首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two populations of tryptic peptides were isolated from bovine estrus cervical mucin (BCM). One contained all the carbohydrate, and was rich in threonine and serine. These glycopeptides had, like the whole mucin, alanine as their NH2-terminal residues. Their COOH-terminal residues were arginine. The second population of peptides was rich in carboxylic amino acids, contained two cysteinyl residues, and had, like the whole mucin, leucine as COOH-terminal residues. Their NH2-terminal residues were aspartic acid. The sum of the residues of one glycopeptide plus one cysteinyl-containing peptide corresponded to the number of residues constituting a putative subunit of BCM. The amino acid sequence of the major cysteinyl peptide was determined. A cluster of hydrophobic residues was found in the COOH-terminal region. The amino acid sequences of two of the glycopeptides were found identical up to the 22nd residue. The small number of tryptic peptides, as well as the large amount of NH2- and COOH-terminal amino acids found in BCM indicate that this glycoprotein is made up of similar subunits with a molecular weight of about 22,000, one of the glycopeptides representing the NH2-terminal part, and one of the cysteinyl peptides, the COOH-terminal part. However, the existence of these subunits was not confirmed by ultracentrifugation of BCM in dithiothreitol and sodium dodecyl sulfate. BCM was polydisperse and had a mean molecular weight of 507,000.  相似文献   

2.
Pulmonary angiotensin-converting enzyme. Structural and catalytic properties.   总被引:11,自引:0,他引:11  
Angiotensin-converting enzyme has been solubilized from a particulate fraction of rabbit lung and purified to apparent homogeneity in 11% yield by a procedure including fractionation with DEAE-cellulose and calcium phosphate gel, elution from Sephadex G-200, and lectin affinity chromatography. The molecular weight estimated by equilibrium sedimentation was approximately 129,000, either in the absence or presence of 6 M guanidine hydrochloride. A slightly higher value of 140,000 determined for the reduced, denatured protein by gel electrophoresis in the presence of sodium dodecyl sulfate and a much higher figure derived from gel filtration are probably due to the glycoprotein nature of the enzyme. Its oligosaccharide content accounted for 26% of the weight calculated from its amino acid and carbohydrate composition. The estimated content of sugar residues per mole was: galactose, 57; N-acetylglucosamine, 53; mannose, 43; N-acetylneuraminic acid, 19; and fucose, 4. Threonine and alanine were identified, respectively, as NH2-terminal and COOH-terminal residues by the dansylation procedure and by digestion with carboxypeptidase A. The enzyme was found to contain approximately 1 g atom of zinc per mol. Km values for hydrolysis of hippurylhistidylleucine and angiotensin I were 2.3 and 0.07 mM, and the corresponding turnover numbers were 15,430 and 792 mol/min/mol at 37 degrees. Bradykinin was also a substrate, and release of its COOH-terminal dipeptide, Phe-Arg, was catalyzed at a comparable rate to that of His-Leu from the COOH terminus of angiotensin I. Enzyme activity required the presence of chloride ions and was inhibited by EDTA and by low concentrations of Bothrops bradykinin-potentiating peptides. In addition, hydrolysis of hippurylhistidylleucine was inhibited competitively by other defined peptides, including di- and tripeptides, which were not substrates.  相似文献   

3.
H C Chang  M S Bergdoll 《Biochemistry》1979,18(10):1937-1942
A method was developed for the isolation of staphylococcal enterotoxin D in highly purified form from cultures of Staphylococcus aureus strain 1151m. The method involves removal of the toxin from the culture supernatant fluid with the ion-exchange resin CG-50 followed by chromatography on carboxymethylcellulose (twice) and by gel filtration on Sephadex G-75 (twice). The purified toxin is homogeneous by polyacrylamide gel and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and double gel diffusion tests. It is a simple, colorless, antigenic protein with an isoelectric point of 7.4 as determined by isoelectric focusing. Its molecular weight was determined to be 27 300 +/- 700 by molecular sieve chromatography on Sephadex G-100 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its serological activity is stable over a wide range of pH values (1.2--10.7). The enterotoxin consists of 236 amino acid residues and contains no free sulfhydryl groups. End-group analysis showed serine to be the NH2-terminal amino acid and lysine to be the COOH-terminal amino acid.  相似文献   

4.
Human thymidylate synthase [EC 2.1.1.45] was purified to homogeneity and its NH2-terminal amino acid sequence was determined taking advantage of the following facts: i) The source of the enzyme was a transformant of mouse FM3A mutant cells which lacks mouse thymidylate synthase but overproduces human thymidylate synthase. ii) The enzyme could be purified on two kinds of affinity column, Cibacron blue dye-bound agarose and methotrexate-bound Sepharose. iii) The enzyme could finally be separated from a trace of impurities by electrophoresis on polyacrylamide gel containing sodium dodecyl sulfate. The purified human thymidylate synthase had a subunit with a molecular weight of 33,000, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was subjected to Edman degradation and the NH2-terminal 24 amino acids were sequenced by successive use of a high-sensitivity gas-phase protein sequencer and high performance liquid chromatography to be as follows: Pro-Val-Ala-Gly-Ser-Glu-Leu-Pro-Arg-Arg-Pro-Leu-Pro-Pro-Ala-Ala-Gln-Glu- Arg-Asp -Ala-Glu-Pro-Arg-.  相似文献   

5.
The salt soluble proteins from the fat globule membrane of cow's milk were resolved into three fractions by Sephadex column chromatography in sodium dodecyl sulfate. One of the fractions, termed glycoprotein B, was purified by rechromatography to essentially one band on sodium dodecyl sulfate gel electrophoresis. It was found to contain 14% carbohydrate including sialic acid, mannose, galactose, glucose, glucosamine and galactosamine. The amino acid composition of glycoprotein B was determined; it has amino terminal serine and carboxyl terminal leucine. The molecular weight of this glycoprotein as estimated by sodium dodecyl sulfate gel electrophoresis is 49 500.  相似文献   

6.
The AMP-deaminases from chicken and rabbit muscle have been investigated by techniques which include sedimentation equilibrium, sodium dodecyl sulfate gel electrophoresis, amino acid analysis, NH2- and COOH-terminal analyses, and tryptic peptide mapping. The molecular weights of the native chicken (276,000) and rabbit (271,000) enzymes obtained by sedimentation equilibrium studies are in good agreement with values of 276,000 (chicken) and 275,000 (rabbit) calculated from amino acid analyses. The enzymes were reduced, carboxymethylated, and treated with either maleic or succinic anhydride in the presence of 6 M guanidine hydrochloride. Sodium dodecyl sulfate gel electrophoresis of the chemically modified enzymes resulted in a single electrophoretic species having an apparent molecular weight of 85,000. This observation is consistent with previous studies on the nonacylated enzymes and suggests that the muscle AMP-deaminases from chicken and rabbit do not contain noncovalent linkages which are readily disrupted by a large increase in negative charge. NH2-terminal analyses by the method of Stark and Amyth as well as the dansyl technique, indicate that the NH2-terminal positions of these enzymes are blocked. The enzymes are also resistant to digestion with carboxypeptidases A or B (or both) in the presence of sodium dodecyl sulfate. The most distinctive feature of the amino acid compositions of both the chicken and rabbit AMP-deaminases is the presende of eight half-cystine residues per 69,000 g of protein. Tryptic digests of the S-14C-carboxymethylated proteins were fractionated by ion exchange chromatography and high voltage electrophoresis. Six and five radioactiviely labeled peptides were detected in the electrophoretograms of the chicken and rabbit enzymes, respectively. This observation and the number of ninhydrinposition spots, together with the physical data on the molecular weights of the native enzymes and their subunits, suggest that the AMP-deaminases from chidken and rabbit muscle consist of four identical or very similar polypeptide chains.  相似文献   

7.
Sodium- and potassium-activated adenosine triphosphatase (NaK-ATPase) was purified from nasal salt glands of the duck (Anas platyrhynchos). Enzyme of specific activity 2,000 to 2,300 mumol of Pi/mg/hour was routinely obtained by sodium dodecyl sulfate treatment of a microsomal fraction of gland homogenate in the presence of 3 mM ATP followed by pelleting of the enzyme through a sucrose density gradient. Purified NaK-ATPase was stable for over 3 months at -20 degree. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography purified NaK-ATPase was shown to contain two polypeptide chains of molecular weight 94,000 and 60,000, the smaller of which was a glycoprotein. Purified enzyme of activity 2,300 mumol of Pi/mg/hour bound 3,600 pmol of ouabain/mg of enzyme protein. Reaction with [gamma-32P]ATP in the presence of Mg2+ and Na+ gave 7,025 pmol of acyl phosphate/mg of enzyme protein. The turnover number calculated from phosphorylation data was 5,460 min-1. Amino acid analysis of the polypeptide components of duck salt gland enzyme after separation by gel filtration chromatography in sodium dodecyl sulfate demonstrated strong compositional homology with highly purified NaK-ATPase preparations from other organs and species. The NH2-terminal amino acid of the 94,000-dalton component was glycine and of the 60,000-dalton component, alanine. With a combination of manual sequencing and automated Edman degradation, the NH2-terminal amino acid sequence of the 94,00-dalton catalytic subunit was found to be Gly-Arg-Asn-Lys-Tyr-Glu-Thr-Thr-Ala-()-Ser-Glu.  相似文献   

8.
A new column chromatography procedure, based on ion exchange, chromatofocusing, and reverse phase high pressure liquid chromatography was employed to isolate the two main proteinaceous, toxic, cytolytic, pore-forming factors from the secretion of the Red Sea Moses sole Pardachirus marmoratus. Pardaxin I, comprising 10% of the gland secretion proteins, was shown to be 5-10 times more toxic, cytolytic, and active in membrane pore formation than pardaxin II (8% of gland secretion proteins). Gel electrophoresis, amino acid analysis, and NH2-terminal amino acid sequence reveals a high degree of homogeneity and resemblance between the two toxins. They are rich in aspartic acid, serine, glycine, and alanine and devoid of arginine, tyrosine, and tryptophan. Their NH2-terminal residue sequence was found to be NH2-Gly-Phe-Phe. Their hydrophobicity is evident from chromatographic behavior on a hydrophobic matrix, presence of 9 successive hydrophobic residues at the NH2 terminus, and a decrease in drop size during elution of active fractions during chromatographic purification. The minimal molecular weight of pardaxin I is about 3500 as determined by sodium dodecyl sulfate gel electrophoresis and amino acid analyses. It is composed of 35 amino acids and is free of carbohydrate and sialic acid residues. Mass spectrometry of the ethyl acetate extract of the gland secretion and purified toxin reveals the presence of sterols in the secretion but their absence in the purified toxins. Pardaxin I was iodinated without affecting its chemical and pore-forming properties. It binds to liposomes of different phospholipid compositions. In hyperpolarized unilamellar liposomes, pardaxin I produced a fast, nonspecific permeabilization and in multilamellar liposomes, a slow, cation-specific pore. It is suggested that pardaxins exert their effects due to their hydrophobic and pore-formation properties.  相似文献   

9.
Purification and characterization of rat angiotensinogen   总被引:3,自引:0,他引:3  
1. Angiotensinogen (renin substrate) was purified from plasma of nephrectomized rats by a four step procedure using ammonium sulfate fractionation, chromatography on Blue Sepharose CL-6B and SP-Sephadex C-50, and gel filtration on Sephadex G-150. 2. The final preparation had a specific concentration of 9.3 microgram angiotensin I/mg (mean of six separate runs). The best preparation so far obtained contains 14.6 microgram angiotensin I/mg protein, which represents a purity of 62%. 3. By sodium dodecyl sulfate disc electrophoresis an apparent molecular weight of 56,400, and by isoelectric focusing an isoelectric point of 4.85 has been determined. These properties of rat angiotensinogen are similar to those reported for human angiotensinogen.  相似文献   

10.
W G Carter  M E Etzler 《Biochemistry》1975,14(23):5118-5122
The 110000 molecular weight Dolichos biflorus lectin is a glycoprotein composed of four subunits of approximately 27000 molecular weight with one methionine residue per subunit (Carter and Etzler, 1975b). Cyanogen bromide cleavage of the lectin yielded two fragments with approximate molecular weights of 15000 and 12000 as determined by electrophoresis on sodium dodecyl sulfate gels. Only the 15000 molecular weight fragment stained for carbohydrate with the periodic acid-Schiff stain. The two fragments were isolated, and their amino acid compositions were determined. The 15000 molecular weight fragment was identified as the amino terminal segment of the lectin subunits by NH2-terminal amino acid analysis. A glycopeptide with a minimum molecular weight of 1100 was isolated from the lectin by exhaustive Pronase digestion. Complete acid hydrolysis of the glycopeptide yielded aspartic acid, mannose, and N-acetylglucosamine in the ratio of 1:4-5:1-2. Partial acid hydrolysis of the glycopeptide produced a component which had an identical mobility with commercial N-acetylglucosaminylasparagine in high voltage paper electrophoresis. The data indicate that the carbohydrate unit of the lectin is bound to the amino terminal half of the subunits by a glycosylamine linkage between N-acetylglucosamine and asparagine.  相似文献   

11.
B K Seon  D Pressman 《Biochemistry》1978,17(14):2815-2821
A human glycoprotein was isolated from the urine of a patient with plasma cell leukemia. It appears pure and homogeneous when examined by immunoelectrophoresis, sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gel electrophoresis, gel filtration in 6 M guanidine hydrochloride (Gdn.HCl), and NH2-terminal amino acid sequence analysis. It has a brown color due to a tightly (most likely covalently) bound chromophore group(s) and migrates to the alpha1 region in immunoelectrophoresis. A molecular weight (mol wt) of 27 000 was obtained for the glycoprotein by gel filtration in 6 M Gdn.HCl. Its approximate mol wt determined by Na-DodSO4-polyacrylamide gel electrophoresis is 29 000 on 5% and 7.5% and 10% gels. Amino acid and hexosamine analyses showed that it is a glycoprotein and indicated that it contains four half-cystine residues per molecule. Based on the above observations we designated it "alpha1-microglycoprotein" (alpha1-MGP). Isoelectric focusing of alpha1-MGP showed a significant charge heterogeneity, although only a single NH2-terminal amino acid sequence was obtained for alpha1-MGP, i.e., Gly-Pro-Val-Pro-( )-Pro-Pro-Asx-Asx-Ile-Glx-Val-Glx-Glx-Asx-Phe-Phe-Ile-(Ser or Ala)-Arg. The alpha1-MGP was found in significant concentrations in the urine of many patients with neoplastic diseases.  相似文献   

12.
The molecule weight of the biodegradative threonine deaminase from Escherichia coli was determined to be approximately 147,000 by sedimentation equilibrium ultracentrifugation. Similar experiments using 5 M guanidinium chloride gave a value of 39,000 for the molecular weight of the enzyme subunit. On sodium dodecyl sulfate-gel electrophoresis the enzyme also dissociated into a single subunit with an estimated molecular weight of 38,000. The NH2 terminus of the enzyme was determined to be methionine by the dinitrophenylation procedure. Quantitative analysis revealed that 3.6 mol of methionine were detected per 147,000 g of enzyme. The selective tritium labeling method established alanine as the COOH-terminal residue. The sequence of residues at the NH2 terminus, determined using an automated sequence analyzer, was: (formula: see text). The fact that a single amino acid was released at each degradation step in the above experiment strongly suggests that the subunits in the enzyme contain the same amino acid sequence. Therefore, the native enzyme with a molecular weight of 147,000 appears to be composed of four identical polypeptide subunits.  相似文献   

13.
The chemical properties of two highly purified preparations of (sodium + potassium)-activated adenosine triphosphatase (NaK ATPase) and their subunits have been compared. One preparation is derived from the rectal gland of the spiny dogfish shark, Squalus acanthias and the other preparation is derived from the electric organ of the electric eel, Electrophorus electricus. Ouabain binding and phosphorylation from [gamma-32-P]ATP for both enzymes ranged from 4000 to 4300 pmol per mg of protein. This gives a stoichiometry for ouabain binding and phosphorylation of 1:1 for both enzymes. The molar ratios of catalytic subunit to glycoprotein was 2:1 for both enzymes, suggesting a minimum molecular weight of 250, 000, which agrees with the molecular weight obtained by radiation inactivation. Assuming that only one of the two catalytic subunits is phosphorylated and binds ouabain per (sodium + potassium)-activated adenosine triphosphatase molecule the data on phosphorylation and ouabain binding also give a molecular weight of 250, 000. The data on phosphorylatiion, ouabain binding, subunit composition, and molecular weight based on radiaion inactivation are thus all internally consistent. A technique has been developed for isolation of pure catalytic subunit and glycoprotein in good yields by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A variety of chemical studies have been carried out with the purified subunits. The amino acid composition of the catalytic subunit was different from that of the glycoprotein, but the amino acid composition of each of the two subunits was essentially the same for both species. However, the NH2-terminal amino acid for the catalytic subunit was alanine for the rectal gland enzyme and serine for the electric organ enzyme, suggesting some differencesin amino acid sequences for the two species. The NH2-terminal amino acid for the glycoprotein was alanine for the two species. The glycoproteins from both species contained the same carbohydrates but in quite differing amounts. The carbohydrates were glucosamine, sialic acid, fucose, galactose, mannose, and glucose. The release of all the sialic acid from the electric organ enzyme and the release of 40% of the sialic acid from the rectal gland enzyme did not affect (sodium + potassium)-activated adenosine triphosphatase activity. Both enzymes contained the following phospholipids, which accounted for 98 to 100% of the total phospholipid phosphorus: sphingomyelin, lecithin, phosphatidylserine, phosphatidylethanolamine, and phosphatidylinositol. With the exception of phosphatidylethanolamine, and phosphatidylinositol. With the exception of phosphatidylserine, the amount of any phospholipid per mg of enzyme as well as the total phospholipid content were quite different for the two enzymes.  相似文献   

14.
Human prothrombin has been purified from American Red Cross Factor IX concentrates. Studies of the activation of the human prothrombin with the use of sodium dodecyl sulfate electrophoretic analysis of activation products indicated that human prothrombin activation is similar to bovine prothrombin activation. Molecular weight analysis of human prothrombin and intermediated by sodium dodecyl sulfate co-electrophoresis with bovine prothrombin and its intermediates resulted in molecular weights of 70,000 for prothrombin, 51,000 for intermediate 1, 41,000 for intermediate 2, 23,000 for intermediate 3, and 13,000 for intermediate 4. Amino acid compositions of human prothrombin and intermediates are similar to those for bovine prothrombin and intermediates. NH2-terminal sequence studies of human prothrombin, intermediates, and alpha-thrombin A and B chains placed the intermediates in the parent human prothrombin molecule as described for the bovine system. Intermediate 3 is the NH2-terminal of prothrombin, and intermediate 1 is the COOH-terminal segment of the zymogen. Intermediate 4 is the NH2-terminal of intermediate 1. Intermediate 2', the immediate precursor of alpha-thrombin, is the COOH-terminal segment of intermediate 1. In general, a high degree of homology in the primary structure of prothrombin and intermediates was observed between the human and bovine system. The NH2-terminal sequences of human intermediate 2' and alpha-thrombin A chain are identical. However, human intermediate 2' isolated in a manner identical with that used for the isolation of bovine intermediate 2 is homologous with bovine intermediate 2, beginning with residue 14.  相似文献   

15.
Two T-kininogens (TI- and TII-kininogens) found in plasma of Freund's adjuvant-treated rats were purified by several chromatographic procedures. The isolated TI- and TII-kininogens showed different mobilities on polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate, but were indistinguishable in the presence of sodium dodecyl sulfate. They were also indistinguishable in amino acid composition and antigenicity, but differed in sialic acid content. The NH2- and COOH-terminal sequences were determined. In the 30 NH2-terminal residues, 2 were different. The kinin regions in the COOH-terminal portions of the two kininogens have sequences that demonstrate TI-kininogen contains a mixture of two kinin-containing regions, with substitution of 4 amino acid residues, one of which is identical to the COOH-terminal portion of alpha 1-major acute phase protein (Cole, T., Inglis, A. S., Roxburgh, C. M., Howlett, G. J., and Schreiber, G. (1985) FEBS Lett. 182, 57-61) and the other to the COOH-terminal portion of TI-kininogen (Furuto-Kato, S., Matsumoto, A., Kitamura, N., and Nakanishi, S. (1985) J. Biol. Chem. 260, 12054-12059), both predicted from cDNA sequences. The amino acid sequence of the kinin-containing region from TII-kininogen is the same as the COOH-terminal portion of TII-kininogen predicted from the cDNA. These results indicate that T-kininogens from the plasma of adjuvant-treated rats consist of a family of kininogens, that is, TI- and TII-kininogens (separable on DEAE-Sephadex A-50), and that TI-kininogen consists of at least two variants (TI alpha and TI beta) which correspond to the alpha 1-major acute phase protein reported by Cole et al. and TI-kininogen reported by Furuto-Kato et al., respectively. Immunoblotting studies with plasmas from non-inflamed and adjuvant-treated rats also indicate that T-kininogen which was previously isolated from non-inflamed rat plasma corresponds to TI-kininogen and that TII-kininogen is newly generated after treatment of rats with adjuvants.  相似文献   

16.
Studies on subunit structure and evidence that ligandin is a heterodimer   总被引:7,自引:0,他引:7  
Several lines of evidence indicate that ligandin consists of two different subunits. The protein dissociates into two components that are detected by electrophoresis in a discontinuous sodium dodecyl sulfate system, or in acid-urea gels, and by isoelectric focusing in the presence of urea. The apparent molecular weights of the two polypeptides are 25,000 and 22,000. Alkylated or succinylated ligandins also exhibit subunit heterogeneity and resolved into two bands in these electrophoretic systems. Cross-linked ligandin showed only one band in sodium dodecyl sulfate-gel electrophoresis indicating that the two subunits are part of a heterodimeric protein rather than monomers of two different proteins. No dansylated terminal amino acids were detected suggesting that the NH2-terminal residues of both chains are blocked. One mole of arginine or phenylalanine was released per mole of ligandin after digestion with carboxypeptidase B or A, respectively. Tryptic maps of succinylated ligandin were consistent with identical disposition of arginine residues in both chains, but several additional tryptic peptides were obtained with native ligandin as compared to the predicted number if both subunits were identical. These observations are consistent with the possibility that both subunits contain common sequences and that a small peptide of about 25 to 30 amino acid residues is cleaved from the COOH-terminal of the larger subunit to produce the smaller subunit.  相似文献   

17.
Aqualysin I is a subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extremely thermophilic Gram-negative bacterium. The nucleotide sequence of the entire gene for aqualysin I was determined, and the deduced amino acid sequence suggests that aqualysin I is produced as a large precursor, consisting of at least three portions, an NH2-terminal pre-pro-sequence (127 amino acid residues), the protease (281 residues), and a COOH-terminal pro-sequence (105 residues). When the cloned gene was expressed in Escherichia coli cells, aqualysin I was not secreted. However, a precursor of aqualysin I lacking the NH2-terminal pre-pro-sequence (38-kDa protein) accumulated in the membrane fraction. On treatment of the membrane fraction at 65 degrees C, enzymatically active aqualysin I (28-kDa protein) was produced in the soluble fraction. When the active site Ser residue was replaced with Ala, cells expressing the mutant gene accumulated a 48-kDa protein in the outer membrane fraction. The 48-kDa protein lacked the NH2-terminal 14 amino acid residues of the precursor, and heat treatment did not cause any subsequent processing of this precursor. These results indicate that the NH2-terminal signal sequence is cleaved off by a signal peptidase of E. coli, and that the NH2- and COOH-terminal pro-sequences are removed through the proteolytic activity of aqualysin I itself, in that order. These findings indicate a unique four-domain structure for the aqualysin I precursor; the signal sequence, the NH2-terminal pro-sequence, mature aqualysin I, and the COOH-terminal pro-sequence, from the NH2 to the COOH terminus.  相似文献   

18.
A putative Ca2+ channel protein was purified from rabbit skeletal muscle transverse tubules with the combined use of lectin affinity chromatography and ion-exchange chromatography, followed by sucrose density gradient centrifugation. The major component of the purified preparation detected by sodium dodecyl sulfate-gel electrophoresis was a protein of 150 kDa when reduced with 20 mM dithiothreitol and a 191-kDa protein when treated with 20 mM N-ethylmaleimide. Therefore, this protein appears to be identical with the alpha subunit previously described (Curtis, B. M., and Catterall, W. A. (1984) Biochemistry 23, 2113-2118). This protein was purified by preparative sodium dodecyl sulfate-gel electrophoresis, followed by electroelution and/or electroblotting, and its amino acid composition and NH2-terminal sequence were determined. The NH2-terminal sequence is: NH2-Glu-Pro-Phe-Pro-Ser-Ala-Val-X-Ile-Lys-Ser-X-Val-X-Lys-Met-Gln-.  相似文献   

19.
Prostaglandin synthetase contains both oxygenase and peroxidase activity and catalyzes the first step of prostaglandin synthesis. Aspirin (acetylsalicylic acid) inhibits oxygenase activity by acetylating a serine residue of the enzyme. In the current study, we have investigated the subunit structure of this complex enzyme and the stoichiometry of aspirin-mediated acetylation of the enzyme. The enzyme was purified to near homogeneity in both active and aspirin-acetylated forms. The purified protein was analyzed for enzymatic activity, [3H]acetate content following treatment with [acetyl-3H]aspirin, NH2-terminal sequence, and amino acid composition. The results show first, that the enzyme can be purified to near homogeneity in an active form; second, that the enzyme consists of a single polypeptide chain (molecular weight 72,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis) with a unique NH2-terminal sequence (Ala-Asp-Pro-Gly-Ala-Pro-Ala-Pro-Val-Asn-Pro-Met-Gly-); and third, that aspirin inhibits the enzyme by transfer of one acetate per enzyme monomer. Therefore, the two distinct enzymatic activities, oxygenation and peroxidation, are present in a single polypeptide chain. Experiments with a cross-linking agent indicate that in nonionic detergent the enzyme is a dimer of two identical subunits.  相似文献   

20.
Analysis of soluble Ehrlich ascites proteins by the Sanger procedure revealed methionine, alanine, valine, and glycine as the major NH2-terminal amino acids. The average monomer weights of these proteins calculated from the yields of NH2-terminal amino acids was 144,000. In contrast, the average monomer weight of Ehrlich ascites soluble proteins calculated from the data obtained after electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate was 32,500. The explanation for the disparity in the estimates of average monomer weight obtained by the procedures appears to be that extensive blocking of alpha-NH2 groups by acetate occurs in these proteins, i.e. of the acetate present in the acidic peptides isolated from proteolytic digests of ascites proteins, 23.2 nmol/mg of protein appears to originate from N-acetyl amino acids. These results suggest that approximately 80% of the soluble proteins from Ehrlich ascites cells contain acetate at their NH2-terminal residues. The extensive N-acetylation of proteins does not appear to be limited to Ehrlich ascites cells and may be characteristic of eukaryotic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号