed within a narrow region of the extreme amino terminus of the import signal deleted beta-subunit. These modifications specifically replace different acidic residues with neutral or basic residues to generate a less acidic amphipathic helix within a region of the protein which is accessible for interaction with the membrane surface. The observations of this study confirm the requirement for amphipathicity as part of the mitochondrial import signal and suggest how mitochondrial targeting signals may have evolved within the extreme amino terminus of mitochondrial proteins.  相似文献   

9.
A deletion and mutagenesis study was performed on the mitochondrial presequence of the beta-subunit of the F(1)-ATP synthase from Nicotiana plumbaginifolia linked to the green fluorescent protein (GFP). The various constructs were tested in vivo by transient expression in tobacco protoplasts. GFP distribution in transformed cells was analysed in situ by confocal microscopy, and in vitro in subcellular fractions by Western blotting. Despite its being highly conserved in different species, deletion of the C-terminal region (residues 48-54) of the presequence did not affect mitochondrial import. Deletion of the conserved residues 40-47 and the less conserved intermediate region (residues 18-39) resulted in 60% reduction in GFP import, whereas mutation of conserved residues within these regions had little effect. Further shortening of the presequence progressively reduced import, with the construct retaining the predicted N-terminal amphiphilic alpha-helix (residues 1-12) being unable to mediate mitochondrial import. However, point mutation showed that this last region plays an important role through its basic residues and amphiphilicity, but also through its hydrophobic residues. Replacing Arg4 and Arg5 by alanine residues and shifting the Arg5 and Leu6 (in order to disturb amphiphilicity) resulted in reduction of the presequence import efficiency. The most dramatic effects were seen with single or double mutations of the four Leu residues (positions 5, 6, 10 and 11), which resulted in marked reduction or abolition of GFP import, respectively. We conclude that the N-terminal helical structure of the presequence is necessary but not sufficient for efficient mitochondrial import, and that its hydrophobic residues play an essential role in in vivo mitochondrial targeting.  相似文献   

10.
Previous studies pointed to the importance of leucine residues in the binding of mitochondrial leader sequences to Tom20, an outer membrane protein translocator that initially binds the leader during import. A bacteria two-hybrid assay was here employed to determine if this could be an alternative way to investigate the binding of leader to the receptor. Leucine to alanine and arginine to glutamine mutations were made in the leader sequence from rat liver aldehyde dehydrogenase (pALDH). The leucine residues in the C-terminal of pALDH leader were found to be essential for TOM20 binding. The hydrophobic residues of another mitochondrial leader F1beta-ATPase that were important for Tom20 binding were found at the C-terminus of the leader. In contrast, it was the leucines in the N-terminus of the leader of ornithine transcarbamylase that were essential for binding. Modeling the peptides to the structure of Tom20 showed that the hydrophobic residues from the three proteins could all fit into the hydrophobic binding pocket. The mutants of pALDH that did not bind to Tom20 were still imported in vivo in transformed HeLa cells or in vitro into isolated mitochondria. In contrast, the mutant from pOTC was imported less well ( approximately 50%) while the mutant from F1beta-ATPase was not imported to any measurable extent. Binding to Tom20 might not be a prerequisite for import; however, it also is possible that import can occur even if binding to a receptor component is poor, so long as the leader binds tightly to another component of the translocator.  相似文献   

11.
Point mutations in the presequence of the mitochondrial alcohol dehydrogerase isoenzyme (ADH III) have been shown to affect either the import of the precursor protein into yeast mitochondria in vivo or its processing within the organelle. In the present work, the behavior of these mutants during in vitro import into isolated mitochondria was investigated. All point mutants tested were imported with a slower initial rate than that of the wild-type precursor. This defect was corrected when the precursors were treated with urea prior to import. Once imported, the extent of processing to the mature form of mutant precursors varied greatly and correlated well with the defects observed in vivo. This result was not affected by prior urea treatment. When matrix extracts enriched for the processing protease were used, this defect was shown to be due to failure of the protease to efficiently recognize or cleave the presequence, rather than to a lack of access to the precursor. The rate of import of two ADH III precursors bearing internal deletions in the leader sequence was similar to those of the point mutants, whereas a deletion leading to the removal of the 15 amino-terminal amino acids was poorly imported. The mature amino terminus of wild-type ADH III was determined to be Gln-25. Mutant m01 (Ser-26 to Phe), which reduced the efficiency of cleavage in vitro by 80%, was cleaved at the correct site.  相似文献   

12.
It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.  相似文献   

13.
Yeast adenylate kinase (Aky2p, Adk1p) occurs simultaneously in cytoplasm and mitochondrial intermembrane space. It has no cleavable mitochondrial targeting sequence, and the signal for mitochondrial import and submitochondrial sorting is largely unknown. The extreme N terminus of Aky2p is able to direct cytoplasmic passengers to mitochondria. However, an Aky2 mutant lacking this sequence is imported with about the same efficiency as the wild type. To identify possible import-relevant information in the interior, parts of Aky2p were exchanged by homologous in vitro recombination for the respective segments of the purely cytoplasmic isozyme, Ura6p. Import studies revealed an internal region of about 40 amino acids, which was sufficient to direct the chimera to mitochondria but not for correct submitochondrial sorting. The respective Ura6p hybrid was arrested in the mitochondrial membrane at a position where it was inaccessible to protease but was released by alkaline extraction, suggesting that it had entered an import channel and passed the initial steps of recognition and uptake. Site-specific mutations within the presumptive address-specifying segment identified the amphipathic helix 5. A Ura6 mutant protein in which helix 5 had been replaced with the respective sequence from Aky2p was imported, and this address sequence cooperates with the N terminus in the respective double mutant in a synergistic fashion.  相似文献   

14.
The requirements for protein import into mitochondria was investigated by using the targeting signal of the F(A)d subunit of soybean mitochondrial ATP synthase attached to two different passenger proteins, its native passenger and soybean alternative oxidase. Both passenger proteins are soybean mitochondrial proteins. Changing hydrophobic residues at positions -24:25 (Phe:Leu), -18:19 (Ile:Leu) and -12:13 (Leu:Ile) of the 31 amino acid cleavable presequence gave more than 50% inhibition of import with both passenger proteins. Some other residues in the targeting signal played a more significant role in targeting of one passenger protein compared to another. Notably changing positive residues (Arg, Lys) had a greater inhibitory affect on import with the native passenger protein, i.e. greater inhibition of import with F(A)d mature protein was observed compared to when alternative oxidase was the mature protein. When using chimeric passenger proteins it was shown that the nature of the mature protein can greatly affect the targeting properties of the presequence. In vivo investigations of the targeting presequence indicated that the presequence of 31 amino acids could not support import of GFP as a passenger protein. However, fusion of the full-length F(A)d coding sequence to GFP did result in mitochondrial localisation of GFP. Using the latter fusion we confirmed the critical role of hydrophobic residues at positions -24:25 and -18:19. These results support the proposal that core mitochondrial targeting features exist in all presequences, but that additional features exist. These features may not be evident with all passenger proteins.  相似文献   

15.
Chk2 is a nuclear protein kinase involved in the DNA damage-induced ataxia telangiectasia mutated-dependent checkpoint arrest at multiple cell cycle phases. Searching for Chk2-binding proteins by a yeast two-hybrid system, we identified a strong interaction with karyopherin-alpha2 (KPNA-2), a gene product involved in active nuclear import of proteins bearing a nuclear localization signal (NLS). This finding was confirmed by glutathione S-transferase pull-down and co-immunoprecipitation assays. Of the three predicted Chk2 NLSs, located at amino acids 179-182 (NLS-1), 240-256 (NLS-2), and 515-522 (NLS-3), only the latter mediated the interaction with KPNA-2 in the yeast two-hybrid system, and in particular with its C terminus. Unlike mutations in NLS-1 or NLS-2, which left the nuclear localization of Chk2 unaffected, mutations in NLS-3 caused a cytoplasmic relocalization, indicating that the NLS-3 motif acts indeed as NLS for Chk2 in vivo. Finally, co-transfection experiments with green fluorescent protein (GFP)-Chk2 and wild type or mutant KPNA-2 confirmed the role of KPNA-2 in nuclear import of Chk2.  相似文献   

16.
The NH2 terminus of the yeast F1-ATPase beta subunit precursor directs the import of this protein into mitochondria. To define the functionally important components of this import signal, oligonucleotide-directed mutagenesis was used to introduce a series of deletion and missense mutations into the gene encoding the F1-beta subunit precursor. Among these mutations were three nonoverlapping deletions, two within the 19-amino-acid presequence (delta 5-12 and delta 16-19) and one within the mature protein (delta 28-34). Characterization of the mitochondrial import properties of various mutant F1-beta subunit proteins containing different combinations of these deletions showed that import was blocked only when all three deletions were combined. Mutant proteins containing all possible single and pairwise combinations of these deletions were found to retain the ability to direct mitochondrial import of the F1-beta subunit. These data suggest that the F1-beta subunit contains redundant import information at its NH2 terminus. In fact, we found that deletion of the entire F1-beta subunit presequence did not prevent import, indicating that a functional mitochondrial import signal is present near the NH2 terminus of the mature protein. Furthermore, by analyzing mitochondrial import of the various mutant proteins in [rho-] yeast, we obtained evidence that different segments of the F1-beta subunit import signal may act in an additive or cooperative manner to optimize the import properties of this protein.  相似文献   

17.
To identify yeast cytosolic proteins that mediate targeting of precursor proteins to mitochondria, we developed an in vitro import system consisting of purified yeast mitochondria and a radiolabeled mitochondrial precursor protein whose C terminus was still attached to the ribosome. In this system, the N terminus of the nascent chain was translocated across both mitochondrial membranes, generating a translocation intermediate spanning both membranes. The nascent chain could then be completely chased into the mitochondrial matrix after release from the ribosome. Generation of this import intermediate was dependent on a mitochondrial membrane potential, mitochondrial surface proteins, and was stimulated by proteins that could be released from the ribosomes by high salt. The major salt-released stimulatory factor was yeast nascent polypeptide-associated complex (NAC). Purified NAC fully restored import of salt-washed ribosome-bound nascent chains by enhancing productive binding of the chains to mitochondria. We propose that ribosome-associated NAC facilitates recognition of nascent precursor chains by the mitochondrial import machinery.  相似文献   

18.
A mutation in the mitochondrial targeting sequence was characterized in a male patient with X chromosome-linked pyruvate dehydrogenase E1 alpha deficiency. The mutation was a base substitution of G by C at nucleotide 134 in the mitochondrial targeting sequence of the PDHA1 gene, resulting in an arginine-to-proline substitution at codon 10 (R10P). Pyruvate dehydrogenase activity in cultured skin fibroblasts was 28% of the control value, and immunoblot analysis revealed a decreased level of pyruvate dehydrogenase E1 alpha immunoreactivity. Chimeric constructs in which the normal and mutant pyruvate dehydrogenase E1 alpha targeting sequences were attached to the mitochondrial matrix protein ornithine transcarbamylase were synthesized in a cell free translation system, and mitochondrial import of normal and mutant proteins was compared in vitro. The results show that ornithine transcarbamylase targeted by the mutant pyruvate dehydrogenase E1 alpha sequence was translocated into the mitochondrial matrix at a reduced rate, suggesting that defective import is responsible for the reduced pyruvate dehydrogenase level in mitochondria. The mutation was also present in an affected brother and the mildly affected mother. The clinical presentations of this X chromosome-linked disorder in affected family members are discussed. To our knowledge, this is the first report of an amino acid substitution in a mitochondrial targeting sequence resulting in a human genetic disease.  相似文献   

19.
20.
An apparent conservative mutation, Leu to Val, at the second residue of the rat liver mitochondrial aldehyde dehydrogenase (ALDH) presequence resulted in a precursor protein that was not imported into mitochondria. Additional mutants were made to substitute various amino acids with nonpolar side chains for Leu2. The Ile, Phe, and Trp mutants were imported to an extent similar to that of the native precursor, but the Ala mutant was imported only about one-fourth as well. It was shown that the N-terminal methionine was removed from the L2V mutant in a reaction catalyzed by methionine aminopeptidase. The N-terminal methionine of native pALDH and the other mutant presequences was blocked, presumably by acetylation. Because of the difference in co-translational modification, the L2V mutant sustained a significant loss in the available hydrophobic surface of the presequence. Import competence was restored to the L2V mutant when it was translated using a system that did not remove Met1. The removal of an Arg-Gly-Pro helix linker segment (residues 11-14) from the L2V mutant, which shifted three leucine residues toward the N-terminus, also restored import competence. These results lead to the conclusion that a minimum amount of hydrophobic surface area near the N-termini of mitochondrial presequences is an essential property to determine their ability to be imported. As a result, both electrostatic and hydrophobic components must be considered when trying to understand the interactions between precursor proteins and proteins of the mitochondrial import apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号