首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants were grown in field conditions in the wide area under normal water supply and severe water deficit. Two wheat (Triticum aestivum L.) genotypes contrasting by architectonics and differing in drought-resistance were used: Giymatli-2/17, short stature, with broad and drooping leaves, drought-sensitive, and Azamatli-95, short stature, with vertically oriented small leaves, drought-tolerant). It was found out that Giymatli-2/17 was characterized by relatively low content of Chl a-protein of PS I (CP I) and beta-subunit of ATP-synthase complex, the high content of proteins in the 33-30.5 kDa region and LHC polypeptides (28-24.5 kDa), the intensive fluorescence at 740 nm and more high photochemical activity of PS II under normal irrigation compared with Azamatli-95. However, the content of CP I (M(r) 115 kDa) and apoprotein of P700 with M(r) 63 kDa insignificantly increases in the drought-resistant genotype Azamatli-95 under extreme water supply condition while their content decreases in drought-sensitive cv Giymatli-2/17. Intensity of synthesis alpha- and beta-subunits of CF(1) (55 and 53.5 kDa) also decreases in Giymatli-2/17. The levels of the core antenna polypeptides of FS II with M(r) 46 and 44.5 kDa (CP47 and CP43) remains stable both in normal, and stressful conditions. At the same time the significant reduction is observed in the content of polypeptides in the 33-30.5 kDa region in the more sensitive genotype Giymatli-2/17. There is an increase in the LHC II polypeptides level in tolerant genotype Azamatli-95 in contrast to Giymatli-2/17 (where the content of these subunits is observed decreasing). The intensity of short wavelength peaks at 687 and 695 nm sharply increases in the fluorescence spectra (77 K) of chloroplasts from sensitive genotype Giymatli-2/17 under water deficiency and there is a stimulation of the ratio of fluorescence band intensity F687/F740. After exposure to drought, cv Giymatli-2/17 shows a larger reduction in the actual PS II photochemical efficiency of chloroplasts than cv Azamatli-95.  相似文献   

2.
Plants were grown in field conditions in the wide area under normal water supply and severe water deficit. Two wheat (Triticum aestivum L.) genotypes contrasting by architectonics and differing in drought-resistance were used: Giymatli-2/17, short stature, with broad and drooping leaves, drought-sensitive, and Azamatli-95, short stature, with vertically oriented small leaves, drought-tolerant). It was found out that Giymatli-2/17 was characterized by relatively low content of Chl a-protein of PS I (CP I) and β-subunit of ATP-synthase complex, the high content of proteins in the 33-30.5 kDa region and LHC polypeptides (28-24.5 kDa), the intensive fluorescence at 740 nm and more high photochemical activity of PS II under normal irrigation compared with Azamatli-95. However, the content of CP I (Mr 115 kDa) and apoprotein of P700 with Mr 63 kDa insignificantly increases in the drought-resistant genotype Azamatli-95 under extreme water supply condition while their content decreases in drought-sensitive cv Giymatli-2/17. Intensity of synthesis α- and β-subunits of CF1 (55 and 53.5 kDa) also decreases in Giymatli-2/17. The levels of the core antenna polypeptides of FS II with Mr 46 and 44.5 kDa (CP47 and CP43) remains stable both in normal, and stressful conditions. At the same time the significant reduction is observed in the content of polypeptides in the 33-30.5 kDa region in the more sensitive genotype Giymatli-2/17. There is an increase in the LHC II polypeptides level in tolerant genotype Azamatli-95 in contrast to Giymatli-2/17 (where the content of these subunits is observed decreasing). The intensity of short wavelength peaks at 687 and 695 nm sharply increases in the fluorescence spectra (77 K) of chloroplasts from sensitive genotype Giymatli-2/17 under water deficiency and there is a stimulation of the ratio of fluorescence band intensity F687/F740. After exposure to drought, cv Giymatli-2/17 shows a larger reduction in the actual PS II photochemical efficiency of chloroplasts than cv Azamatli-95.  相似文献   

3.
Two durum (Triticum durum L.), Barakatli-95 and Garagylchyg-2; and two bread (Triticum aestivum L.) wheat cultivars, Azamatli-95 and Giymatli-2/17 with different sensitivities to drought were grown in the field on a wide area under normal irrigation and severe water deficit. Drought caused a more pronounced inhibition in photosynthetic parameters in the more sensitive cvs Garagylchyg-2 and Giymatli-2/17 compared with the tolerant cvs Barakatli-95 and Azamatli-95. Upon dehydration, a decline in total chlorophyll and relative water content was evident in all cultivars, especially in later periods of ontogenesis. Potential quantum yield of PS II (F(v)/F(m) ratio) in cv Azamatli-95 was maximal during stalk emergency stage at the beginning of drought. This parameter increased in cv Garagylchyg-2, while in tolerant cultivar Barakatli-95 significant changes were not observed. Contrary to other wheat genotypes in Giymatli-2/17 drought caused a decrease in PS II quantum yield. Drought-tolerant cultivars showed a significant increase in CAT activity as compared to control plants. In durum wheat cultivars maximal activity of CAT was observed at the milk ripeness and in bread wheat cultivars at the end of flowering. APX activity also increased in drought-treated leaves: in tolerant wheat genotypes maximal activity occurred at the end of flowering, in sensitive ones at the end of ear formation. GR activity increased in the tolerant cultivars under drought stress at all stages of ontogenesis. SOD activity significantly decreased in sensitive cultivars and remained at the control level or increased in resistant ones. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

4.
Protein composition and native state of chlorophylls were analyzed in two wheat (Triticum durum L.) genotypes with different tolerance to drought, Barakatli-95 (drought-tolerant) and Garagylchyg-2 (drought-sensitive), during water deficit. It is shown that the plants subjected to water deficit appear to have a slight increase in α-and β-subunits of CF1ATP-synthase complex (57.5 and 55 kD, respectively) in Barakatli-95 and their lower content in Garagylchyg-2. Steady-state levels of the core antenna of PS II (CP47 and CP43) and light-harvesting Chl a/b-apoproteins (LHC) II in the 29.5–24 kD region remained more or less unchanged in both wheat genotypes. The synthesis of 36 kD protein and content of low-molecular-weight polypeptides (21.5, 16.5, and 14 kD) were noticeably increased in the tolerant genotype Barakatli-95. Drought caused significant changes in the carotenoid region of the spectrum (400–500 nm) in drought-sensitive genotype Garagylchyg-2 (especially in the content of pigments of the violaxanthin cycle). A shift of the main band from 740–742 to 738 nm is observed in the fluorescence spectra (77 K) of chloroplasts from both genotypes under water deficiency, and there is a stimulation of the ratio of fluorescence band intensity F687/F740. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 2, pp. 223–228.  相似文献   

5.
The effects of drought stress and high irradiance and their combination were studied under laboratory conditions using young plants of a very drought-resistant variety, ICMH 451, of pearl millet (Pennisetum glaucum) and three varieties of sorghum (Sorghum bicolor)—one drought-resistant from India, one drought-tolerant from Texas, and one drought-sensitive variety from France. CO2 assimilation rates and photosystem II fluorescence in leaves were analyzed in parallel with photosynthetic electron transport, photosystem II fluorescence, and chlorophyll-protein composition in chloroplasts isolated from these leaves. High irradiance slightly increased CO2 assimilation rates and electron transport activities of irrigated plants but not fluorescence. Drought stress (less than −1 megapascal) decreased CO2 assimilation rates, fluorescence, and electron transport. Under the combined effects of drought stress and high irradiance, CO2 assimilation rates and fluorescence were severely inhibited in leaves, as were the photosynthetic electron transport activities and fluorescence in chloroplasts (but not photosystem I activity). The synergistic or distinctive effect of drought and high irradiance is discussed. The experiments with pearl millet and three varieties of sorghum showed that different responses of plants to drought and light stresses can be monitored by plant physiological and biochemical techniques. Some of these techniques may have a potential for selection of stress-resistant varieties using seedlings.  相似文献   

6.
The effects of increasing osmotic stress induced by 100–400 mOsm (−0.976 MPa) polyethylene glycol (PEG 6000) were investigated in a drought-tolerant (Triticum aestivum L. cv. Mv Emese) and drought-sensitive (cv. GK élet) wheat cultivar at the three-leaf stage. During osmotic stress, the decline of the water potential (ψ w) was more significant in the leaves, while the abscisic acid (ABA) levels of the roots increased earlier and remained higher in the sensitive than in the tolerant variety. There was an increasing gradient of ABA content toward the youngest leaves in the drought-sensitive GK élet, while more ABA accumulated in the fully developed, older leaves of the tolerant cultivar Mv Emese. In accordance with the rapid and significant accumulation of ABA, the stomatal conductance decreased earlier in the tolerant cultivar. The effect of water stress on the PSII photochemistry was pronounced only 1 week after the exposure to PEG, as indicated by the earlier decrease of the net CO2 fixation, the effective quantum yield (ΦPSII) and the photochemical quenching (q P) in light-adapted samples of the tolerant variety in 400 mOsm PEG 6000. The stress treatment caused more significant reductions in these parameters toward the end of the experiment in the sensitive cultivar. In spite of small differences in the photosynthetic characteristics, the net biomass production was not significantly altered by this osmotic stress. The accumulation of ABA controlled the distribution of the biomass between the shoot and root systems under osmotic stress, and contributed to the development of stronger and deeper roots in the drought-sensitive cultivar GK élet. However, the root elongation did not correlate with the drought sensitivity of these cultivars on the basis of crop yield.  相似文献   

7.
Effects of zinc [0 and 5.0 mg Zn kg−1 (soil)] on photosynthetic rate (PN), and chlorophyll fluorescence in leaves of maize (Zea mays L.) cv. Zhongdan 9409 seedlings grown under different soil moisture regimes (40–45 % and 70–75 % of soil saturated water content) were studied. Zn application did not enhance maize plant adaptation to drought stress. The relative water content and the water potential of leaves were not affected by Zn treatment. Moreover, The PN of drought-stressed plants was not improved by Zn supply. The increases of plant biomass, stomatal conductance and quantum yield of photosystem 2 due to Zn addition were notable in well-watered plants.  相似文献   

8.
The evolution of dissolved organic carbon (DOC) molecular-weight fractions, DOC biodegradability (BDOC), DOC origin [fluorescence index (FI)], and enzyme activities between the stream waters (main and ephemeral channel) and ground waters (riparian and hillslope) were analyzed during the transition from drought to precipitation in a forested Mediterranean stream. After the first rains, DOC content in stream water reached its maximum value (10–18 mg L−1), being explained by the leaching of deciduous leaves accumulated on the stream bed during drought. During this period, the largest molecules (>10 kDa), were the most biodegradable, as indicated by high BDOC values measured during storm events and high enzymatic activities (especially for leucine-aminopeptidase). DOC >100 kDa was strongly immobilized (78%) at the stream–riparian interface, whereas the smallest molecules (<1 kDa) were highly mobile and accumulated in ground waters, indicating their greater recalcitrance. Differential enzymatic patterns between compartments showed a fast utilization of polysaccharides in the flowing water but a major protein utilization in the ground water. The results of the FI indicated a more terrestrial origin of the larger molecules in the flowing water, also suggesting that transformation of material occurs through the stream–riparian interface. Microbial immobilization and fast utilization of the most biodegradable fraction at the stream–riparian interface is suggested as a relevant DOC retention mechanism just after initial recharging of the ground water compartment. Large and rapid DOC inputs entering the intermittent river system during the transition from drought to precipitation provide available N and C sources for the heterotrophs. Heterotrophs efficiently utilize these resources that were in limited supply during the period of drought. Such changes in C cycling may highlight possible changes in organic matter dynamics under the prediction of extended drying periods in aquatic ecosystems.  相似文献   

9.
Mesophyll and bundle sheath chloroplasts were prepared fromleaves of Zea mays grown at light intensities of 1.1 and 240µW/cm2, respectively. The mesophyll chloroplasts thatdeveloped at the low intensity and bundle sheath chloroplatsthat developed at both low and high intensities showed higherratios of chlorophyll a/b and P700/chlorophylls compared withthe normal ratios found for the mesophyll chloroplasts thathad developed at the high intensity. Derivative absorption spectrophotometryat 77?K revealed that the low intensity mesophyll chloroplastscontained more of chlorophyll a forms with longer wavelengthred bands than high intensity mesophyll chloroplasts. More ofthe longer wavelength forms of chlorophyll a were also presentin the bundle sheath chloroplasts that had developed at lowand high intensities. All these four types of chloroplasts showedtwo peaks of fluorescence, one at 687 hra and the other at 733or 738 nm. In addition to these peaks, the high intensity mesophyllchloroplasts showed a shoulder at 697 nm, and the two typesof bundle sheath chloroplasts showed a shoulder at 680 nm. (Received June 17, 1974; )  相似文献   

10.
Seedlings of three wheat varieties (Triticum aestivum L.)—highly productive cv. Ballada, moderately productive cv. Belchanka, and low productive cv. Beltskaya—were exposed to progressive soil drought (cessation of watering for 3, 5, and 7 days) and then analyzed for chlorophyll content and activities of ferredoxin-NADP+ oxidoreductase (FNR) and antioxidant enzymes, namely, glutathione reductase (GR) and ascorbate peroxidase (AscP). In addition, the proline content, and the extent of lipid peroxidation were examined. In the first period of water limitation, the water loss from leaves was slight for all wheat cultivars, which is characteristic of drought-resistant varieties. After 7-day drought the leaf water content decreased by 5.2–6.8%. The total chlorophyll content expressed per unit dry weight increased insignificantly during the first two periods of drought but decreased by 13–15% later on. This decrease was not accompanied by changes in chlorophyll a/b ratio. The plant dehydration did not induce significant changes in FNR activity. Activities of GR and AscP in leaves of wheat cultivars Ballada and Belchanka increased on the 3rd and 5th days of drought. Owing to the coordinated increase in GR and AscP activities, the lipid peroxidation rate remained at nearly the control level observed in water-sufficient plants. When the dehydration period was prolonged to 7 days, activities of GR and AscP in wheat cultivars reduced in parallel with the increase in malonic dialdehyde (MDA) content, indicating that the antioxidant enzyme defense system was weakened and lipid peroxidation enhanced. Unlike Ballada and Belchanka, the wheat cv. Beltskaya did not exhibit the increase in GR and AscP activities during progressive soil drought. The increase in MDA content by 16% in this cultivar was only observed after a 7-day drought period. The proline content in leaves of all wheat cultivars increased substantially during drought treatment. Thus, in wheat cultivars examined, different responses of the defense systems were mobilized to implement plant protection against water stress. The activities of antioxidant enzyme defense system depended on wheat cultivar, duration of drought, and the stage of leaf development.  相似文献   

11.
12.
The specific features of plants make them particularly suitable for the production of recombinant proteins and alfalfa is one of the recommended plant production systems. We have transformed alfalfa with a gene coding for a chimaeric protein made previously by fusing phaseolin to the N-terminal region of γ-zein and have analyzed the accumulation of this fusion protein, named zeolin. Zeolin was expressed both in T0 Regen SY alfalfa plants and in the progeny resulting from the sexual cross between Regen SY transformants and alfalfa cv. Adriana plants. In some alfalfa plants a 95 kDa zeolin glycosylated polypeptide is the most abundant polypeptide detected by Western-blot analysis, whereas in tobacco the most abundant zeolin polypeptide has a molecular mass around 60 kDa, expected for intact zeolin. Zeolin has been stably accumulated in alfalfa leaves because it forms endoplasmic reticulum-located protein bodies in the cell. As regards zeolin quantisation, in the progeny alfalfa plants a value of about 0.22–0.28 mg of zeolin / g of fresh leaf weight has been estimated. Michele Bellucci and Francesca De Marchis contributed equally to this work.  相似文献   

13.
Water status parameters, flag leaf photosynthetic activity, abscisic acid (ABA) levels, grain yield, and storage protein contents were investigated in two drought-tolerant (Triticum aestivum L. cv. MV Emese and cv. Plainsman V) and two drought-sensitive (cvs. GK élet and Cappelle Desprez) wheat genotypes subjected to soil water deficit during grain filling to characterize physiological traits related to yield. The leaf water potential decreased earlier and at a higher rate in the sensitive than in the tolerant cultivars. The net CO2 assimilation rate (P N) in flag leaves during water deficit did not display a strict correlation with the drought sensitivity of the genotypes. The photosynthetic activity terminated earliest in the tolerant cv. Emese, and the senescence of flag leaves lasted 7 days longer in the sensitive Cappelle Desprez. Soil drought did not induce characteristic differences between sensitive and tolerant cultivars in chlorophyll a fluorescence parameters of flag leaves during post-anthesis. Changes in the effective quantum yield of PSII (ΦPSII) and the photochemical quenching (qP) depended on the genotypes and not on the sensitivity of cultivars. In contrast, the levels of ABA in the kernels displayed typical fluctuations in the tolerant and in the sensitive cultivars. Tolerant genotypes exhibited an early maximum in the grain ABA content during drought and the sensitive cultivars maintained high ABA levels in the later stages of grain filling. In contrast with other genotypes, the grain number per ear did not decrease in Plainsman and the gliadin/glutenin ratio was higher than in the control in Emese during drought stress. A possible causal relationship between high ABA levels in the kernels during late stages of grain filling and a decreased grain yield was found in the sensitive cultivars during drought stress.  相似文献   

14.
15.
The effects of drought on photochemical efficiency of PSII in leaves of 22 hybrids of Festuca pratensis × Lolium multiflorum and Festuca pratensis × Lolium perenne and of Festuca pratensis cv. Skra were investigated. A significant decrease of electron transport efficiency (about 25%) in PSII (ΦPSII) was not found before 9 days of seedling growth in hydroponics with water potential (Ψw) equal to −0.8 MPa (simulated “soil drought”). The decrease of ΦPSII was similarly related to that of excitation energy capture by open PSII reaction centre (Fv’/Fm’) and also to the decrease of the proportion of oxidized to reduced QA (photochemical fluorescence quenching, qp). According to the drought prolongation, variation of all parameters of fluorescence between genotypes significantly increased. The seedlings of some genotypes were able to recover electron transport efficiency in PSII after increasing water potential in nutrient solution (removing the “soil drought”). When plants grew in containers with soil and 4 genotypes with the highest sensitivity of electron transport to drought (S) as well as 4 genotypes with the highest tolerance (T) were compared 17 days after watering ceased, Ψw in leaves considerably decreased, but the differences between S and T genotypes were often not significant in this respect. The differences between S and T genotypes, as values of Fv/Fm were concerned, also appeared small (about 5%), similarly as that of Fv’/Fm’ (5%), qp (12%) and ΦPSII (about 15%). Drought stress increased non-photochemical quenching of chlorophyll fluorescence (NPQ) 15 to 47% and this could protect the PSII reaction centres from damages because of energy excess. The increase of NPQ was not closely connected with drought resistance of plants because it was similar in some genotypes tolerant to dehydration as well as in sensitive ones. The results of the experiments suggest that resources of genetic variability in Festulolium may be sufficient for revealing differences between genotypes on the basis of measurement of chlorophyll a fluorescence, as far as their tolerance to soil drought is concerned. As the tolerance of PSII against drought is high, the determinations of fluorescence should be performed rather under severe stress. Such methods seem to be useful for selection of genotypes with high drought tolerance as well as with the ability to at least partial repairing of PSII after drought.  相似文献   

16.
Three wheat (Triticum aestivum L.) genotypes, Sadovo, Katya and Prelom, with different tolerance to drought were comparatively evaluated in terms of leaf respiratory responses to progressing dehydration and consecutive rewatering. Under drought stress, the respiration of all varieties gradually decreased, as the drought-tolerant Katya showed the most pronounced decline at earlier stages of dehydration. When water stress intensified, this genotype gave relatively stable respiration rates compared with the drought-sensitive varieties. Additionally, dehydrated Katya leaves displayed lower stomatal conductance and higher photosynthesis values, which resulted in greater water use efficiency during the dehydration period. Combination of drought stress and short-term changes in leaf temperature also induced genotype-specific response that differed from the response to drought only. Over the whole temperature range, the leaves of Katya exposed to dehydration for 14 days, showed higher respiration rates compared to the drought-sensitive varieties. The sensitive varieties maintained higher respiration rates under control conditions and mild dehydration, and very low rates under severe drought. In Katya, respiration and photosynthesis were fully restored from the stress within the first day of rewatering. The drought-sensitive genotypes displayed a considerably slower recovering capacity. The results are discussed in terms of possible physiological mechanisms underlying plant tolerance to drought.  相似文献   

17.
Transpiration and photosynthesis of current-year stems and adult leaves of different deciduous tree species were investigated to estimate their probable influence on carbon balance. Peridermal transpiration of young stems was found to be rather small as compared to the transpiration of leaves (stem/leaf like 1/5–1/20). A characteristic that was mainly attributable to the lower peridermal conductance to water and CO2, which made up only 8–28% of stomatal conductance. Water vapour conductance was significantly lower in stems, but also non-responsive to PAR, which led to a comparatively higher water use efficiency (WUE, ratio assimilation/transpiration). Thus, although corticular photosynthesis reached only 11–37% of leaf photosynthesis, it may be a means of improving the carbon balance of stems under limited water availability. The influence of drought stress on primary photosynthetic reactions was also studied. Under simulated drought conditions the drying time needed to provoke a 50% reduction (t 50) in dark- and light-adapted PSII efficiency (Fv/Fm, ΔF/Fm′) was up to ten times higher in stems than in leaves. Nevertheless, up to a relative water deficit (RWD) of around 40–50% dark-adapted PSII efficiency of leaves and stems was rather insensitive to dehydration, showing that the efficiency of open PS II reaction centres is not impaired. Thus, it may be concluded that in stems as well as in leaves the primary site of drought damage is at the level of dark enzyme reactions and not within PSII. However, enduring severe drought caused photoinhibitory damage to the photosynthetic apparatus of leaves and stems; thereby RWD50 values (= RWD needed to provoke a 50% reduction in Fv/Fm ad ΔF/Fm′) were comparably lower in stems as compared to leaves, indicating a possibly higher drought sensitivity of the cortex chlorenchyma.  相似文献   

18.
Maize (Zea mays L.) seedlings of two cultivars (cv. Bastion adapted to W. Europe, and cv. Batan 8686 adapted to the highlands of Mexico), raised in a glasshouse (19–25 °C), were transferred to 4.5 or 9 °C at photon flux density (PPFD) of 950 μmol m−2 s−1 with 10-h photoperiod for 58 h and then allowed to recover at 22 °C for 16 h (14 h dark and 2 h at PPFD of 180 μmol m−2 s−1). The ultrastructural responses after 4 h or 26 h at 4.5 °C were the disappearance of starch grains in the bundle sheath chloroplasts and the contraction of intrathylakoid spaces in stromal thylakoids of the mesophyll chloroplasts. At this time, bundle sheath chloroplasts of cv. Batan 8686 formed peripheral reticulum. Prolonged stress at 4.5 °C (50 h) caused plastid swelling and the dilation of intrathylakoid spaces, mainly in mesophyll chloroplasts. Bundle sheath chloroplasts of cv. Batan 8686 seedlings appeared well preserved in shape and structure. Batan 8686 had also higher net photosynthetic rates during chilling and recovery than Bastion. Extended leaf photobleaching developed during the recovery period after chilling at 4.5 °C. This was associated with collapsed chloroplast envelopes, disintegrated chloroplasts and very poor staining.  相似文献   

19.
Lauriano  J.A.  Campos  P.S.  Ramalho  J.C.  Lidon  F.C.  Guedes  M.E.  do Céu Matos  M. 《Photosynthetica》1997,33(1):81-90
Photosynthetic capacity (PC) of three peanut cultivars (Arachis hypogaea L. cvs. 57-422, 73-30, and GC 8-35) decreased during drought stress (decline in relative water content from ca. 95 to 70 %) and recovered two days after rewatering. Mild water stress was not limiting for the total ribulose-1,5-bisphosphate carboxylase/oxygenase activity, since this enzyme activity increased under drought. Photosystem (PS) 2 and PS1 (the latter only in cv. GC 8-35) electron transport activities decreased under drought. The ratio of the variable to maximal chlorophyll fluorescence (Fv/Fm) decreased mainly in the cv. GC 8-35. All cultivars showed decreases in photochemical quenching (qP) and quantum yield of PS2 electron transport (Φe). Increase of basal fluorescence (F0) was observed in the cvs. 73-30 and GC 8-35, while the cv 57-422 showed a decrease. After rewatering a sharp increase was observed in the majority of the parameters. Thus under the present stress conditions, the cv GC 8-35 was the most affected for all the parameters under study. The cv. 57-422 showed a higher degree of tolerance being gradually affected in photosynthetic capacity (PC) in contrast to the two other cvs. which showed a sharp decrease in PC at the beginning of the drought cycle. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
Physiological responses of two Jerusalem artichoke (Helianthus tuberosus L.) cultivars with different drought sensitivity to drought stress induced by polyethylene glycol (PEG) 6000 were investigated by characterizing water status, membrane lipid peroxidation, key antioxidant enzymes activity, and proline accumulation. It was observed that the drought-tolerant Jerusalem artichoke cv. Xiuyan maintained a relatively higher water status than the drought-sensitive cv. Yulin upon drought treatments. Meanwhile, lower levels of malondialdehyde (MDA) as well as higher levels of free proline occurred in cv. Xiuyan after 36 h drought treatments. Moreover, the activities of catalase (CAT) and superoxide dismutase (SOD) in cv. Xiuyan were higher than cv. Yulin after drought stress. These results indicated that drought sensitivities actually differ between Jerusalem artichoke cv. Xiuyan and cv. Yulin, and the cv. Xiuyan was more tolerant to drought stress caused by polyethylene glycol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号